Support using OpenFst to compile HLG. (#606)

* Support using OpenFst to compile HLG.

* Fix style issues
This commit is contained in:
Fangjun Kuang 2022-12-09 16:46:44 +08:00 committed by GitHub
parent d65fe17d27
commit 4501821fd9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 325 additions and 3 deletions

View File

@ -0,0 +1,184 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input lang_dir and generates HLG from
- H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
- L, the lexicon, built from lang_dir/L_disambig.fst
Caution: We use a lexicon that contains disambiguation symbols
- G, the LM, built from data/lm/G_3_gram.fst.txt
The generated HLG is saved in $lang_dir/HLG_fst.pt
So when to use this script instead of ./local/compile_hlg.py ?
If you have a very large G, ./local/compile_hlg.py may throw OOM for
determinization. In that case, you can use this script to compile HLG.
"""
import argparse
import logging
from pathlib import Path
import k2
import kaldifst
import torch
from icefall.lexicon import Lexicon
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lang-dir",
type=str,
help="""Input and output directory.
""",
)
return parser.parse_args()
def compile_HLG(lang_dir: str) -> kaldifst.StdVectorFst:
"""
Args:
lang_dir:
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
Return:
An FST representing HLG.
"""
L = kaldifst.StdVectorFst.read(f"{lang_dir}/L_disambig.fst")
logging.info("Arc sort L")
kaldifst.arcsort(L, sort_type="olabel")
logging.info(f"L: #states {L.num_states}")
G_filename_txt = "data/lm/G_3_gram.fst.txt"
G_filename_binary = "data/lm/G_3_gram.fst"
if Path(G_filename_binary).is_file():
logging.info(f"Loading {G_filename_binary}")
G = kaldifst.StdVectorFst.read(G_filename_binary)
else:
logging.info(f"Loading {G_filename_txt}")
with open(G_filename_txt) as f:
G = kaldifst.compile(s=f.read(), acceptor=False)
logging.info(f"Saving G to {G_filename_binary}")
G.write(G_filename_binary)
logging.info("Arc sort G")
kaldifst.arcsort(G, sort_type="ilabel")
logging.info(f"G: #states {G.num_states}")
logging.info("Compose L and G and connect LG")
LG = kaldifst.compose(L, G, connect=True)
logging.info(f"LG: #states {LG.num_states}")
logging.info("Determinizestar LG")
kaldifst.determinize_star(LG)
logging.info(f"LG after determinize_star: #states {LG.num_states}")
logging.info("Minimize encoded LG")
kaldifst.minimize_encoded(LG)
logging.info(f"LG after minimize_encoded: #states {LG.num_states}")
logging.info("Converting LG to k2 format")
LG = k2.Fsa.from_openfst(LG.to_str(is_acceptor=False), acceptor=False)
logging.info(f"LG in k2: #states: {LG.shape[0]}, #arcs: {LG.num_arcs}")
lexicon = Lexicon(lang_dir)
first_token_disambig_id = lexicon.token_table["#0"]
first_word_disambig_id = lexicon.word_table["#0"]
logging.info(f"token id for #0: {first_token_disambig_id}")
logging.info(f"word id for #0: {first_word_disambig_id}")
max_token_id = max(lexicon.tokens)
modified = False
logging.info(
f"Building ctc_topo. modified: {modified}, max_token_id: {max_token_id}"
)
H = k2.ctc_topo(max_token_id, modified=modified)
logging.info(f"H: #states: {H.shape[0]}, #arcs: {H.num_arcs}")
logging.info("Removing disambiguation symbols on LG")
LG.labels[LG.labels >= first_token_disambig_id] = 0
LG.aux_labels[LG.aux_labels >= first_word_disambig_id] = 0
# See https://github.com/k2-fsa/k2/issues/874
# for why we need to set LG.properties to None
LG.__dict__["_properties"] = None
logging.info("Removing epsilons from LG")
LG = k2.remove_epsilon(LG)
logging.info(
f"LG after k2.remove_epsilon: #states: {LG.shape[0]}, #arcs: {LG.num_arcs}"
)
logging.info("Connecting LG after removing epsilons")
LG = k2.connect(LG)
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
logging.info(f"LG after k2.connect: #states: {LG.shape[0]}, #arcs: {LG.num_arcs}")
logging.info("Arc sorting LG")
LG = k2.arc_sort(LG)
logging.info("Composing H and LG")
HLG = k2.compose(H, LG, inner_labels="tokens")
logging.info(
f"HLG after k2.compose: #states: {HLG.shape[0]}, #arcs: {HLG.num_arcs}"
)
logging.info("Connecting HLG")
HLG = k2.connect(HLG)
logging.info(
f"HLG after k2.connect: #states: {HLG.shape[0]}, #arcs: {HLG.num_arcs}"
)
logging.info("Arc sorting LG")
HLG = k2.arc_sort(HLG)
return HLG
def main():
args = get_args()
lang_dir = Path(args.lang_dir)
filename = lang_dir / "HLG_fst.pt"
if filename.is_file():
logging.info(f"{filename} already exists - skipping")
return
HLG = compile_HLG(lang_dir)
logging.info(f"Saving HLG to {filename}")
torch.save(HLG.as_dict(), filename)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -44,9 +44,9 @@ dl_dir=$PWD/download
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
5000
2000
1000
# 5000
# 2000
# 1000
500
)
@ -168,6 +168,22 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang.py --lang-dir $lang_dir
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/disambig_L.fst
fi
fi
@ -208,6 +224,22 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bpe.model
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/L_disambig.fst
fi
done
fi
@ -270,10 +302,13 @@ fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Compile HLG"
./local/compile_hlg.py --lang-dir data/lang_phone
./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_hlg.py --lang-dir $lang_dir
./local/compile_hlg_using_openfst.py --lang-dir $lang_dir
done
fi

