mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-13 12:02:21 +00:00
Init conformer_ctc_bn with copy of conformer_ctc files.
This commit is contained in:
parent
1078e4878c
commit
44b33b7f05
0
egs/librispeech/ASR/conformer_ctc_bn/__init__.py
Normal file
0
egs/librispeech/ASR/conformer_ctc_bn/__init__.py
Normal file
354
egs/librispeech/ASR/conformer_ctc_bn/asr_datamodule.py
Normal file
354
egs/librispeech/ASR/conformer_ctc_bn/asr_datamodule.py
Normal file
@ -0,0 +1,354 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from functools import lru_cache
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import List, Union
|
||||||
|
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||||
|
from lhotse.dataset import (
|
||||||
|
BucketingSampler,
|
||||||
|
CutConcatenate,
|
||||||
|
CutMix,
|
||||||
|
K2SpeechRecognitionDataset,
|
||||||
|
PrecomputedFeatures,
|
||||||
|
SingleCutSampler,
|
||||||
|
SpecAugment,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from icefall.dataset.datamodule import DataModule
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class LibriSpeechAsrDataModule(DataModule):
|
||||||
|
"""
|
||||||
|
DataModule for k2 ASR experiments.
|
||||||
|
It assumes there is always one train and valid dataloader,
|
||||||
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||||
|
and test-other).
|
||||||
|
|
||||||
|
It contains all the common data pipeline modules used in ASR
|
||||||
|
experiments, e.g.:
|
||||||
|
- dynamic batch size,
|
||||||
|
- bucketing samplers,
|
||||||
|
- cut concatenation,
|
||||||
|
- augmentation,
|
||||||
|
- on-the-fly feature extraction
|
||||||
|
|
||||||
|
This class should be derived for specific corpora used in ASR tasks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
super().add_arguments(parser)
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--full-libri",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use 960h LibriSpeech. "
|
||||||
|
"Otherwise, use 100h subset.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--feature-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with train/valid/test cuts.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=500.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="The number of buckets for the BucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--concatenate-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--duration-factor",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--gap",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="The amount of padding (in seconds) inserted between "
|
||||||
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
|
"noise augmentation is used.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(self) -> DataLoader:
|
||||||
|
logging.info("About to get train cuts")
|
||||||
|
cuts_train = self.train_cuts()
|
||||||
|
|
||||||
|
logging.info("About to get Musan cuts")
|
||||||
|
cuts_musan = load_manifest(self.args.feature_dir / "cuts_musan.json.gz")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
transforms = [CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20))]
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
logging.info(
|
||||||
|
f"Using cut concatenation with duration factor "
|
||||||
|
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
|
)
|
||||||
|
# Cut concatenation should be the first transform in the list,
|
||||||
|
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||||
|
# different utterances.
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
input_transforms = [
|
||||||
|
SpecAugment(
|
||||||
|
num_frame_masks=2,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
|
),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.bucketing_sampler:
|
||||||
|
logging.info("Using BucketingSampler.")
|
||||||
|
train_sampler = BucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
bucket_method="equal_duration",
|
||||||
|
drop_last=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using SingleCutSampler.")
|
||||||
|
train_sampler = SingleCutSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
)
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def valid_dataloaders(self) -> DataLoader:
|
||||||
|
logging.info("About to get dev cuts")
|
||||||
|
cuts_valid = self.valid_cuts()
|
||||||
|
|
||||||
|
transforms = []
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
|
),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
valid_sampler = SingleCutSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create dev dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=2,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return valid_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
|
||||||
|
cuts = self.test_cuts()
|
||||||
|
is_list = isinstance(cuts, list)
|
||||||
|
test_loaders = []
|
||||||
|
if not is_list:
|
||||||
|
cuts = [cuts]
|
||||||
|
|
||||||
|
for cuts_test in cuts:
|
||||||
|
logging.debug("About to create test dataset")
|
||||||
|
test = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
|
)
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else PrecomputedFeatures(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
sampler = SingleCutSampler(
|
||||||
|
cuts_test, max_duration=self.args.max_duration
|
||||||
|
)
|
||||||
|
logging.debug("About to create test dataloader")
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test, batch_size=None, sampler=sampler, num_workers=1
|
||||||
|
)
|
||||||
|
test_loaders.append(test_dl)
|
||||||
|
|
||||||
|
if is_list:
|
||||||
|
return test_loaders
|
||||||
|
else:
|
||||||
|
return test_loaders[0]
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train cuts")
|
||||||
|
cuts_train = load_manifest(
|
||||||
|
self.args.feature_dir / "cuts_train-clean-100.json.gz"
|
||||||
|
)
|
||||||
|
if self.args.full_libri:
|
||||||
|
cuts_train = (
|
||||||
|
cuts_train
|
||||||
|
+ load_manifest(
|
||||||
|
self.args.feature_dir / "cuts_train-clean-360.json.gz"
|
||||||
|
)
|
||||||
|
+ load_manifest(
|
||||||
|
self.args.feature_dir / "cuts_train-other-500.json.gz"
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return cuts_train
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def valid_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get dev cuts")
|
||||||
|
cuts_valid = load_manifest(
|
||||||
|
self.args.feature_dir / "cuts_dev-clean.json.gz"
|
||||||
|
) + load_manifest(self.args.feature_dir / "cuts_dev-other.json.gz")
|
||||||
|
return cuts_valid
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_cuts(self) -> List[CutSet]:
|
||||||
|
test_sets = ["test-clean", "test-other"]
|
||||||
|
cuts = []
|
||||||
|
for test_set in test_sets:
|
||||||
|
logging.debug("About to get test cuts")
|
||||||
|
cuts.append(
|
||||||
|
load_manifest(
|
||||||
|
self.args.feature_dir / f"cuts_{test_set}.json.gz"
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return cuts
|
933
egs/librispeech/ASR/conformer_ctc_bn/conformer.py
Normal file
933
egs/librispeech/ASR/conformer_ctc_bn/conformer.py
Normal file
@ -0,0 +1,933 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import math
|
||||||
|
import warnings
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import Tensor, nn
|
||||||
|
from transformer import Supervisions, Transformer, encoder_padding_mask
|
||||||
|
|
||||||
|
|
||||||
|
class Conformer(Transformer):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
num_features (int): Number of input features
|
||||||
|
num_classes (int): Number of output classes
|
||||||
|
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||||
|
d_model (int): attention dimension
|
||||||
|
nhead (int): number of head
|
||||||
|
dim_feedforward (int): feedforward dimention
|
||||||
|
num_encoder_layers (int): number of encoder layers
|
||||||
|
num_decoder_layers (int): number of decoder layers
|
||||||
|
dropout (float): dropout rate
|
||||||
|
cnn_module_kernel (int): Kernel size of convolution module
|
||||||
|
normalize_before (bool): whether to use layer_norm before the first block.
|
||||||
|
vgg_frontend (bool): whether to use vgg frontend.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_features: int,
|
||||||
|
num_classes: int,
|
||||||
|
subsampling_factor: int = 4,
|
||||||
|
d_model: int = 256,
|
||||||
|
nhead: int = 4,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
num_encoder_layers: int = 12,
|
||||||
|
num_decoder_layers: int = 6,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
cnn_module_kernel: int = 31,
|
||||||
|
normalize_before: bool = True,
|
||||||
|
vgg_frontend: bool = False,
|
||||||
|
is_espnet_structure: bool = False,
|
||||||
|
mmi_loss: bool = True,
|
||||||
|
use_feat_batchnorm: bool = False,
|
||||||
|
) -> None:
|
||||||
|
super(Conformer, self).__init__(
|
||||||
|
num_features=num_features,
|
||||||
|
num_classes=num_classes,
|
||||||
|
subsampling_factor=subsampling_factor,
|
||||||
|
d_model=d_model,
|
||||||
|
nhead=nhead,
|
||||||
|
dim_feedforward=dim_feedforward,
|
||||||
|
num_encoder_layers=num_encoder_layers,
|
||||||
|
num_decoder_layers=num_decoder_layers,
|
||||||
|
dropout=dropout,
|
||||||
|
normalize_before=normalize_before,
|
||||||
|
vgg_frontend=vgg_frontend,
|
||||||
|
mmi_loss=mmi_loss,
|
||||||
|
use_feat_batchnorm=use_feat_batchnorm,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.encoder_pos = RelPositionalEncoding(d_model, dropout)
|
||||||
|
|
||||||
|
encoder_layer = ConformerEncoderLayer(
|
||||||
|
d_model,
|
||||||
|
nhead,
|
||||||
|
dim_feedforward,
|
||||||
|
dropout,
|
||||||
|
cnn_module_kernel,
|
||||||
|
normalize_before,
|
||||||
|
is_espnet_structure,
|
||||||
|
)
|
||||||
|
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
self.is_espnet_structure = is_espnet_structure
|
||||||
|
if self.normalize_before and self.is_espnet_structure:
|
||||||
|
self.after_norm = nn.LayerNorm(d_model)
|
||||||
|
else:
|
||||||
|
# Note: TorchScript detects that self.after_norm could be used inside forward()
|
||||||
|
# and throws an error without this change.
|
||||||
|
self.after_norm = identity
|
||||||
|
|
||||||
|
def run_encoder(
|
||||||
|
self, x: Tensor, supervisions: Optional[Supervisions] = None
|
||||||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
The model input. Its shape is [N, T, C].
|
||||||
|
supervisions:
|
||||||
|
Supervision in lhotse format.
|
||||||
|
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||||
|
CAUTION: It contains length information, i.e., start and number of
|
||||||
|
frames, before subsampling
|
||||||
|
It is read directly from the batch, without any sorting. It is used
|
||||||
|
to compute encoder padding mask, which is used as memory key padding
|
||||||
|
mask for the decoder.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: Predictor tensor of dimension (input_length, batch_size, d_model).
|
||||||
|
Tensor: Mask tensor of dimension (batch_size, input_length)
|
||||||
|
"""
|
||||||
|
x = self.encoder_embed(x)
|
||||||
|
x, pos_emb = self.encoder_pos(x)
|
||||||
|
x = x.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
||||||
|
mask = encoder_padding_mask(x.size(0), supervisions)
|
||||||
|
if mask is not None:
|
||||||
|
mask = mask.to(x.device)
|
||||||
|
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, B, F)
|
||||||
|
|
||||||
|
if self.normalize_before and self.is_espnet_structure:
|
||||||
|
x = self.after_norm(x)
|
||||||
|
|
||||||
|
return x, mask
|
||||||
|
|
||||||
|
|
||||||
|
class ConformerEncoderLayer(nn.Module):
|
||||||
|
"""
|
||||||
|
ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
|
||||||
|
See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model: the number of expected features in the input (required).
|
||||||
|
nhead: the number of heads in the multiheadattention models (required).
|
||||||
|
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
||||||
|
dropout: the dropout value (default=0.1).
|
||||||
|
cnn_module_kernel (int): Kernel size of convolution module.
|
||||||
|
normalize_before: whether to use layer_norm before the first block.
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||||
|
>>> src = torch.rand(10, 32, 512)
|
||||||
|
>>> pos_emb = torch.rand(32, 19, 512)
|
||||||
|
>>> out = encoder_layer(src, pos_emb)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
d_model: int,
|
||||||
|
nhead: int,
|
||||||
|
dim_feedforward: int = 2048,
|
||||||
|
dropout: float = 0.1,
|
||||||
|
cnn_module_kernel: int = 31,
|
||||||
|
normalize_before: bool = True,
|
||||||
|
is_espnet_structure: bool = False,
|
||||||
|
) -> None:
|
||||||
|
super(ConformerEncoderLayer, self).__init__()
|
||||||
|
self.self_attn = RelPositionMultiheadAttention(
|
||||||
|
d_model, nhead, dropout=0.0, is_espnet_structure=is_espnet_structure
|
||||||
|
)
|
||||||
|
|
||||||
|
self.feed_forward = nn.Sequential(
|
||||||
|
nn.Linear(d_model, dim_feedforward),
|
||||||
|
Swish(),
|
||||||
|
nn.Dropout(dropout),
|
||||||
|
nn.Linear(dim_feedforward, d_model),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.feed_forward_macaron = nn.Sequential(
|
||||||
|
nn.Linear(d_model, dim_feedforward),
|
||||||
|
Swish(),
|
||||||
|
nn.Dropout(dropout),
|
||||||
|
nn.Linear(dim_feedforward, d_model),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
||||||
|
|
||||||
|
self.norm_ff_macaron = nn.LayerNorm(
|
||||||
|
d_model
|
||||||
|
) # for the macaron style FNN module
|
||||||
|
self.norm_ff = nn.LayerNorm(d_model) # for the FNN module
|
||||||
|
self.norm_mha = nn.LayerNorm(d_model) # for the MHA module
|
||||||
|
|
||||||
|
self.ff_scale = 0.5
|
||||||
|
|
||||||
|
self.norm_conv = nn.LayerNorm(d_model) # for the CNN module
|
||||||
|
self.norm_final = nn.LayerNorm(
|
||||||
|
d_model
|
||||||
|
) # for the final output of the block
|
||||||
|
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
self.normalize_before = normalize_before
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
src_mask: Optional[Tensor] = None,
|
||||||
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tensor:
|
||||||
|
"""
|
||||||
|
Pass the input through the encoder layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
src: the sequence to the encoder layer (required).
|
||||||
|
pos_emb: Positional embedding tensor (required).
|
||||||
|
src_mask: the mask for the src sequence (optional).
|
||||||
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
src: (S, N, E).
|
||||||
|
pos_emb: (N, 2*S-1, E)
|
||||||
|
src_mask: (S, S).
|
||||||
|
src_key_padding_mask: (N, S).
|
||||||
|
S is the source sequence length, N is the batch size, E is the feature number
|
||||||
|
"""
|
||||||
|
|
||||||
|
# macaron style feed forward module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_ff_macaron(src)
|
||||||
|
src = residual + self.ff_scale * self.dropout(
|
||||||
|
self.feed_forward_macaron(src)
|
||||||
|
)
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_ff_macaron(src)
|
||||||
|
|
||||||
|
# multi-headed self-attention module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_mha(src)
|
||||||
|
src_att = self.self_attn(
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
src,
|
||||||
|
pos_emb=pos_emb,
|
||||||
|
attn_mask=src_mask,
|
||||||
|
key_padding_mask=src_key_padding_mask,
|
||||||
|
)[0]
|
||||||
|
src = residual + self.dropout(src_att)
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_mha(src)
|
||||||
|
|
||||||
|
# convolution module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_conv(src)
|
||||||
|
src = residual + self.dropout(self.conv_module(src))
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_conv(src)
|
||||||
|
|
||||||
|
# feed forward module
|
||||||
|
residual = src
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_ff(src)
|
||||||
|
src = residual + self.ff_scale * self.dropout(self.feed_forward(src))
|
||||||
|
if not self.normalize_before:
|
||||||
|
src = self.norm_ff(src)
|
||||||
|
|
||||||
|
if self.normalize_before:
|
||||||
|
src = self.norm_final(src)
|
||||||
|
|
||||||
|
return src
|
||||||
|
|
||||||
|
|
||||||
|
class ConformerEncoder(nn.TransformerEncoder):
|
||||||
|
r"""ConformerEncoder is a stack of N encoder layers
|
||||||
|
|
||||||
|
Args:
|
||||||
|
encoder_layer: an instance of the ConformerEncoderLayer() class (required).
|
||||||
|
num_layers: the number of sub-encoder-layers in the encoder (required).
|
||||||
|
norm: the layer normalization component (optional).
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||||
|
>>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
|
||||||
|
>>> src = torch.rand(10, 32, 512)
|
||||||
|
>>> pos_emb = torch.rand(32, 19, 512)
|
||||||
|
>>> out = conformer_encoder(src, pos_emb)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, encoder_layer: nn.Module, num_layers: int, norm: nn.Module = None
|
||||||
|
) -> None:
|
||||||
|
super(ConformerEncoder, self).__init__(
|
||||||
|
encoder_layer=encoder_layer, num_layers=num_layers, norm=norm
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
src: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
mask: Optional[Tensor] = None,
|
||||||
|
src_key_padding_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tensor:
|
||||||
|
r"""Pass the input through the encoder layers in turn.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
src: the sequence to the encoder (required).
|
||||||
|
pos_emb: Positional embedding tensor (required).
|
||||||
|
mask: the mask for the src sequence (optional).
|
||||||
|
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
src: (S, N, E).
|
||||||
|
pos_emb: (N, 2*S-1, E)
|
||||||
|
mask: (S, S).
|
||||||
|
src_key_padding_mask: (N, S).
|
||||||
|
S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
|
||||||
|
|
||||||
|
"""
|
||||||
|
output = src
|
||||||
|
|
||||||
|
for mod in self.layers:
|
||||||
|
output = mod(
|
||||||
|
output,
|
||||||
|
pos_emb,
|
||||||
|
src_mask=mask,
|
||||||
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.norm is not None:
|
||||||
|
output = self.norm(output)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class RelPositionalEncoding(torch.nn.Module):
|
||||||
|
"""Relative positional encoding module.
|
||||||
|
|
||||||
|
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||||
|
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
|
||||||
|
|
||||||
|
Args:
|
||||||
|
d_model: Embedding dimension.
|
||||||
|
dropout_rate: Dropout rate.
|
||||||
|
max_len: Maximum input length.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, d_model: int, dropout_rate: float, max_len: int = 5000
|
||||||
|
) -> None:
|
||||||
|
"""Construct an PositionalEncoding object."""
|
||||||
|
super(RelPositionalEncoding, self).__init__()
|
||||||
|
self.d_model = d_model
|
||||||
|
self.xscale = math.sqrt(self.d_model)
|
||||||
|
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||||
|
self.pe = None
|
||||||
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||||
|
|
||||||
|
def extend_pe(self, x: Tensor) -> None:
|
||||||
|
"""Reset the positional encodings."""
|
||||||
|
if self.pe is not None:
|
||||||
|
# self.pe contains both positive and negative parts
|
||||||
|
# the length of self.pe is 2 * input_len - 1
|
||||||
|
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
||||||
|
# Note: TorchScript doesn't implement operator== for torch.Device
|
||||||
|
if self.pe.dtype != x.dtype or str(self.pe.device) != str(
|
||||||
|
x.device
|
||||||
|
):
|
||||||
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||||
|
return
|
||||||
|
# Suppose `i` means to the position of query vecotr and `j` means the
|
||||||
|
# position of key vector. We use position relative positions when keys
|
||||||
|
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
||||||
|
pe_positive = torch.zeros(x.size(1), self.d_model)
|
||||||
|
pe_negative = torch.zeros(x.size(1), self.d_model)
|
||||||
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||||
|
div_term = torch.exp(
|
||||||
|
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||||
|
* -(math.log(10000.0) / self.d_model)
|
||||||
|
)
|
||||||
|
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
||||||
|
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
||||||
|
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
||||||
|
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
||||||
|
|
||||||
|
# Reserve the order of positive indices and concat both positive and
|
||||||
|
# negative indices. This is used to support the shifting trick
|
||||||
|
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||||
|
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
||||||
|
pe_negative = pe_negative[1:].unsqueeze(0)
|
||||||
|
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
||||||
|
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> Tuple[Tensor, Tensor]:
|
||||||
|
"""Add positional encoding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||||||
|
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
|
||||||
|
|
||||||
|
"""
|
||||||
|
self.extend_pe(x)
|
||||||
|
x = x * self.xscale
|
||||||
|
pos_emb = self.pe[
|
||||||
|
:,
|
||||||
|
self.pe.size(1) // 2
|
||||||
|
- x.size(1)
|
||||||
|
+ 1 : self.pe.size(1) // 2 # noqa E203
|
||||||
|
+ x.size(1),
|
||||||
|
]
|
||||||
|
return self.dropout(x), self.dropout(pos_emb)
|
||||||
|
|
||||||
|
|
||||||
|
class RelPositionMultiheadAttention(nn.Module):
|
||||||
|
r"""Multi-Head Attention layer with relative position encoding
|
||||||
|
|
||||||
|
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||||
|
|
||||||
|
Args:
|
||||||
|
embed_dim: total dimension of the model.
|
||||||
|
num_heads: parallel attention heads.
|
||||||
|
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
|
||||||
|
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
|
||||||
|
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
embed_dim: int,
|
||||||
|
num_heads: int,
|
||||||
|
dropout: float = 0.0,
|
||||||
|
is_espnet_structure: bool = False,
|
||||||
|
) -> None:
|
||||||
|
super(RelPositionMultiheadAttention, self).__init__()
|
||||||
|
self.embed_dim = embed_dim
|
||||||
|
self.num_heads = num_heads
|
||||||
|
self.dropout = dropout
|
||||||
|
self.head_dim = embed_dim // num_heads
|
||||||
|
assert (
|
||||||
|
self.head_dim * num_heads == self.embed_dim
|
||||||
|
), "embed_dim must be divisible by num_heads"
|
||||||
|
|
||||||
|
self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True)
|
||||||
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
||||||
|
|
||||||
|
# linear transformation for positional encoding.
|
||||||
|
self.linear_pos = nn.Linear(embed_dim, embed_dim, bias=False)
|
||||||
|
# these two learnable bias are used in matrix c and matrix d
|
||||||
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||||
|
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||||
|
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||||
|
|
||||||
|
self._reset_parameters()
|
||||||
|
|
||||||
|
self.is_espnet_structure = is_espnet_structure
|
||||||
|
|
||||||
|
def _reset_parameters(self) -> None:
|
||||||
|
nn.init.xavier_uniform_(self.in_proj.weight)
|
||||||
|
nn.init.constant_(self.in_proj.bias, 0.0)
|
||||||
|
nn.init.constant_(self.out_proj.bias, 0.0)
|
||||||
|
|
||||||
|
nn.init.xavier_uniform_(self.pos_bias_u)
|
||||||
|
nn.init.xavier_uniform_(self.pos_bias_v)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
query: Tensor,
|
||||||
|
key: Tensor,
|
||||||
|
value: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
key_padding_mask: Optional[Tensor] = None,
|
||||||
|
need_weights: bool = True,
|
||||||
|
attn_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||||
|
r"""
|
||||||
|
Args:
|
||||||
|
query, key, value: map a query and a set of key-value pairs to an output.
|
||||||
|
pos_emb: Positional embedding tensor
|
||||||
|
key_padding_mask: if provided, specified padding elements in the key will
|
||||||
|
be ignored by the attention. When given a binary mask and a value is True,
|
||||||
|
the corresponding value on the attention layer will be ignored. When given
|
||||||
|
a byte mask and a value is non-zero, the corresponding value on the attention
|
||||||
|
layer will be ignored
|
||||||
|
need_weights: output attn_output_weights.
|
||||||
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||||
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
- Inputs:
|
||||||
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||||
|
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
||||||
|
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
||||||
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||||
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||||
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||||
|
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
||||||
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||||
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||||
|
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||||
|
is provided, it will be added to the attention weight.
|
||||||
|
|
||||||
|
- Outputs:
|
||||||
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||||
|
E is the embedding dimension.
|
||||||
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||||
|
L is the target sequence length, S is the source sequence length.
|
||||||
|
"""
|
||||||
|
return self.multi_head_attention_forward(
|
||||||
|
query,
|
||||||
|
key,
|
||||||
|
value,
|
||||||
|
pos_emb,
|
||||||
|
self.embed_dim,
|
||||||
|
self.num_heads,
|
||||||
|
self.in_proj.weight,
|
||||||
|
self.in_proj.bias,
|
||||||
|
self.dropout,
|
||||||
|
self.out_proj.weight,
|
||||||
|
self.out_proj.bias,
|
||||||
|
training=self.training,
|
||||||
|
key_padding_mask=key_padding_mask,
|
||||||
|
need_weights=need_weights,
|
||||||
|
attn_mask=attn_mask,
|
||||||
|
)
|
||||||
|
|
||||||
|
def rel_shift(self, x: Tensor) -> Tensor:
|
||||||
|
"""Compute relative positional encoding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: Input tensor (batch, head, time1, 2*time1-1).
|
||||||
|
time1 means the length of query vector.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: tensor of shape (batch, head, time1, time2)
|
||||||
|
(note: time2 has the same value as time1, but it is for
|
||||||
|
the key, while time1 is for the query).
|
||||||
|
"""
|
||||||
|
(batch_size, num_heads, time1, n) = x.shape
|
||||||
|
assert n == 2 * time1 - 1
|
||||||
|
# Note: TorchScript requires explicit arg for stride()
|
||||||
|
batch_stride = x.stride(0)
|
||||||
|
head_stride = x.stride(1)
|
||||||
|
time1_stride = x.stride(2)
|
||||||
|
n_stride = x.stride(3)
|
||||||
|
return x.as_strided(
|
||||||
|
(batch_size, num_heads, time1, time1),
|
||||||
|
(batch_stride, head_stride, time1_stride - n_stride, n_stride),
|
||||||
|
storage_offset=n_stride * (time1 - 1),
|
||||||
|
)
|
||||||
|
|
||||||
|
def multi_head_attention_forward(
|
||||||
|
self,
|
||||||
|
query: Tensor,
|
||||||
|
key: Tensor,
|
||||||
|
value: Tensor,
|
||||||
|
pos_emb: Tensor,
|
||||||
|
embed_dim_to_check: int,
|
||||||
|
num_heads: int,
|
||||||
|
in_proj_weight: Tensor,
|
||||||
|
in_proj_bias: Tensor,
|
||||||
|
dropout_p: float,
|
||||||
|
out_proj_weight: Tensor,
|
||||||
|
out_proj_bias: Tensor,
|
||||||
|
training: bool = True,
|
||||||
|
key_padding_mask: Optional[Tensor] = None,
|
||||||
|
need_weights: bool = True,
|
||||||
|
attn_mask: Optional[Tensor] = None,
|
||||||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||||
|
r"""
|
||||||
|
Args:
|
||||||
|
query, key, value: map a query and a set of key-value pairs to an output.
|
||||||
|
pos_emb: Positional embedding tensor
|
||||||
|
embed_dim_to_check: total dimension of the model.
|
||||||
|
num_heads: parallel attention heads.
|
||||||
|
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||||||
|
dropout_p: probability of an element to be zeroed.
|
||||||
|
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
||||||
|
training: apply dropout if is ``True``.
|
||||||
|
key_padding_mask: if provided, specified padding elements in the key will
|
||||||
|
be ignored by the attention. This is an binary mask. When the value is True,
|
||||||
|
the corresponding value on the attention layer will be filled with -inf.
|
||||||
|
need_weights: output attn_output_weights.
|
||||||
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||||
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
Inputs:
|
||||||
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||||
|
the embedding dimension.
|
||||||
|
- pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
|
||||||
|
length, N is the batch size, E is the embedding dimension.
|
||||||
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||||
|
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
||||||
|
will be unchanged. If a BoolTensor is provided, the positions with the
|
||||||
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||||
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||||
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||||
|
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
||||||
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||||
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||||
|
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||||
|
is provided, it will be added to the attention weight.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||||
|
E is the embedding dimension.
|
||||||
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||||
|
L is the target sequence length, S is the source sequence length.
|
||||||
|
"""
|
||||||
|
|
||||||
|
tgt_len, bsz, embed_dim = query.size()
|
||||||
|
assert embed_dim == embed_dim_to_check
|
||||||
|
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
||||||
|
|
||||||
|
head_dim = embed_dim // num_heads
|
||||||
|
assert (
|
||||||
|
head_dim * num_heads == embed_dim
|
||||||
|
), "embed_dim must be divisible by num_heads"
|
||||||
|
scaling = float(head_dim) ** -0.5
|
||||||
|
|
||||||
|
if torch.equal(query, key) and torch.equal(key, value):
|
||||||
|
# self-attention
|
||||||
|
q, k, v = nn.functional.linear(
|
||||||
|
query, in_proj_weight, in_proj_bias
|
||||||
|
).chunk(3, dim=-1)
|
||||||
|
|
||||||
|
elif torch.equal(key, value):
|
||||||
|
# encoder-decoder attention
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = 0
|
||||||
|
_end = embed_dim
|
||||||
|
_w = in_proj_weight[_start:_end, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:_end]
|
||||||
|
q = nn.functional.linear(query, _w, _b)
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = embed_dim
|
||||||
|
_end = None
|
||||||
|
_w = in_proj_weight[_start:, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:]
|
||||||
|
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
|
||||||
|
|
||||||
|
else:
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = 0
|
||||||
|
_end = embed_dim
|
||||||
|
_w = in_proj_weight[_start:_end, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:_end]
|
||||||
|
q = nn.functional.linear(query, _w, _b)
|
||||||
|
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = embed_dim
|
||||||
|
_end = embed_dim * 2
|
||||||
|
_w = in_proj_weight[_start:_end, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:_end]
|
||||||
|
k = nn.functional.linear(key, _w, _b)
|
||||||
|
|
||||||
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||||
|
_b = in_proj_bias
|
||||||
|
_start = embed_dim * 2
|
||||||
|
_end = None
|
||||||
|
_w = in_proj_weight[_start:, :]
|
||||||
|
if _b is not None:
|
||||||
|
_b = _b[_start:]
|
||||||
|
v = nn.functional.linear(value, _w, _b)
|
||||||
|
|
||||||
|
if not self.is_espnet_structure:
|
||||||
|
q = q * scaling
|
||||||
|
|
||||||
|
if attn_mask is not None:
|
||||||
|
assert (
|
||||||
|
attn_mask.dtype == torch.float32
|
||||||
|
or attn_mask.dtype == torch.float64
|
||||||
|
or attn_mask.dtype == torch.float16
|
||||||
|
or attn_mask.dtype == torch.uint8
|
||||||
|
or attn_mask.dtype == torch.bool
|
||||||
|
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
||||||
|
attn_mask.dtype
|
||||||
|
)
|
||||||
|
if attn_mask.dtype == torch.uint8:
|
||||||
|
warnings.warn(
|
||||||
|
"Byte tensor for attn_mask is deprecated. Use bool tensor instead."
|
||||||
|
)
|
||||||
|
attn_mask = attn_mask.to(torch.bool)
|
||||||
|
|
||||||
|
if attn_mask.dim() == 2:
|
||||||
|
attn_mask = attn_mask.unsqueeze(0)
|
||||||
|
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
||||||
|
raise RuntimeError(
|
||||||
|
"The size of the 2D attn_mask is not correct."
|
||||||
|
)
|
||||||
|
elif attn_mask.dim() == 3:
|
||||||
|
if list(attn_mask.size()) != [
|
||||||
|
bsz * num_heads,
|
||||||
|
query.size(0),
|
||||||
|
key.size(0),
|
||||||
|
]:
|
||||||
|
raise RuntimeError(
|
||||||
|
"The size of the 3D attn_mask is not correct."