View File

@ -0,0 +1,102 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input an FST in k2 format and convert it
to an FST in OpenFST format.
The generated FST is saved into a binary file and its type is
StdVectorFst.
Usage examples:
(1) Convert an acceptor
./convert-k2-to-openfst.py in.pt binary.fst
(2) Convert a transducer
./convert-k2-to-openfst.py --olabels aux_labels in.pt binary.fst
"""
import argparse
import logging
from pathlib import Path
import k2
import kaldifst.utils
import torch
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--olabels",
type=str,
default=None,
help="""If not empty, the input FST is assumed to be a transducer
and we use its attribute specified by "olabels" as the output labels.
""",
)
parser.add_argument(
"input_filename",
type=str,
help="Path to the input FST in k2 format",
)
parser.add_argument(
"output_filename",
type=str,
help="Path to the output FST in OpenFst format",
)
return parser.parse_args()
def main():
args = get_args()
logging.info(f"{vars(args)}")
input_filename = args.input_filename
output_filename = args.output_filename
olabels = args.olabels
if Path(output_filename).is_file():
logging.info(f"{output_filename} already exists - skipping")
return
assert Path(input_filename).is_file(), f"{input_filename} does not exist"
logging.info(f"Loading {input_filename}")
k2_fst = k2.Fsa.from_dict(torch.load(input_filename))
if olabels:
assert hasattr(k2_fst, olabels), f"No such attribute: {olabels}"
p = Path(output_filename).parent
if not p.is_dir():
logging.info(f"Creating {p}")
p.mkdir(parents=True)
logging.info("Converting (May take some time if the input FST is large)")
fst = kaldifst.utils.k2_to_openfst(k2_fst, olabels=olabels)
logging.info(f"Saving to {output_filename}")
fst.write(output_filename)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -1,3 +1,4 @@
kaldifst
kaldilm
kaldialign
sentencepiece>=0.1.96