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise RuntimeError(
|
||||||
|
"attn_mask's dimension {} is not supported".format(
|
||||||
|
attn_mask.dim()
|
||||||
|
)
|
||||||
|
)
|
||||||
|
# attn_mask's dim is 3 now.
|
||||||
|
|
||||||
|
# convert ByteTensor key_padding_mask to bool
|
||||||
|
if (
|
||||||
|
key_padding_mask is not None
|
||||||
|
and key_padding_mask.dtype == torch.uint8
|
||||||
|
):
|
||||||
|
warnings.warn(
|
||||||
|
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
||||||
|
)
|
||||||
|
key_padding_mask = key_padding_mask.to(torch.bool)
|
||||||
|
|
||||||
|
q = q.contiguous().view(tgt_len, bsz, num_heads, head_dim)
|
||||||
|
k = k.contiguous().view(-1, bsz, num_heads, head_dim)
|
||||||
|
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
||||||
|
|
||||||
|
src_len = k.size(0)
|
||||||
|
|
||||||
|
if key_padding_mask is not None:
|
||||||
|
assert key_padding_mask.size(0) == bsz, "{} == {}".format(
|
||||||
|
key_padding_mask.size(0), bsz
|
||||||
|
)
|
||||||
|
assert key_padding_mask.size(1) == src_len, "{} == {}".format(
|
||||||
|
key_padding_mask.size(1), src_len
|
||||||
|
)
|
||||||
|
|
||||||
|
q = q.transpose(0, 1) # (batch, time1, head, d_k)
|
||||||
|
|
||||||
|
pos_emb_bsz = pos_emb.size(0)
|
||||||
|
assert pos_emb_bsz in (1, bsz) # actually it is 1
|
||||||
|
p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
|
||||||
|
p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
|
||||||
|
|
||||||
|
q_with_bias_u = (q + self.pos_bias_u).transpose(
|
||||||
|
1, 2
|
||||||
|
) # (batch, head, time1, d_k)
|
||||||
|
|
||||||
|
q_with_bias_v = (q + self.pos_bias_v).transpose(
|
||||||
|
1, 2
|
||||||
|
) # (batch, head, time1, d_k)
|
||||||
|
|
||||||
|
# compute attention score
|
||||||
|
# first compute matrix a and matrix c
|
||||||
|
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||||
|
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
||||||
|
matrix_ac = torch.matmul(
|
||||||
|
q_with_bias_u, k
|
||||||
|
) # (batch, head, time1, time2)
|
||||||
|
|
||||||
|
# compute matrix b and matrix d
|
||||||
|
matrix_bd = torch.matmul(
|
||||||
|
q_with_bias_v, p.transpose(-2, -1)
|
||||||
|
) # (batch, head, time1, 2*time1-1)
|
||||||
|
matrix_bd = self.rel_shift(matrix_bd)
|
||||||
|
|
||||||
|
if not self.is_espnet_structure:
|
||||||
|
attn_output_weights = (
|
||||||
|
matrix_ac + matrix_bd
|
||||||
|
) # (batch, head, time1, time2)
|
||||||
|
else:
|
||||||
|
attn_output_weights = (
|
||||||
|
matrix_ac + matrix_bd
|
||||||
|
) * scaling # (batch, head, time1, time2)
|
||||||
|
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz * num_heads, tgt_len, -1
|
||||||
|
)
|
||||||
|
|
||||||
|
assert list(attn_output_weights.size()) == [
|
||||||
|
bsz * num_heads,
|
||||||
|
tgt_len,
|
||||||
|
src_len,
|
||||||
|
]
|
||||||
|
|
||||||
|
if attn_mask is not None:
|
||||||
|
if attn_mask.dtype == torch.bool:
|
||||||
|
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
||||||
|
else:
|
||||||
|
attn_output_weights += attn_mask
|
||||||
|
|
||||||
|
if key_padding_mask is not None:
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz, num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
attn_output_weights = attn_output_weights.masked_fill(
|
||||||
|
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
||||||
|
float("-inf"),
|
||||||
|
)
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz * num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
|
||||||
|
attn_output_weights = nn.functional.dropout(
|
||||||
|
attn_output_weights, p=dropout_p, training=training
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output = torch.bmm(attn_output_weights, v)
|
||||||
|
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
||||||
|
attn_output = (
|
||||||
|
attn_output.transpose(0, 1)
|
||||||
|
.contiguous()
|
||||||
|
.view(tgt_len, bsz, embed_dim)
|
||||||
|
)
|
||||||
|
attn_output = nn.functional.linear(
|
||||||
|
attn_output, out_proj_weight, out_proj_bias
|
||||||
|
)
|
||||||
|
|
||||||
|
if need_weights:
|
||||||
|
# average attention weights over heads
|
||||||
|
attn_output_weights = attn_output_weights.view(
|
||||||
|
bsz, num_heads, tgt_len, src_len
|
||||||
|
)
|
||||||
|
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
||||||
|
else:
|
||||||
|
return attn_output, None
|
||||||
|
|
||||||
|
|
||||||
|
class ConvolutionModule(nn.Module):
|
||||||
|
"""ConvolutionModule in Conformer model.
|
||||||
|
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
|
||||||
|
|
||||||
|
Args:
|
||||||
|
channels (int): The number of channels of conv layers.
|
||||||
|
kernel_size (int): Kernerl size of conv layers.
|
||||||
|
bias (bool): Whether to use bias in conv layers (default=True).
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, channels: int, kernel_size: int, bias: bool = True
|
||||||
|
) -> None:
|
||||||
|
"""Construct an ConvolutionModule object."""
|
||||||
|
super(ConvolutionModule, self).__init__()
|
||||||
|
# kernerl_size should be a odd number for 'SAME' padding
|
||||||
|
assert (kernel_size - 1) % 2 == 0
|
||||||
|
|
||||||
|
self.pointwise_conv1 = nn.Conv1d(
|
||||||
|
channels,
|
||||||
|
2 * channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0,
|
||||||
|
bias=bias,
|
||||||
|
)
|
||||||
|
self.depthwise_conv = nn.Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size,
|
||||||
|
stride=1,
|
||||||
|
padding=(kernel_size - 1) // 2,
|
||||||
|
groups=channels,
|
||||||
|
bias=bias,
|
||||||
|
)
|
||||||
|
self.norm = nn.BatchNorm1d(channels)
|
||||||
|
self.pointwise_conv2 = nn.Conv1d(
|
||||||
|
channels,
|
||||||
|
channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0,
|
||||||
|
bias=bias,
|
||||||
|
)
|
||||||
|
self.activation = Swish()
|
||||||
|
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
"""Compute convolution module.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: Input tensor (#time, batch, channels).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: Output tensor (#time, batch, channels).
|
||||||
|
|
||||||
|
"""
|
||||||
|
# exchange the temporal dimension and the feature dimension
|
||||||
|
x = x.permute(1, 2, 0) # (#batch, channels, time).
|
||||||
|
|
||||||
|
# GLU mechanism
|
||||||
|
x = self.pointwise_conv1(x) # (batch, 2*channels, time)
|
||||||
|
x = nn.functional.glu(x, dim=1) # (batch, channels, time)
|
||||||
|
|
||||||
|
# 1D Depthwise Conv
|
||||||
|
x = self.depthwise_conv(x)
|
||||||
|
x = self.activation(self.norm(x))
|
||||||
|
|
||||||
|
x = self.pointwise_conv2(x) # (batch, channel, time)
|
||||||
|
|
||||||
|
return x.permute(2, 0, 1)
|
||||||
|
|
||||||
|
|
||||||
|
class Swish(torch.nn.Module):
|
||||||
|
"""Construct an Swish object."""
|
||||||
|
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
"""Return Swich activation function."""
|
||||||
|
return x * torch.sigmoid(x)
|
||||||
|
|
||||||
|
|
||||||
|
def identity(x):
|
||||||
|
return x
|
840
egs/librispeech/ASR/conformer_ctc_bn/dataset.py
Normal file
840
egs/librispeech/ASR/conformer_ctc_bn/dataset.py
Normal file
@ -0,0 +1,840 @@
|
|||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
import k2
|
||||||
|
import _k2
|
||||||
|
import logging
|
||||||
|
import sentencepiece as spm
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional, List, Tuple, Union
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class LmDataset(torch.utils.data.Dataset):
|
||||||
|
"""
|
||||||
|
Torch dataset for language modeling data. This is a map-style dataset.
|
||||||
|
The indices are integers.
|
||||||
|
"""
|
||||||
|
def __init__(self,
|
||||||
|
sentences: k2.RaggedInt,
|
||||||
|
words: k2.RaggedInt):
|
||||||
|
super(LmDataset, self).__init__()
|
||||||
|
self.sentences = sentences
|
||||||
|
self.words = words
|
||||||
|
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
# Total size on axis 0, == num sentences
|
||||||
|
return self.sentences.tot_size(0)
|
||||||
|
|
||||||
|
def __getitem__(self, i: int):
|
||||||
|
"""
|
||||||
|
Return the i'th sentence, as a list of ints (representing BPE pieces, without
|
||||||
|
bos or eos symbols).
|
||||||
|
"""
|
||||||
|
# It would be nicer if we could just return self.sentences[i].tolist(), but
|
||||||
|
# for now that operator on k2.RaggedInt is not implemented.
|
||||||
|
row_splits = self.sentences.row_splits(1)
|
||||||
|
(begin, end) = row_splits[i:i+2].tolist()
|
||||||
|
sentence = self.sentences.values()[begin:end]
|
||||||
|
return k2.index(self.words, sentence).values().tolist()
|
||||||
|
|
||||||
|
|
||||||
|
def load_train_test_lm_dataset(archive_fn: Union[str,Path],
|
||||||
|
test_proportion: float = 0.025) -> Tuple[LmDataset, LmDataset]:
|
||||||
|
"""
|
||||||
|
returns (train_lm_dataset, test_lm_dataset)
|
||||||
|
"""
|
||||||
|
|
||||||
|
d = torch.load(archive_fn)
|
||||||
|
words = d['words'] # a k2.RaggedInt with 2 axes, maps from word-ids to sequences of BPE pieces
|
||||||
|
sentences = d['data'] # a k2.RaggedInt
|
||||||
|
|
||||||
|
with torch.random.fork_rng(devices=[]):
|
||||||
|
g = torch.manual_seed(0)
|
||||||
|
num_sentences = sentences.tot_size(0)
|
||||||
|
# probably the generator (g) argument to torch.randperm below is not necessary.
|
||||||
|
sentence_perm = torch.randperm(num_sentences, generator=g, dtype=torch.int32)
|
||||||
|
sentences = k2.index(sentences, sentence_perm)
|
||||||
|
|
||||||
|
num_test_sentences = int(num_sentences * test_proportion)
|
||||||
|
|
||||||
|
axis=0
|
||||||
|
train_sents = _k2.ragged_int_arange(sentences, axis,
|
||||||
|
num_test_sentences, num_sentences)
|
||||||
|
test_sents = _k2.ragged_int_arange(sentences, axis, 0, num_test_sentences)
|
||||||
|
|
||||||
|
return LmDataset(train_sents, words), LmDataset(test_sents, words)
|
||||||
|
|
||||||
|
|
||||||
|
def load_fake_train_test_lm_dataset() -> Tuple[LmDataset, LmDataset]:
|
||||||
|
"""
|
||||||
|
returns (train_lm_dataset, test_lm_dataset)
|
||||||
|
"""
|
||||||
|
|
||||||
|
words = k2.RaggedInt('[[1 2 3][4 5 6][7 8]]')
|
||||||
|
sentences = k2.RaggedInt('[[0 1 2][0 0 1][2 2 0][2 0][ 0 0 0 0 0 ][1]]')
|
||||||
|
|
||||||
|
|
||||||
|
return LmDataset(words, sentences), LmDataset(words, sentences)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def mask_and_pad(sentence: List[int],
|
||||||
|
seq_len: int,
|
||||||
|
bos_sym: int,
|
||||||
|
eos_sym: int,
|
||||||
|
blank_sym: int,
|
||||||
|
mask_proportion: float,
|
||||||
|
padding_proportion: float,
|
||||||
|
inv_mask_length: float,
|
||||||
|
unmasked_weight: float) -> Tuple[List[int], List[int], List[int], List[float]]:
|
||||||
|
"""
|
||||||
|
This function contains part of the logic of collate_fn, broken out. It is responsible
|
||||||
|
for inserting masking and padding into the sequence `sentence`. Most of the arguments
|
||||||
|
are documented for `collate_fn` below.
|
||||||
|
Other args:
|
||||||
|
sentence: The original sentence to be masked and padded.
|
||||||
|
seq_len: The desired length of the lists to be returned
|
||||||
|
bos_sym, eos_sym, blank_sym, mask_proportion,
|
||||||
|
padding_proportion, inv_mask_length, unmasked_weight: see their documentation
|
||||||
|
as args to `collate_fn` below.
|
||||||
|
|
||||||
|
|
||||||
|
Return: a tuple (src, masked_src, tgt, weight, randomizable, attn_mask), all lists of length `seq_len`,
|
||||||
|
where:
|
||||||
|
`src` is: [bos] + [the sentence after inserting blanks in place of padding
|
||||||
|
after regions to be masked] + [eos] + [blank padding to seq_len].
|
||||||
|
`src_masked` is as `src` but the masked regions have their values replaced with blank,
|
||||||
|
i.e. they are actually masked.
|
||||||
|
`tgt` is: [the original sentence, without masking] + [eos] + [blank] + [blank padding to seq_len]
|
||||||
|
`weight` is the weight at the nnet output, which is: `unmasked_weight` for un-masked
|
||||||
|
positions, 1.0 for masked and padded positions, and 0.0 for positions that
|
||||||
|
correspond to blank-padding after the final [eos].
|
||||||
|
`randomizable` is a bool that is True for positions where the symbol in
|
||||||
|
in `src_masked` is not bos or eos or blank.
|
||||||
|
`attn_mask` is a bool that is False for positions in `src` and `src_masked` that
|
||||||
|
are between the initial [bos] and final [eos] inclusive; and True for
|
||||||
|
positions after the final [eos].
|
||||||
|
"""
|
||||||
|
sent_len = len(sentence)
|
||||||
|
assert sent_len + 3 <= seq_len
|
||||||
|
|
||||||
|
for w in sentence:
|
||||||
|
assert w not in [bos_sym, eos_sym, blank_sym]
|
||||||
|
|
||||||
|
num_mask = int(torch.binomial(count=torch.tensor([sent_len * 1.0]),
|
||||||
|
prob=torch.tensor([mask_proportion])).item())
|
||||||
|
num_pad = int(torch.poisson(torch.tensor([sent_len * padding_proportion])).item())
|
||||||
|
# Ensure the total length after bos, padding of masked sequences, and eos, is
|
||||||
|
# no greater than seq_len
|
||||||
|
num_pad -= max(0, sent_len + 2 + num_pad - seq_len)
|
||||||
|
|
||||||
|
if num_mask + num_pad == 0:
|
||||||
|
num_mask += 1
|
||||||
|
|
||||||
|
# num_split_points is the number of times we split the (masked+padded)
|
||||||
|
# region, so the total number of (masking+padding) subsequences will be
|
||||||
|
# num_split_points + 1. If num_mask positions are masked, then the
|
||||||
|
# remaining number of words is `sent_len - num_mask`, and any two
|
||||||
|
# masked regions must have at least one non-masked word between them,
|
||||||
|
# so num_split_points == number of masked regions - 1, must be
|
||||||
|
# no greater than `sent_len - num_mask`. The formula about
|
||||||
|
# mask_proportion * inv_mask_length / (1.0 - mask_proportion)
|
||||||
|
# is what's required (I think) so that inv_mask_length is the expected
|
||||||
|
# length of masked regions.
|
||||||
|
num_split_points = int(torch.binomial(count=torch.tensor([float(sent_len - num_mask)]),
|
||||||
|
prob=torch.tensor([mask_proportion * inv_mask_length / (1.0 - mask_proportion)])).item())
|
||||||
|
assert num_split_points <= sent_len - num_mask
|
||||||
|
assert isinstance(num_split_points, int)
|
||||||
|
|
||||||
|
def split_into_subseqs(length: int , num_subseqs: int) -> List[int]:
|
||||||
|
"""Splits a sequence of `length` items into `num_subseqs` possibly-empty
|
||||||
|
subsequences. The length distributions are geometric, not Poisson, i.e.
|
||||||
|
we choose the split locations with uniform probability rather than
|
||||||
|
randomly assigning each word to one subsequences. This gives us more
|
||||||
|
shorter/longer subsequences.
|
||||||
|
Require num_subseqs > 0
|
||||||
|
"""
|
||||||
|
boundaries = [0] + sorted(torch.randint(low=0, high=length + 1, size=(num_subseqs - 1,)).tolist()) + [length]
|
||||||
|
return [ boundaries[i + 1] - boundaries[i] for i in range(num_subseqs) ]
|
||||||
|
|
||||||
|
mask_lengths = split_into_subseqs(num_mask, num_split_points + 1)
|
||||||
|
pad_lengths = split_into_subseqs(num_pad, num_split_points + 1)
|
||||||
|
# mask_pad_lengths contains only the (mask, pad) length pairs for which mask + pad > 0.
|
||||||
|
# From this point we only refer to the mask_pad_lengths.
|
||||||
|
mask_pad_lengths = [ (mask, pad) for (mask, pad) in zip(mask_lengths, pad_lengths) if mask+pad > 0 ]
|
||||||
|
num_subseqs = len(mask_pad_lengths)
|
||||||
|
assert num_subseqs > 0
|
||||||
|
|
||||||
|
# Now figure out how to distribute these subsequences throughout the actual
|
||||||
|
# sentence. The subsequences, if there are more than one, must not touch,
|
||||||
|
# i.e. there must be an actual word in between each subsequence, where the
|
||||||
|
# number of such "mandatory" words equals num_subseqs - 1. We also have to
|
||||||
|
# subtract `num_mask` words, since obviously the masked words cannot separate
|
||||||
|
# the masked regions.
|
||||||
|
reduced_len = sent_len - num_mask - (num_subseqs - 1)
|
||||||
|
assert reduced_len >= 0
|
||||||
|
# unmasked_lengths will be the lengths of the un-masked regions between the masked
|
||||||
|
# regions.
|
||||||
|
unmasked_lengths = split_into_subseqs(reduced_len, num_subseqs + 1)
|
||||||
|
for i in range(1, num_subseqs):
|
||||||
|
# Unmasked regions between masked regions must have length at least 1,
|
||||||
|
# we add 1 to unmasked regions that are not initial/final.
|
||||||
|
unmasked_lengths[i] = unmasked_lengths[i] + 1
|
||||||
|
assert sum(unmasked_lengths) + sum(mask_lengths) == sent_len
|
||||||
|
|
||||||
|
|
||||||
|
# src_positions will be: for each position in the masked+padded sentence,
|
||||||
|
# the corresponding position in the source sentence `sentence`; or -1
|
||||||
|
# if this was padding.
|
||||||
|
src_positions = []
|
||||||
|
# `masked` will be: for each position in the masked+padded sentence, True if
|
||||||
|
# it was masked and False otherwise. (Note: it is False for padding
|
||||||
|
# locations, although this will not matter in the end).
|
||||||
|
masked = []
|
||||||
|
|
||||||
|
cur_pos = 0 # current position in source sentence
|
||||||
|
for i in range(num_subseqs + 1):
|
||||||
|
for j in range(unmasked_lengths[i]):
|
||||||
|
src_positions.append(cur_pos)
|
||||||
|
masked.append(False)
|
||||||
|
cur_pos += 1
|
||||||
|
if i < num_subseqs:
|
||||||
|
(mask_len, pad_len) = mask_pad_lengths[i]
|
||||||
|
for j in range(mask_len):
|
||||||
|
src_positions.append(cur_pos)
|
||||||
|
masked.append(True)
|
||||||
|
cur_pos += 1
|
||||||
|
for j in range(pad_len):
|
||||||
|
src_positions.append(-1)
|
||||||
|
masked.append(False)
|
||||||
|
assert cur_pos == len(sentence)
|
||||||
|
|
||||||
|
|
||||||
|
src = []
|
||||||
|
src_masked = []
|
||||||
|
tgt = []
|
||||||
|
weight = []
|
||||||
|
randomizable = []
|
||||||
|
|
||||||
|
src.append(bos_sym)
|
||||||
|
src_masked.append(bos_sym)
|
||||||
|
randomizable.append(False)
|
||||||
|
for i, src_pos in enumerate(src_positions):
|
||||||
|
is_masked = masked[i]
|
||||||
|
if src_pos >= 0:
|
||||||
|
src_word = sentence[src_pos]
|
||||||
|
src_masked.append(blank_sym if masked[i] else src_word)
|
||||||
|
src.append(src_word)
|
||||||
|
tgt.append(src_word)
|
||||||
|
weight.append(1.0 if masked[i] else unmasked_weight)
|
||||||
|
randomizable.append(not masked[i])
|
||||||
|
else:
|
||||||
|
# Padding inside a masked region
|
||||||
|
src_masked.append(blank_sym)
|
||||||
|
src.append(blank_sym)
|
||||||
|
tgt.append(blank_sym)
|
||||||
|
weight.append(1.0)
|
||||||
|
randomizable.append(False)
|
||||||
|
src.append(eos_sym)
|
||||||
|
src_masked.append(eos_sym)
|
||||||
|
tgt.append(eos_sym)
|
||||||
|
weight.append(unmasked_weight)
|
||||||
|
tgt.append(blank_sym)
|
||||||
|
weight.append(0.0)
|
||||||
|
randomizable.append(False)
|
||||||
|
|
||||||
|
attn_mask = ([False] * len(src)) + ([True] * (seq_len - len(src)))
|
||||||
|
|
||||||
|
for i in range(seq_len - len(src)):
|
||||||
|
src.append(blank_sym)
|
||||||
|
src_masked.append(blank_sym)
|
||||||
|
tgt.append(blank_sym)
|
||||||
|
weight.append(0.0)
|
||||||
|
randomizable.append(False)
|
||||||
|
|
||||||
|
return (src, src_masked, tgt, weight, randomizable, attn_mask)
|
||||||
|
|
||||||
|
|
||||||
|
# dataset.mask_and_pad(list(range(10, 20)), seq_len=16, bos_sym=1, eos_sym=2, blank_sym=0, mask_proportion=0.2, padding_proportion=0.2, inv_mask_length=0.33, unmasked_weight=0.444)
|
||||||
|
|
||||||
|
# dataset.collate_fn(sentences=[ list(range(10, 20)), list(range(30, 45))], bos_sym=1, eos_sym=2, blank_sym=0, mask_proportion=0.2, padding_proportion=0.2, randomize_proportion=0.05, inv_mask_length=0.33, unmasked_weight=0.444)
|
||||||
|
|
||||||
|
def collate_fn(sentences: List[List[int]],
|
||||||
|
bos_sym: int,
|
||||||
|
eos_sym: int,
|
||||||
|
blank_sym: int,
|
||||||
|
mask_proportion: float = 0.15,
|
||||||
|
padding_proportion: float = 0.15,
|
||||||
|
randomize_proportion: float = 0.05,
|
||||||
|
inv_mask_length: float = 0.25,
|
||||||
|
unmasked_weight: float = 0.25,
|
||||||
|
debug: bool = False) -> Tuple[torch.Tensor, torch.Tensor,
|
||||||
|
torch.Tensor, torch.Tensor,
|
||||||
|
torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Caution, this is not the collate_fn we give directly to the dataloader,
|
||||||
|
we give it a lambda: collate_fn=(lambda x: dataset.collate_fn(x, [other args]))
|
||||||
|
This formats a list-of-lists-of-int into 5 Tensors, explained below.
|
||||||
|
The key thing is that we mask out subsequences of random length within
|
||||||
|
these sentences, and force the network to predict the masked-out
|
||||||
|
subsequences (which have blanks appended to them to prevent the model
|
||||||
|
from knowing the exact length of the sequences it has to predict).
|
||||||
|
So it's like BERT but at the level of sequences rather than individual
|
||||||
|
words.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
bos_sym: the integer id of the beginning-of-sentence symbol, e.g. 2.
|
||||||
|
Is allowed be the same as eos_sym (we are not necessarily
|
||||||
|
saying it will work best that way).
|
||||||
|
eos_sym: the integer id of the end-of-sentence symbol, e.g. 2.
|
||||||
|
blank_sym: the integer id of the blank symbol, e.g. 0 or 1.
|
||||||
|
mask_proportion: The proportion of words in each sentence that
|
||||||
|
are masked, interpreted as (roughly) the probability of any given
|
||||||
|
word being masked, although the masked locations will
|
||||||
|
tend to be in contiguous sequences (they are not independent).
|
||||||
|
padding_proportion: Like mask_proportion, but determines the
|
||||||
|
number of extra, blank symbols that are inserted as padding
|
||||||
|
at the end of masked regions (this ensures that the model
|
||||||
|
cannot know exactly how many words need to be inserted in
|
||||||
|
any given masked region.
|
||||||
|
randomize_proportion: The probability with which we replace
|
||||||
|
words that were not masked with randomly chosen words.
|
||||||
|
Like BERT, this is intended to force the model to predict
|
||||||
|
something reasonable at non-masked positions, and to make
|
||||||
|
this task harder than simply repeating the input.
|
||||||
|
inv_mask_length: This number determines how many separate
|
||||||
|
sub-sequences the (masked + padded) proportion of a sentence is split up
|
||||||
|
into, interpreted as the inverse of the expected length of
|
||||||
|
each *masked* region.
|
||||||
|
unmasked_weight: The weight to be applied to the log-likelihoods of
|
||||||
|
un-masked positions in sentences (predicting un-masked
|
||||||
|
positions is not completely trivial if randomize_proportion > 0).
|
||||||
|
Will be reflected in the returned tgt_weights tensor.
|
||||||
|
|
||||||
|
Returns a tuple (masked_src_symbols, src_symbols,
|
||||||
|
tgt_symbols, src_key_padding_mask,
|
||||||
|
tgt_weights),
|
||||||
|
all with 2 axes and the same shape: (num_sent, seq_len).
|
||||||
|
Their dtypes will be, respectively,
|
||||||
|
(torch.int64, torch.int64,
|
||||||
|
torch.int64, torch.bool,
|
||||||
|
torch.float)
|
||||||
|
masked_src_symbols: The sentences, with bos_symbol prepended and eos_symbol
|
||||||
|
appended, masked regions (including padding) replaced with blank,
|
||||||
|
and `randomize_proportion` non-masked symbols replaced with
|
||||||
|
symbols randomly taken from elsewhere in the sentences of this
|
||||||
|
minibatch. Then padded to a fixed length with blank.
|
||||||
|
src_symbols: Like masked_src_symbols, except with the masked symbols replaced
|
||||||
|
with the original symbols (but the padding that follows each
|
||||||
|
masked sub-sequence will still be blank)
|
||||||
|
tgt_symbols: The original sentences, with eos_symbol appended, and then
|
||||||
|
padded with blank to the same length as masked_symbols and
|
||||||
|
src_symbols.
|
||||||
|
src_key_padding_mask: Masking tensor for masked_src_symbols and src_symbols, to
|
||||||
|
account for all the sentence lengths not being identical
|
||||||
|
(makes each sentence's processing independent of seq_len).
|
||||||
|
Tensor of Bool of shape (num_sent, seq_len), with True
|
||||||
|
for masked positions (these are the blanks that follow the
|
||||||
|
eos_symbol in masked_src_symbols), False for un-masked positions.
|
||||||
|
tgt_weights: Weights that will be applied to the log-probabilities at
|
||||||
|
the output of the network. Will have 1.0 in positions
|
||||||
|
in `tgt_symbols` that were masked (including blank
|
||||||
|
padding at the end of masked regions), `unmasked_weight`
|
||||||
|
in other positions in the original sentences (including
|
||||||
|
terminating eos_symbol); and 0.0 in the remaining positions
|
||||||
|
corresponding to blank padding after the ends of
|
||||||
|
sentences.
|
||||||
|
"""
|
||||||
|
assert blank_sym not in [bos_sym, eos_sym]
|
||||||
|
max_sent_len = max([ len(s) for s in sentences])
|
||||||
|
#logging.info(f"Sentence lengths: {[ len(s) for s in sentences]}")
|
||||||
|
|
||||||
|
typical_mask_and_pad = int(max_sent_len * (mask_proportion + padding_proportion))
|
||||||
|
|
||||||
|
# The following formula gives roughly 1 standard deviation above where we'd
|
||||||
|
# expect the maximum sentence length to be with masking and padding.. we use
|
||||||
|
# this as a hard upper limit, to prevent outliers from affecting the batch
|
||||||
|
# size too much. We use this as the size `seq_len`.
|
||||||
|
# The "+ 4" is to ensure there is always room for the BOS, EOS and at least
|
||||||
|
# two padding symbols.
|
||||||
|
seq_len = max_sent_len + 4 + typical_mask_and_pad + int(typical_mask_and_pad ** 0.5)
|
||||||
|
|
||||||
|
|
||||||
|
# srcs, srcs_masked, tgts and weights will be lists of the lists returned
|
||||||
|
# from `mask_and_pad`, one per sentence.
|
||||||
|
srcs = []
|
||||||
|
srcs_masked = []
|
||||||
|
tgts = []
|
||||||
|
weights = []
|
||||||
|
randomizables = []
|
||||||
|
attn_masks = []
|
||||||
|
for s in sentences:
|
||||||
|
(src, src_masked, tgt,
|
||||||
|
weight, randomizable,
|
||||||
|
attn_mask) = mask_and_pad(s, seq_len, bos_sym, eos_sym,
|
||||||
|
blank_sym, mask_proportion, padding_proportion,
|
||||||
|
inv_mask_length, unmasked_weight)
|
||||||
|
srcs.append(src)
|
||||||
|
srcs_masked.append(src_masked)
|
||||||
|
tgts.append(tgt)
|
||||||
|
weights.append(weight)
|
||||||
|
randomizables.append(randomizable)
|
||||||
|
attn_masks.append(attn_mask)
|
||||||
|
|
||||||
|
src_symbols = torch.tensor(srcs, dtype=torch.int64)
|
||||||
|
masked_src_symbols = torch.tensor(srcs_masked, dtype=torch.int64)
|
||||||
|
tgt_symbols = torch.tensor(tgts, dtype=torch.int64)
|
||||||
|
src_key_padding_mask = torch.tensor(attn_masks, dtype=torch.bool)
|
||||||
|
tgt_weights = torch.tensor(weights, dtype=torch.float)
|
||||||
|
|
||||||
|
attn_mask_sum = torch.sum(torch.logical_not(src_key_padding_mask), dim=0).tolist()
|
||||||
|
while attn_mask_sum[-1] == 0: # Remove always-masked positions at the endof the lists.
|
||||||
|
attn_mask_sum.pop()
|
||||||
|
if len(attn_mask_sum) < seq_len:
|
||||||
|
seq_len = len(attn_mask_sum)
|
||||||
|
(src_symbols, masked_src_symbols,
|
||||||
|
tgt_symbols, src_key_padding_mask, tgt_weights) = (src_symbols[:,:seq_len], masked_src_symbols[:,:seq_len],
|
||||||
|
tgt_symbols[:,:seq_len], src_key_padding_mask[:,:seq_len],
|
||||||
|
tgt_weights[:,:seq_len])
|
||||||
|
|
||||||
|
if randomize_proportion > 0.0:
|
||||||
|
randomizable_tensor = torch.tensor(randomizables, dtype=torch.bool)
|
||||||
|
randomizable_indexes = torch.nonzero(randomizable_tensor) # (num_randomizable, 2)
|
||||||
|
num_randomizable = randomizable_indexes.shape[0]
|
||||||
|
|
||||||
|
to_randomize_indexes = torch.nonzero(torch.rand(num_randomizable) < randomize_proportion, as_tuple=True)[0]
|
||||||
|
num_to_randomize = to_randomize_indexes.numel()
|
||||||
|
|
||||||
|
# older versions of torch don't have tensor_split, so fake a simplified version of it.
|
||||||
|
# we'd be calling it as xxx.tensor_split(dim=1) if really in torc.
|
||||||
|
def tensor_split(t):
|
||||||
|
return (t[:,0], t[:,1])
|
||||||
|
|
||||||
|
random_src_locations = torch.randperm(num_randomizable)[:num_to_randomize]
|
||||||
|
|
||||||
|
random_symbols = src_symbols[tensor_split(randomizable_indexes[random_src_locations])]
|
||||||
|
random_indexes_tuple= tensor_split(randomizable_indexes[to_randomize_indexes])
|
||||||
|
src_symbols[random_indexes_tuple] = random_symbols
|
||||||
|
masked_src_symbols[random_indexes_tuple] = random_symbols
|
||||||
|
|
||||||
|
|
||||||
|
# I set this to true and tested with:
|
||||||
|
# python3 -c 'import dataset; dataset.collate_fn(sentences=[ list(range(100, 200)), list(range(300, 450)), list(range(500,600))], bos_sym=1, eos_sym=2, blank_sym=0, mask_proportion=0.2, padding_proportion=0.2, randomize_proportion=0.05, inv_mask_length=0.33, unmasked_weight=0.444)'
|
||||||
|
#.. and ran a few times to check the values printed looked about right, and that no assertions failed.
|
||||||
|
if debug:
|
||||||
|
check_collated_tensors(sentences, bos_sym, eos_sym, blank_sym,
|
||||||
|
unmasked_weight,
|
||||||
|
masked_src_symbols, src_symbols,
|
||||||
|
tgt_symbols, src_key_padding_mask, tgt_weights)
|
||||||
|
return (masked_src_symbols, src_symbols,
|
||||||
|
tgt_symbols, src_key_padding_mask, tgt_weights)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class CollateFn:
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
self.extra_args = kwargs
|
||||||
|
|
||||||
|
def __call__(self, sentences: List[List[int]]):
|
||||||
|
return collate_fn(sentences, **self.extra_args)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def check_collated_tensors(sentences: List[List[int]],
|
||||||
|
bos_sym: int,
|
||||||
|
eos_sym: int,
|
||||||
|
blank_sym: int,
|
||||||
|
unmasked_weight: float,
|
||||||
|
masked_src_symbols, src_symbols,
|
||||||
|
tgt_symbols, src_key_padding_mask,
|
||||||
|
tgt_weights):
|
||||||
|
"""
|
||||||
|
This function checks the output of collate_fn, consider it test code. Please see
|
||||||
|
the documentation of collate_fn to understand the args.
|
||||||
|
"""
|
||||||
|
for t in src_symbols, tgt_symbols, src_key_padding_mask, tgt_weights:
|
||||||
|
assert t.shape == masked_src_symbols.shape
|
||||||
|
|
||||||
|
tot_positions = src_symbols.numel()
|
||||||
|
|
||||||
|
masked_src_symbols, src_symbols, tgt_symbols, src_key_padding_mask, tgt_weights = (
|
||||||
|
masked_src_symbols.tolist(), src_symbols.tolist(), tgt_symbols.tolist(),
|
||||||
|
src_key_padding_mask.tolist(), tgt_weights.tolist())
|
||||||
|
assert len(sentences) == len(masked_src_symbols)
|
||||||
|
|
||||||
|
tot_masked_positions = 0
|
||||||
|
tot_padded_positions = 0
|
||||||
|
tot_unmasked_positions = 0 # all un-masked, non-blank postions, including eos
|
||||||
|
tot_randomized_positions = 0
|
||||||
|
num_masked_subseqs = 0
|
||||||
|
tot_symbols = 0 # original symbols in sentences, no bos/eos
|
||||||
|
|
||||||
|
assert unmasked_weight > 0.001 # or this test code won't work..
|
||||||
|
|
||||||
|
for i in range(len(sentences)):
|
||||||
|
reconstructed_sent = list(filter(lambda x: x not in [bos_sym,eos_sym,blank_sym], tgt_symbols[i]))
|
||||||
|
if sentences[i] != reconstructed_sent:
|
||||||
|
print(f"Error: sentence {i}={sentences[i]} differs from {reconstructed_sent}")
|
||||||
|
(masked_src, src, tgt, src_mask, weights) = (masked_src_symbols[i], src_symbols[i],
|
||||||
|
tgt_symbols[i], src_key_padding_mask[i], tgt_weights[i])
|
||||||
|
|
||||||
|
assert src[0] == masked_src[0] == bos_sym
|
||||||
|
for j in range(len(masked_src)):
|
||||||
|
assert masked_src[j] == blank_sym or masked_src[j] == src[j]
|
||||||
|
|
||||||
|
if src[j] not in [bos_sym, eos_sym, blank_sym]:
|
||||||
|
tot_symbols += 1
|
||||||
|
|
||||||
|
if j > 0:
|
||||||
|
assert (src[j] == eos_sym) == (masked_src[j] == eos_sym) == (tgt[j-1] == eos_sym)
|
||||||
|
if masked_src[j] == blank_sym: # masked or padding of masked subseq, or post-eos padding..
|
||||||
|
assert src[j] == tgt[j - 1] # masked symbols are not randomized.
|
||||||
|
assert weights[j - 1] in [0.0, 1.0] # 0.0 for final blank padding
|
||||||
|
if weights[j - 1] == 1.0: # Not final blank padding...
|
||||||
|
if tgt[j - 1] == blank_sym:
|
||||||
|
tot_padded_positions += 1
|
||||||
|
else:
|
||||||
|
tot_masked_positions += 1
|
||||||
|
if masked_src[j + 1] != blank_sym:
|
||||||
|
num_masked_subseqs += 1
|
||||||
|
else:
|
||||||
|
assert weights[j - 1] == 0 or abs(weights[j-1] - unmasked_weight) < 0.001
|
||||||
|
if abs(weights[j - 1]-unmasked_weight) < 0.001:
|
||||||
|
tot_unmasked_positions += 1
|
||||||
|
if tgt[j - 1] != src[j]:
|
||||||
|
tot_randomized_positions += 1
|
||||||
|
|
||||||
|
if src_mask[j]: # if masked..
|
||||||
|
assert src[j] == blank_sym
|
||||||
|
|
||||||
|
assert tot_symbols == sum(len(x) for x in sentences)
|
||||||
|
|
||||||
|
assert tot_unmasked_positions + tot_masked_positions == tot_symbols + len(sentences)
|
||||||
|
|
||||||
|
print(f"{tot_unmasked_positions} + {tot_masked_positions} == {tot_symbols} + {len(sentences)}")
|
||||||
|
print(f"tot_symbols / tot_positions = {tot_symbols/tot_positions} (rest is bos,eos,padding)")
|
||||||
|
|
||||||
|
print(f"Masking/tot_symbols = {tot_masked_positions/tot_symbols}, Padding/tot_symbols = {tot_padded_positions/tot_symbols}")
|
||||||
|
print(f"Randomization/tot_non_masked_symbols = {tot_randomized_positions/(tot_symbols-tot_masked_positions)}")
|
||||||
|
print(f"Mean masking length = {tot_masked_positions/num_masked_subseqs}, Mean padding length = {tot_padded_positions/num_masked_subseqs}")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# This shows some useful code about the BPE encoding.
|
||||||
|
# import sentencepiece as spm
|
||||||
|
# sp = spm.SentencePieceProcessor()
|
||||||
|
# sp.load(bpe_model_fn) # bpe.model
|
||||||
|
# sp.GetPieceSize(..)
|
||||||
|
# sp.Decode(...)
|
||||||
|
# sp.Encode(...)
|
||||||
|
|
||||||
|
|
||||||
|
# import dataset
|
||||||
|
# import torch
|
||||||
|
# train,test = dataset.load_train_test_lm_dataset('../data/lm_training_5000/lm_data.pt')
|
||||||
|
|
||||||
|
|
||||||
|
# train_dl = torch.utils.data.DataLoader(train, batch_size=10, shuffle=True, collate_fn=(lambda x: train.collate_fn(x)))
|
||||||
|
# x = iter(train_dl)
|
||||||
|
# str(next(x))
|
||||||
|
# '[ [ 10 38 651 593 3 1343 31 780 6 4172 112 788 1696 24 289 24 3 403 6 4493 162 92 71 328 417 217 338 14 5 3 1876 154 21 23 2237 43 3 1535 92 71 2816 7 1031 31 2318 92 2528 4806 14 206 3 954 1373 6 525 4 631 447 2639 ] [ 1014 336 171 209 795 10 16 90 27 787 139 53 45 2817 ] [ 11 980 51 22 1748 14 91 105 363 428 6 8 2887 3305 2525 2297 70 3 4651 6 27 282 335 426 134 292 5 193 3 539 2250 584 127 ] [ 9 3 1858 4 18 2257 4 6 41 748 10 304 7 229 83 2793 4 9 981 7 1484 33 3 103 7 539 5 477 3195 18 64 39 82 1034 6 3 4128 ] [ 17 147 22 7 708 60 133 174 105 4111 4 6 3 1384 65 50 1051 9 2953 6 3 461 180 1142 23 5 36 888 8 131 173 390 78 23 266 2822 715 46 182 65 22 1739 33 3 700 1450 14 233 4 ] [ 80 10 16 67 279 7 1827 264 96 3 187 2851 2108 ] [ 1473 48 106 227 9 160 2011 4 674 ] [ 3 954 762 29 85 228 33 8 940 40 4952 36 486 390 595 3 81 225 6 1440 125 346 134 296 126 419 1017 3824 4 8 179 184 11 33 580 1861 ] [ 30 22 245 15 117 8 2892 28 1204 145 7 3 236 3417 6 3 3839 5 3106 155 198 30 228 2555 46 15 32 41 747 72 9 25 977 ] [ 222 466 6 3157 ] ]'
|
||||||
|
#
|
||||||
|
# or:
|
||||||
|
# import k2
|
||||||
|
# k2.ragged.to_list(next(x))
|
||||||
|
# [shows something similar].
|
||||||
|
#
|
||||||
|
# You'd really do something like:
|
||||||
|
# for epoch in range(max_epochs):
|
||||||
|
# for minibatch in train_dl:
|
||||||
|
|
||||||
|
|
||||||
|
# .. How to process data? Suppose we have a sentence like [259, 278, 45, 11, 303, 1319, 34, 15, 396, 3435, 7, 44].
|
||||||
|
#
|
||||||
|
# First: we randomly choose one or more starting positins for a masked segment.
|
||||||
|
# Each sentence must have at least one masked segment (or there is no contribution to the loss function).
|
||||||
|
# We choose to have:
|
||||||
|
# num_masked_segments = max(1, len(sent) // 15)
|
||||||
|
#
|
||||||
|
# The length of the masked segment (this is the target for prediction), we set to the geometric
|
||||||
|
# distribution with the probability of success set to 3:
|
||||||
|
#
|
||||||
|
# g = torch.distributions.geometric.Geometric(probs=0.3) # <-- expected value is 3.333
|
||||||
|
# Example of sampling:
|
||||||
|
# g.sample(sample_shape=torch.Size([10]))
|
||||||
|
#
|
||||||
|
# We now we randomly compute the location of the masked segments (length computed above) as follows:
|
||||||
|
# First, the masked segments must be separated by at least one non-masked word (else they would be
|
||||||
|
# a single segment). So for n masked segments, there are n-1 words required for minimal separation.
|
||||||
|
# If tot-length-of-segments + n-1 is greater than the sentence length, we just have the entire
|
||||||
|
# sentence be masked. Otherwise, we randomly divide the remaining number of words between the n+1
|
||||||
|
# positions where they can appear (e.g. for 2 segments, this would be at the start, between the 2 segments,
|
||||||
|
# and at the end). This is the multinomial distribution, but we can more easily compute this
|
||||||
|
# directly using rand() and cutoffs, rather than creating a torch.distributions.Multinomial().
|
||||||
|
#
|
||||||
|
|
||||||
|
# Next we need to compute a random amount of blank padding (>= 0) for each of the masked regions;
|
||||||
|
# this is done so the model never knows the exact length of the masked region. We can just use the
|
||||||
|
# same distribution as for the length of the masked regions, i.e. geometric with success-prob=0.3
|
||||||
|
# (expected padding length is 3).
|
||||||
|
#
|
||||||
|
# At this point we know where the masked regions are and how much padding they have. We can format
|
||||||
|
# the result as three lists, of the same length:
|
||||||
|
#
|
||||||
|
# sent: contains the words in the sentence with, in masked
|
||||||
|
# positions, the original (target) words, then with
|
||||||
|
# blank in the blank-padding after masked positions.
|
||||||
|
#
|
||||||
|
# sent_augmented: `sent` with, at a small defined percentage of positions
|
||||||
|
# that were *not* masked, the real token replaced with a
|
||||||
|
# token randomly chosen from the tokens in the minibatch.
|
||||||
|
# (like BERT, we use this type of augmentation, so the model
|
||||||
|
# has to predict the original token).
|
||||||
|
#
|
||||||
|
# masked_sent_augmented: List[int], contains the words in `sent_augmented`, except
|
||||||
|
# with masked positions and the blank padding after the masked regions
|
||||||
|
# both replaced with blank.
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# The way these will be processed is as follows:
|
||||||
|
#
|
||||||
|
# masked_sent_in = [bos] + masked_sent_augmented + [eos] <-- so we know the sentence ended, distinguish it from truncated ones.
|
||||||
|
# sent_in = [bos] + sent_augmented + [eos]
|
||||||
|
#
|
||||||
|
# sent_out = sent + [eos] + [eos] #<--- the predicted targets at each point, although
|
||||||
|
# # we only really care about this in masked regions.
|
||||||
|
# # The extra eos is so that the length is the same as
|
||||||
|
# # masked_sent_in and sent_in.
|
||||||
|
#
|
||||||
|
# out_scale = (masked_sent==blk ? 1.0 : non_masked_scale) # e.g. non_masked_scale = 1.0 is fine,
|
||||||
|
# # this is a choice; we can perhaps
|
||||||
|
# # report these 2 parts of the loss
|
||||||
|
# # separately though.
|
||||||
|
# # <-- can also set the last element
|
||||||
|
# # of out_scale to a smaller number, since
|
||||||
|
# # it's a repeated eos.
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# OK, how do we combine these into a minibatch? Firstly, we truncate sentences to a maximum
|
||||||
|
# length, e.g. 128, if `masked_sent_in`/`sent_in` have length longer than that. We choose randomly
|
||||||
|
# in each case to truncate the beginning or end, truncating both masked_sent_in/sent_in and sent_out
|
||||||
|
# from the same side. Caution: this means that these sentences may lack bos and/or eos symbols.
|
||||||
|
#
|
||||||
|
# Next, we combine shorter utterances by appending them ( all of: masked_sent_in, sent_in, out_scale)
|
||||||
|
# as long as doing so would keep the total length under 128. We then pad (masked_sent_in, sent_in, sent_out, out_scale)
|
||||||
|
# with: (<blk>,<blk>,<eos>, 0) up to the maximum length of any sentence in the minibatch <- or could use
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# # i.e. ones where masked_sent is blank and zeros elsewhere;
|
||||||
|
# # this pertains to positions in `sent_out`.
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# torch.distributions.gamma.Gamma(concentration=1.0, rate=1.0/5)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class LmBatchSampler(torch.utils.data.Sampler):
|
||||||
|
"""
|
||||||
|
A sampler that returns a batch of integer indexes as a list, intended for use
|
||||||
|
with class LmDataset. The sentences returned in each batch will all be about
|
||||||
|
the same size, and the batch size is specified as a number of words (we also
|
||||||
|
provide an option that allows you to limit the max memory consumed by transformers)
|
||||||
|
|
||||||
|
Has support for distributed operation.
|
||||||
|
"""
|
||||||
|
def __init__(self, dataset: LmDataset,
|
||||||
|
symbols_per_batch: int,
|
||||||
|
length_ceil: float = 200.0,
|
||||||
|
length_floor: float = 4.0,
|
||||||
|
world_size: Optional[int] = None,
|
||||||
|
rank: Optional[int] = None,
|
||||||
|
seed: int = 0,
|
||||||
|
delay_init: bool = False):
|
||||||
|
"""
|
||||||
|
Constructor documentation:
|
||||||
|
dataset: the LmDataset object that we are sampling from. This
|
||||||
|
class does not retain a reference to the LmDataset.
|
||||||
|
symbols_per_batch: The number of BPE symbols desired in each minibatch
|
||||||
|
length_floor: When the sentence length gets less than about this much,
|
||||||
|
the batch size stops increasing inversely with sentence
|
||||||
|
length. Prevent OOM on batches with short sentences.
|
||||||
|
length_ceil: After the sentence length gets more than about
|
||||||
|
this much, the batch size will start decreasing
|
||||||
|
as 1/(sentence-length^2). This is a mechanism to
|
||||||
|
avoid excessive memory consumption in transformers, when
|
||||||
|
sentence length gets long.
|
||||||
|
world_size: The world size for distributed operation; if None,
|
||||||
|
will be worked out from torch.distributed.
|
||||||
|
rank: The rank of this sampler/process for distributed operation; if None,
|
||||||
|
will be worked out from torch.distributed.
|
||||||
|
seed: The random seed
|
||||||
|
delay_init: If true, will omit calling self.set_epoch(0) at the
|
||||||
|
end of the __init__ function. In this case the caller
|
||||||
|
must call set_epoch(0). [Setting this option is necessary
|
||||||
|
to work with data-loader worker processes plus DDP, since
|
||||||
|
set_epoch() will use ddp, which I believe is a no-no prior
|
||||||
|
to initializing data-loaders.]
|
||||||
|
"""
|
||||||
|
self.seed = seed
|
||||||
|
self.symbols_per_batch = symbols_per_batch
|
||||||
|
self.length_floor = length_floor
|
||||||
|
self.quadratic_constant = 1.0 / length_ceil
|
||||||
|
self._maybe_init_distributed(world_size=world_size, rank=rank)
|
||||||
|
|
||||||
|
# a configuration constant we don't expose.
|
||||||
|
self.multiplicative_random_length = 0.05
|
||||||
|
|
||||||
|
# "indexes" is the subset of indexes into LmDataset that this
|
||||||
|
# sampler is reponsible for (all of them, in the non-distributed case).
|
||||||
|
data_indexes = torch.arange(self.rank, len(dataset), self.world_size, dtype=torch.int32) # dtype=torch.int32
|
||||||
|
|
||||||
|
word_row_splits = dataset.words.row_splits(1) # dtype=torch.int32
|
||||||
|
word_lengths = word_row_splits[1:] - word_row_splits[:-1] # dtype=torch.int32
|
||||||
|
|
||||||
|
# the sentences this sampler is responsible for, as sequences of words.
|
||||||
|
# It's a ragged tensor of int32
|
||||||
|
sentences = k2.index(dataset.sentences, data_indexes)
|
||||||
|
|
||||||
|
# sentence_lengths is a k2.RaggedInt like `sentences`, but with the words replaced
|
||||||
|
# with their respective lengths, in BPE pieces.
|
||||||
|
sentence_lengths = k2.index(word_lengths, sentences)
|
||||||
|
del sentences # save memory
|
||||||
|
assert isinstance(sentence_lengths, k2.RaggedInt)
|
||||||
|
|
||||||
|
# convert to float so sum_per_sublist() will work (TODO: sum_per_sublist() will eventually
|
||||||
|
# support int32.)
|
||||||
|
sentence_lengths = k2.RaggedFloat(sentence_lengths.shape(),
|
||||||
|
sentence_lengths.values().to(torch.float32))
|
||||||
|
assert isinstance(sentence_lengths, k2.RaggedFloat)
|
||||||
|
|
||||||
|
# Convert into a simple tensor of float by adding lengths of words.
|
||||||
|
sentence_lengths = k2.ragged.sum_per_sublist(sentence_lengths)
|
||||||
|
|
||||||
|
assert isinstance(sentence_lengths, torch.Tensor)
|
||||||
|
assert sentence_lengths.dtype == torch.float32
|
||||||
|
|
||||||
|
# self.sentence_lengths is a Tensor with dtype=torch.float32. It
|
||||||
|
# contains the lengths, in BPE tokens, of the sentences that this
|
||||||
|
# sampler is responsible for, whose real indexes are in
|
||||||
|
# `data_indexes` above (this is not stored, as we know the formula).
|
||||||
|
self.sentence_lengths = sentence_lengths
|
||||||
|
|
||||||
|
if not delay_init:
|
||||||
|
self.set_epoch(0) # this is responsible for setting self.sorted_data_indexes
|
||||||
|
|
||||||
|
def _sync_sizes(self, device: Optional[torch.device] = None):
|
||||||
|
# Calling this on all copies of a DDP setup will sync the sizes so that
|
||||||
|
# all copies have the exact same number of batches. I think
|
||||||
|
# this needs to be called with the GPU device, not sure if it would
|
||||||
|
# work otherwise.
|
||||||
|
if self.world_size > 1 and False:
|
||||||
|
if device is None:
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device('cuda', self.rank)
|
||||||
|
else:
|
||||||
|
device = torch.device('cpu')
|
||||||
|
min_size = torch.tensor([len(self.batch_indices)], device=device, dtype=torch.int64)
|
||||||
|
dist.all_reduce(min_size, op=dist.ReduceOp.MIN)
|
||||||
|
min_size = min_size.to('cpu').item()
|
||||||
|
logging.info(f"world_size={self.world_size}, rank={self.rank}: reducing batch indices from {len(self.batch_indices)} to {min_size}")
|
||||||
|
self.batch_indices = self.batch_indices[0:min_size]
|
||||||
|
|
||||||
|
def _maybe_init_distributed(self, world_size: Optional[int], rank: Optional[int]):
|
||||||
|
if world_size is not None:
|
||||||
|
assert world_size >= 1
|
||||||
|
if rank is not None:
|
||||||
|
assert rank >= 0
|
||||||
|
if not dist.is_available() or not dist.is_initialized():
|
||||||
|
self.world_size = 1 if world_size is None else world_size
|
||||||
|
self.rank = 0 if rank is None else rank
|
||||||
|
return
|
||||||
|
self.world_size = dist.get_world_size() if world_size is None else world_size
|
||||||
|
self.rank = dist.get_rank() if rank is None else rank
|
||||||
|
assert self.rank < self.world_size
|
||||||
|
|
||||||
|
|
||||||
|
def set_epoch(self, epoch: int):
|
||||||
|
"""
|
||||||
|
Must be called at the beginning of each epoch, before initializing the DataLoader,
|
||||||
|
to re-shuffle the data. If this is not done, this sampler will give you the same batches
|
||||||
|
each time it is called.
|
||||||
|
"""
|
||||||
|
g = torch.manual_seed(self.rank + self.seed + epoch)
|
||||||
|
|
||||||
|
sentence_lengths = (self.sentence_lengths *
|
||||||
|
(1.0 + torch.rand(*self.sentence_lengths.shape, generator=g) * self.multiplicative_random_length))
|
||||||
|
|
||||||
|
# This mechanism regulates the batch size so that we don't get OOM in transformers
|
||||||
|
# when the sentences are long.
|
||||||
|
sentence_lengths = (sentence_lengths + (sentence_lengths ** 2) * self.quadratic_constant) + self.length_floor
|
||||||
|
|
||||||
|
values, indices = torch.sort(sentence_lengths) # values,indices dtypes: torch.float,torch.int64
|
||||||
|
|
||||||
|
# map to the original indexes into the dataset (the original sentence
|
||||||
|
# indexes), see torch.arange expression in the constructor. save as
|
||||||
|
# int32 just to save a little memory. self.indices are indexes into the
|
||||||
|
# LmDataset, just including the subset of indices that this sampler is
|
||||||
|
# responsible for (in terms of rank and world_size), and sorted by
|
||||||
|
# length with a small amount of randomization specific to the epoch.
|
||||||
|
self.indices = ((indices * self.world_size) + self.rank).to(dtype=torch.int32)
|
||||||
|
|
||||||
|
# now `batch_ids` will be: [0, 0, 0, 0, .., 0, 1, 1, 1, ... 1, 2, ... ],
|
||||||
|
# saying which batch each element of values/indices belongs to.
|
||||||
|
batch_ids = (torch.cumsum(values.to(dtype=torch.double), dim=0) * (1.0 / self.symbols_per_batch)).to(dtype=torch.int32)
|
||||||
|
|
||||||
|
batch_boundaries = torch.nonzero(batch_ids[1:] - batch_ids[:-1], as_tuple=True)[0]
|
||||||
|
batch_boundaries.add_(1)
|
||||||
|
self.batch_boundaries = torch.cat((torch.zeros(1, dtype=torch.int32), batch_boundaries), dim=0)
|
||||||
|
|
||||||
|
num_batches = self.batch_boundaries.numel() - 1
|
||||||
|
|
||||||
|
# self.batch_indices is a permutation of [0, 1, ... num_batches -
|
||||||
|
# 1]; it determines the order in which we access the batches. It's
|
||||||
|
# necessary to randomize the order of these, to avoid returning batches
|
||||||
|
# from shortest to longest sentences.
|
||||||
|
self.batch_indices = torch.randperm(num_batches, generator=g, dtype=torch.int32).tolist()
|
||||||
|
self._sync_sizes()
|
||||||
|
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.batch_indices)
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
"""
|
||||||
|
Iterator that yields lists of indices (i.e., integer indices into the LmDataset)
|
||||||
|
"""
|
||||||
|
for batch_idx in self.batch_indices:
|
||||||
|
batch_start = self.batch_boundaries[batch_idx].item()
|
||||||
|
batch_end = self.batch_boundaries[batch_idx + 1].item()
|
||||||
|
yield self.indices[batch_start:batch_end].tolist()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# train,test = dataset.load_train_test_lm_dataset('../data/lm_training_5000/lm_data.pt')
|
||||||
|
# sampler = dataset.LmBatchSampler(test, symbols_per_batch=1000, world_size=2, rank=0)
|
||||||
|
# a = iter(sampler)
|
||||||
|
# print(str(next(a)))
|
||||||
|
|
||||||
|
# collate_fn=(lambda x:dataset.collate_fn(x, bos_sym=1, eos_sym=1, blank_sym=0, debug=True))
|
||||||
|
# train_dl = torch.utils.data.DataLoader(test, batch_sampler=sampler, collate_fn=collate_fn)
|
||||||
|
# x = iter(train_dl)
|
||||||
|
# print(str(next(x)))
|
599
egs/librispeech/ASR/conformer_ctc_bn/decode.py
Executable file
599
egs/librispeech/ASR/conformer_ctc_bn/decode.py
Executable file
@ -0,0 +1,599 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
|
from conformer import Conformer
|
||||||
|
|
||||||
|
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||||
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
|
from icefall.decode import (
|
||||||
|
get_lattice,
|
||||||
|
nbest_decoding,
|
||||||
|
nbest_oracle,
|
||||||
|
one_best_decoding,
|
||||||
|
rescore_with_attention_decoder,
|
||||||
|
rescore_with_n_best_list,
|
||||||
|
rescore_with_whole_lattice,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
get_texts,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=34,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=20,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="attention-decoder",
|
||||||
|
help="""Decoding method.
|
||||||
|
Supported values are:
|
||||||
|
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||||
|
decoding result.
|
||||||
|
- (2) nbest. Extract n paths from the decoding lattice; the path
|
||||||
|
with the highest score is the decoding result.
|
||||||
|
- (3) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||||
|
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
||||||
|
the highest score is the decoding result.
|
||||||
|
- (4) whole-lattice-rescoring. Rescore the decoding lattice with an
|
||||||
|
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
|
||||||
|
is the decoding result.
|
||||||
|
- (5) attention-decoder. Extract n paths from the LM rescored
|
||||||
|
lattice, the path with the highest score is the decoding result.
|
||||||
|
- (6) nbest-oracle. Its WER is the lower bound of any n-best
|
||||||
|
rescoring method can achieve. Useful for debugging n-best
|
||||||
|
rescoring method.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="""Number of paths for n-best based decoding method.
|
||||||
|
Used only when "method" is one of the following values:
|
||||||
|
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lattice-score-scale",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="""The scale to be applied to `lattice.scores`.
|
||||||
|
It's needed if you use any kinds of n-best based rescoring.
|
||||||
|
Used only when "method" is one of the following values:
|
||||||
|
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
||||||
|
A smaller value results in more unique paths.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--export",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""When enabled, the averaged model is saved to
|
||||||
|
conformer_ctc/exp/pretrained.pt. Note: only model.state_dict() is saved.
|
||||||
|
pretrained.pt contains a dict {"model": model.state_dict()},
|
||||||
|
which can be loaded by `icefall.checkpoint.load_checkpoint()`.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"exp_dir": Path("conformer_ctc/exp"),
|
||||||
|
"lang_dir": Path("data/lang_bpe"),
|
||||||
|
"lm_dir": Path("data/lm"),
|
||||||
|
"feature_dim": 80,
|
||||||
|
"nhead": 8,
|
||||||
|
"attention_dim": 512,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"num_decoder_layers": 6,
|
||||||
|
"vgg_frontend": False,
|
||||||
|
"is_espnet_structure": True,
|
||||||
|
"mmi_loss": False,
|
||||||
|
"use_feat_batchnorm": True,
|
||||||
|
"search_beam": 20,
|
||||||
|
"output_beam": 8,
|
||||||
|
"min_active_states": 30,
|
||||||
|
"max_active_states": 10000,
|
||||||
|
"use_double_scores": True,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
HLG: k2.Fsa,
|
||||||
|
batch: dict,
|
||||||
|
word_table: k2.SymbolTable,
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
G: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[List[int]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if no rescoring is used, the key is the string `no_rescore`.
|
||||||
|
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
||||||
|
where `xxx` is the value of `lm_scale`. An example key is
|
||||||
|
`lm_scale_0.7`
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
|
||||||
|
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
||||||
|
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
||||||
|
- params.method is "nbest-rescoring", it uses nbest LM rescoring.
|
||||||
|
- params.method is "whole-lattice-rescoring", it uses whole lattice LM
|
||||||
|
rescoring.
|
||||||
|
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
HLG:
|
||||||
|
The decoding graph.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
word_table:
|
||||||
|
The word symbol table.
|
||||||
|
sos_id:
|
||||||
|
The token ID of the SOS.
|
||||||
|
eos_id:
|
||||||
|
The token ID of the EOS.
|
||||||
|
G:
|
||||||
|
An LM. It is not None when params.method is "nbest-rescoring"
|
||||||
|
or "whole-lattice-rescoring". In general, the G in HLG
|
||||||
|
is a 3-gram LM, while this G is a 4-gram LM.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = HLG.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is [N, T, C]
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
|
||||||
|
nnet_output, memory, memory_key_padding_mask = model(feature, supervisions)
|
||||||
|
# nnet_output is [N, T, C]
|
||||||
|
|
||||||
|
supervision_segments = torch.stack(
|
||||||
|
(
|
||||||
|
supervisions["sequence_idx"],
|
||||||
|
supervisions["start_frame"] // params.subsampling_factor,
|
||||||
|
supervisions["num_frames"] // params.subsampling_factor,
|
||||||
|
),
|
||||||
|
1,
|
||||||
|
).to(torch.int32)
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=nnet_output,
|
||||||
|
HLG=HLG,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.method == "nbest-oracle":
|
||||||
|
# Note: You can also pass rescored lattices to it.
|
||||||
|
# We choose the HLG decoded lattice for speed reasons
|
||||||
|
# as HLG decoding is faster and the oracle WER
|
||||||
|
# is slightly worse than that of rescored lattices.
|
||||||
|
return nbest_oracle(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
ref_texts=supervisions["text"],
|
||||||
|
word_table=word_table,
|
||||||
|
scale=params.lattice_score_scale,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.method in ["1best", "nbest"]:
|
||||||
|
if params.method == "1best":
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
key = "no_rescore"
|
||||||
|
else:
|
||||||
|
best_path = nbest_decoding(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
use_double_scores=params.use_double_scores,
|
||||||
|
scale=params.lattice_score_scale,
|
||||||
|
)
|
||||||
|
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
|
||||||
|
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
|
assert params.method in [
|
||||||
|
"nbest-rescoring",
|
||||||
|
"whole-lattice-rescoring",
|
||||||
|
"attention-decoder",
|
||||||
|
]
|
||||||
|
|
||||||
|
lm_scale_list = [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||||
|
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
||||||
|
|
||||||
|
if params.method == "nbest-rescoring":
|
||||||
|
best_path_dict = rescore_with_n_best_list(
|
||||||
|
lattice=lattice,
|
||||||
|
G=G,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
lm_scale_list=lm_scale_list,
|
||||||
|
scale=params.lattice_score_scale,
|
||||||
|
)
|
||||||
|
elif params.method == "whole-lattice-rescoring":
|
||||||
|
best_path_dict = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=lm_scale_list
|
||||||
|
)
|
||||||
|
elif params.method == "attention-decoder":
|
||||||
|
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||||
|
rescored_lattice = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None
|
||||||
|
)
|
||||||
|
|
||||||
|
best_path_dict = rescore_with_attention_decoder(
|
||||||
|
lattice=rescored_lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
model=model,
|
||||||
|
memory=memory,
|
||||||
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
scale=params.lattice_score_scale,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert False, f"Unsupported decoding method: {params.method}"
|
||||||
|
|
||||||
|
ans = dict()
|
||||||
|
for lm_scale_str, best_path in best_path_dict.items():
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
|
ans[lm_scale_str] = hyps
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
HLG: k2.Fsa,
|
||||||
|
word_table: k2.SymbolTable,
|
||||||
|
sos_id: int,
|
||||||
|
eos_id: int,
|
||||||
|
G: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[int], List[int]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
HLG:
|
||||||
|
The decoding graph.
|
||||||
|
word_table:
|
||||||
|
It is the word symbol table.
|
||||||
|
sos_id:
|
||||||
|
The token ID for SOS.
|
||||||
|
eos_id:
|
||||||
|
The token ID for EOS.
|
||||||
|
G:
|
||||||
|
An LM. It is not None when params.method is "nbest-rescoring"
|
||||||
|
or "whole-lattice-rescoring". In general, the G in HLG
|
||||||
|
is a 3-gram LM, while this G is a 4-gram LM.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
||||||
|
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
results = []
|
||||||
|
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
HLG=HLG,
|
||||||
|
batch=batch,
|
||||||
|
word_table=word_table,
|
||||||
|
G=G,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
for lm_scale, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for hyp_words, ref_text in zip(hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[lm_scale].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
if batch_idx % 100 == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||||
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
if params.method == "attention-decoder":
|
||||||
|
# Set it to False since there are too many logs.
|
||||||
|
enable_log = False
|
||||||
|
else:
|
||||||
|
enable_log = True
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
if enable_log:
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=enable_log
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
if enable_log:
|
||||||
|
logging.info(
|
||||||
|
"Wrote detailed error stats to {}".format(errs_filename)
|
||||||
|
)
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
num_classes = max_token_id + 1 # +1 for the blank
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
graph_compiler = BpeCtcTrainingGraphCompiler(
|
||||||
|
params.lang_dir,
|
||||||
|
device=device,
|
||||||
|
sos_token="<sos/eos>",
|
||||||
|
eos_token="<sos/eos>",
|
||||||
|
)
|
||||||
|
sos_id = graph_compiler.sos_id
|
||||||
|
eos_id = graph_compiler.eos_id
|
||||||
|
|
||||||
|
HLG = k2.Fsa.from_dict(
|
||||||
|
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
|
||||||
|
)
|
||||||
|
HLG = HLG.to(device)
|
||||||
|
assert HLG.requires_grad is False
|
||||||
|
|
||||||
|
if not hasattr(HLG, "lm_scores"):
|
||||||
|
HLG.lm_scores = HLG.scores.clone()
|
||||||
|
|
||||||
|
if params.method in (
|
||||||
|
"nbest-rescoring",
|
||||||
|
"whole-lattice-rescoring",
|
||||||
|
"attention-decoder",
|
||||||
|
):
|
||||||
|
if not (params.lm_dir / "G_4_gram.pt").is_file():
|
||||||
|
logging.info("Loading G_4_gram.fst.txt")
|
||||||
|
logging.warning("It may take 8 minutes.")
|
||||||
|
with open(params.lm_dir / "G_4_gram.fst.txt") as f:
|
||||||
|
first_word_disambig_id = lexicon.word_table["#0"]
|
||||||
|
|
||||||
|
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||||
|
# G.aux_labels is not needed in later computations, so
|
||||||
|
# remove it here.
|
||||||
|
del G.aux_labels
|
||||||
|
# CAUTION: The following line is crucial.
|
||||||
|
# Arcs entering the back-off state have label equal to #0.
|
||||||
|
# We have to change it to 0 here.
|
||||||
|
G.labels[G.labels >= first_word_disambig_id] = 0
|
||||||
|
G = k2.Fsa.from_fsas([G]).to(device)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
||||||
|
else:
|
||||||
|
logging.info("Loading pre-compiled G_4_gram.pt")
|
||||||
|
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location="cpu")
|
||||||
|
G = k2.Fsa.from_dict(d).to(device)
|
||||||
|
|
||||||
|
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
|
||||||
|
# Add epsilon self-loops to G as we will compose
|
||||||
|
# it with the whole lattice later
|
||||||
|
G = k2.add_epsilon_self_loops(G)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
G = G.to(device)
|
||||||
|
|
||||||
|
# G.lm_scores is used to replace HLG.lm_scores during
|
||||||
|
# LM rescoring.
|
||||||
|
G.lm_scores = G.scores.clone()
|
||||||
|
else:
|
||||||
|
G = None
|
||||||
|
|
||||||
|
model = Conformer(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
nhead=params.nhead,
|
||||||
|
d_model=params.attention_dim,
|
||||||
|
num_classes=num_classes,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
num_decoder_layers=params.num_decoder_layers,
|
||||||
|
vgg_frontend=params.vgg_frontend,
|
||||||
|
is_espnet_structure=params.is_espnet_structure,
|
||||||
|
mmi_loss=params.mmi_loss,
|
||||||
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.load_state_dict(average_checkpoints(filenames))
|
||||||
|
|
||||||
|
if params.export:
|
||||||
|
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||||
|
torch.save(
|
||||||
|
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
# CAUTION: `test_sets` is for displaying only.
|
||||||
|
# If you want to skip test-clean, you have to skip
|
||||||
|
# it inside the for loop. That is, use
|
||||||
|
#
|
||||||
|
# if test_set == 'test-clean': continue
|
||||||
|
#
|
||||||
|
test_sets = ["test-clean", "test-other"]
|
||||||
|
for test_set, test_dl in zip(test_sets, librispeech.test_dataloaders()):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
HLG=HLG,
|
||||||
|
word_table=lexicon.word_table,
|
||||||
|
G=G,
|
||||||
|
sos_id=sos_id,
|
||||||
|
eos_id=eos_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params, test_set_name=test_set, results_dict=results_dict
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1256
egs/librispeech/ASR/conformer_ctc_bn/madam.py
Normal file
1256
egs/librispeech/ASR/conformer_ctc_bn/madam.py
Normal file
File diff suppressed because it is too large
Load Diff
366
egs/librispeech/ASR/conformer_ctc_bn/pretrained.py
Executable file
366
egs/librispeech/ASR/conformer_ctc_bn/pretrained.py
Executable file
@ -0,0 +1,366 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import kaldifeat
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from conformer import Conformer
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
|
||||||
|
from icefall.decode import (
|
||||||
|
get_lattice,
|
||||||
|
one_best_decoding,
|
||||||
|
rescore_with_attention_decoder,
|
||||||
|
rescore_with_whole_lattice,
|
||||||
|
)
|
||||||
|
from icefall.utils import AttributeDict, get_texts
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--checkpoint",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the checkpoint. "
|
||||||
|
"The checkpoint is assumed to be saved by "
|
||||||
|
"icefall.checkpoint.save_checkpoint().",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--words-file",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to words.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--HLG", type=str, required=True, help="Path to HLG.pt."
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="1best",
|
||||||
|
help="""Decoding method.
|
||||||
|
Possible values are:
|
||||||
|
(1) 1best - Use the best path as decoding output. Only
|
||||||
|
the transformer encoder output is used for decoding.
|
||||||
|
We call it HLG decoding.
|
||||||
|
(2) whole-lattice-rescoring - Use an LM to rescore the
|
||||||
|
decoding lattice and then use 1best to decode the
|
||||||
|
rescored lattice.
|
||||||
|
We call it HLG decoding + n-gram LM rescoring.
|
||||||
|
(3) attention-decoder - Extract n paths from the rescored
|
||||||
|
lattice and use the transformer attention decoder for
|
||||||
|
rescoring.
|
||||||
|
We call it HLG decoding + n-gram LM rescoring + attention
|
||||||
|
decoder rescoring.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--G",
|
||||||
|
type=str,
|
||||||
|
help="""An LM for rescoring.
|
||||||
|
Used only when method is
|
||||||
|
whole-lattice-rescoring or attention-decoder.
|
||||||
|
It's usually a 4-gram LM.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="""
|
||||||
|
Used only when method is attention-decoder.
|
||||||
|
It specifies the size of n-best list.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ngram-lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=1.3,
|
||||||
|
help="""
|
||||||
|
Used only when method is whole-lattice-rescoring and attention-decoder.
|
||||||
|
It specifies the scale for n-gram LM scores.
|
||||||
|
(Note: You need to tune it on a dataset.)
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--attention-decoder-scale",
|
||||||
|
type=float,
|
||||||
|
default=1.2,
|
||||||
|
help="""
|
||||||
|
Used only when method is attention-decoder.
|
||||||
|
It specifies the scale for attention decoder scores.
|
||||||
|
(Note: You need to tune it on a dataset.)
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lattice-score-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""
|
||||||
|
Used only when method is attention-decoder.
|
||||||
|
It specifies the scale for lattice.scores when
|
||||||
|
extracting n-best lists. A smaller value results in
|
||||||
|
more unique number of paths with the risk of missing
|
||||||
|
the best path.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sos-id",
|
||||||
|
type=float,
|
||||||
|
default=1,
|
||||||
|
help="""
|
||||||
|
Used only when method is attention-decoder.
|
||||||
|
It specifies ID for the SOS token.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--eos-id",
|
||||||
|
type=float,
|
||||||
|
default=1,
|
||||||
|
help="""
|
||||||
|
Used only when method is attention-decoder.
|
||||||
|
It specifies ID for the EOS token.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"feature_dim": 80,
|
||||||
|
"nhead": 8,
|
||||||
|
"num_classes": 5000,
|
||||||
|
"sample_rate": 16000,
|
||||||
|
"attention_dim": 512,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"num_decoder_layers": 6,
|
||||||
|
"vgg_frontend": False,
|
||||||
|
"is_espnet_structure": True,
|
||||||
|
"mmi_loss": False,
|
||||||
|
"use_feat_batchnorm": True,
|
||||||
|
"search_beam": 20,
|
||||||
|
"output_beam": 8,
|
||||||
|
"min_active_states": 30,
|
||||||
|
"max_active_states": 10000,
|
||||||
|
"use_double_scores": True,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert sample_rate == expected_sample_rate, (
|
||||||
|
f"expected sample rate: {expected_sample_rate}. "
|
||||||
|
f"Given: {sample_rate}"
|
||||||
|
)
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
logging.info(f"{params}")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
logging.info("Creating model")
|
||||||
|
model = Conformer(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
nhead=params.nhead,
|
||||||
|
d_model=params.attention_dim,
|
||||||
|
num_classes=params.num_classes,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
num_decoder_layers=params.num_decoder_layers,
|
||||||
|
vgg_frontend=params.vgg_frontend,
|
||||||
|
is_espnet_structure=params.is_espnet_structure,
|
||||||
|
mmi_loss=params.mmi_loss,
|
||||||
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||||
|
)
|
||||||
|
|
||||||
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
|
model.load_state_dict(checkpoint["model"])
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
logging.info(f"Loading HLG from {params.HLG}")
|
||||||
|
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||||
|
HLG = HLG.to(device)
|
||||||
|
if not hasattr(HLG, "lm_scores"):
|
||||||
|
# For whole-lattice-rescoring and attention-decoder
|
||||||
|
HLG.lm_scores = HLG.scores.clone()
|
||||||
|
|
||||||
|
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
|
||||||
|
logging.info(f"Loading G from {params.G}")
|
||||||
|
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
|
||||||
|
# Add epsilon self-loops to G as we will compose
|
||||||
|
# it with the whole lattice later
|
||||||
|
G = G.to(device)
|
||||||
|
G = k2.add_epsilon_self_loops(G)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
G.lm_scores = G.scores.clone()
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = params.sample_rate
|
||||||
|
opts.mel_opts.num_bins = params.feature_dim
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {params.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
|
||||||
|
features = pad_sequence(
|
||||||
|
features, batch_first=True, padding_value=math.log(1e-10)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Note: We don't use key padding mask for attention during decoding
|
||||||
|
with torch.no_grad():
|
||||||
|
nnet_output, memory, memory_key_padding_mask = model(features)
|
||||||
|
|
||||||
|
batch_size = nnet_output.shape[0]
|
||||||
|
supervision_segments = torch.tensor(
|
||||||
|
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
|
||||||
|
dtype=torch.int32,
|
||||||
|
)
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=nnet_output,
|
||||||
|
HLG=HLG,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.method == "1best":
|
||||||
|
logging.info("Use HLG decoding")
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
elif params.method == "whole-lattice-rescoring":
|
||||||
|
logging.info("Use HLG decoding + LM rescoring")
|
||||||
|
best_path_dict = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice,
|
||||||
|
G_with_epsilon_loops=G,
|
||||||
|
lm_scale_list=[params.ngram_lm_scale],
|
||||||
|
)
|
||||||
|
best_path = next(iter(best_path_dict.values()))
|
||||||
|
elif params.method == "attention-decoder":
|
||||||
|
logging.info("Use HLG + LM rescoring + attention decoder rescoring")
|
||||||
|
rescored_lattice = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None
|
||||||
|
)
|
||||||
|
best_path_dict = rescore_with_attention_decoder(
|
||||||
|
lattice=rescored_lattice,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
model=model,
|
||||||
|
memory=memory,
|
||||||
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
|
sos_id=params.sos_id,
|
||||||
|
eos_id=params.eos_id,
|
||||||
|
scale=params.lattice_score_scale,
|
||||||
|
ngram_lm_scale=params.ngram_lm_scale,
|
||||||
|
attention_scale=params.attention_decoder_scale,
|
||||||
|
)
|
||||||
|
best_path = next(iter(best_path_dict.values()))
|
||||||
|
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||||
|
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
words = " ".join(hyp)
|
||||||
|
s += f"{filename}:\n{words}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
161
egs/librispeech/ASR/conformer_ctc_bn/subsampling.py
Normal file
161
egs/librispeech/ASR/conformer_ctc_bn/subsampling.py
Normal file
@ -0,0 +1,161 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class Conv2dSubsampling(nn.Module):
|
||||||
|
"""Convolutional 2D subsampling (to 1/4 length).
|
||||||
|
|
||||||
|
Convert an input of shape [N, T, idim] to an output
|
||||||
|
with shape [N, T', odim], where
|
||||||
|
T' = ((T-1)//2 - 1)//2, which approximates T' == T//4
|
||||||
|
|
||||||
|
It is based on
|
||||||
|
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, idim: int, odim: int) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
idim:
|
||||||
|
Input dim. The input shape is [N, T, idim].
|
||||||
|
Caution: It requires: T >=7, idim >=7
|
||||||
|
odim:
|
||||||
|
Output dim. The output shape is [N, ((T-1)//2 - 1)//2, odim]
|
||||||
|
"""
|
||||||
|
assert idim >= 7
|
||||||
|
super().__init__()
|
||||||
|
self.conv = nn.Sequential(
|
||||||
|
nn.Conv2d(
|
||||||
|
in_channels=1, out_channels=odim, kernel_size=3, stride=2
|
||||||
|
),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Conv2d(
|
||||||
|
in_channels=odim, out_channels=odim, kernel_size=3, stride=2
|
||||||
|
),
|
||||||
|
nn.ReLU(),
|
||||||
|
)
|
||||||
|
self.out = nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Subsample x.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
Its shape is [N, T, idim].
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape [N, ((T-1)//2 - 1)//2, odim]
|
||||||
|
"""
|
||||||
|
# On entry, x is [N, T, idim]
|
||||||
|
x = x.unsqueeze(1) # [N, T, idim] -> [N, 1, T, idim] i.e., [N, C, H, W]
|
||||||
|
x = self.conv(x)
|
||||||
|
# Now x is of shape [N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2]
|
||||||
|
b, c, t, f = x.size()
|
||||||
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||||
|
# Now x is of shape [N, ((T-1)//2 - 1))//2, odim]
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class VggSubsampling(nn.Module):
|
||||||
|
"""Trying to follow the setup described in the following paper:
|
||||||
|
https://arxiv.org/pdf/1910.09799.pdf
|
||||||
|
|
||||||
|
This paper is not 100% explicit so I am guessing to some extent,
|
||||||
|
and trying to compare with other VGG implementations.
|
||||||
|
|
||||||
|
Convert an input of shape [N, T, idim] to an output
|
||||||
|
with shape [N, T', odim], where
|
||||||
|
T' = ((T-1)//2 - 1)//2, which approximates T' = T//4
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, idim: int, odim: int) -> None:
|
||||||
|
"""Construct a VggSubsampling object.
|
||||||
|
|
||||||
|
This uses 2 VGG blocks with 2 Conv2d layers each,
|
||||||
|
subsampling its input by a factor of 4 in the time dimensions.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
idim:
|
||||||
|
Input dim. The input shape is [N, T, idim].
|
||||||
|
Caution: It requires: T >=7, idim >=7
|
||||||
|
odim:
|
||||||
|
Output dim. The output shape is [N, ((T-1)//2 - 1)//2, odim]
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
cur_channels = 1
|
||||||
|
layers = []
|
||||||
|
block_dims = [32, 64]
|
||||||
|
|
||||||
|
# The decision to use padding=1 for the 1st convolution, then padding=0
|
||||||
|
# for the 2nd and for the max-pooling, and ceil_mode=True, was driven by
|
||||||
|
# a back-compatibility concern so that the number of frames at the
|
||||||
|
# output would be equal to:
|
||||||
|
# (((T-1)//2)-1)//2.
|
||||||
|
# We can consider changing this by using padding=1 on the
|
||||||
|
# 2nd convolution, so the num-frames at the output would be T//4.
|
||||||
|
for block_dim in block_dims:
|
||||||
|
layers.append(
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=cur_channels,
|
||||||
|
out_channels=block_dim,
|
||||||
|
kernel_size=3,
|
||||||
|
padding=1,
|
||||||
|
stride=1,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
layers.append(torch.nn.ReLU())
|
||||||
|
layers.append(
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=block_dim,
|
||||||
|
out_channels=block_dim,
|
||||||
|
kernel_size=3,
|
||||||
|
padding=0,
|
||||||
|
stride=1,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
layers.append(
|
||||||
|
torch.nn.MaxPool2d(
|
||||||
|
kernel_size=2, stride=2, padding=0, ceil_mode=True
|
||||||
|
)
|
||||||
|
)
|
||||||
|
cur_channels = block_dim
|
||||||
|
|
||||||
|
self.layers = nn.Sequential(*layers)
|
||||||
|
|
||||||
|
self.out = nn.Linear(
|
||||||
|
block_dims[-1] * (((idim - 1) // 2 - 1) // 2), odim
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Subsample x.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
Its shape is [N, T, idim].
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape [N, ((T-1)//2 - 1)//2, odim]
|
||||||
|
"""
|
||||||
|
x = x.unsqueeze(1)
|
||||||
|
x = self.layers(x)
|
||||||
|
b, c, t, f = x.size()
|
||||||
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||||
|
return x
|
48
egs/librispeech/ASR/conformer_ctc_bn/test_subsampling.py
Executable file
48
egs/librispeech/ASR/conformer_ctc_bn/test_subsampling.py
Executable file
@ -0,0 +1,48 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||||
|
|
||||||
|
|
||||||
|
def test_conv2d_subsampling():
|
||||||
|
N = 3
|
||||||
|
odim = 2
|
||||||
|
|
||||||
|
for T in range(7, 19):
|
||||||
|
for idim in range(7, 20):
|
||||||
|
model = Conv2dSubsampling(idim=idim, odim=odim)
|
||||||
|
x = torch.empty(N, T, idim)
|
||||||
|
y = model(x)
|
||||||
|
assert y.shape[0] == N
|
||||||
|
assert y.shape[1] == ((T - 1) // 2 - 1) // 2
|
||||||
|
assert y.shape[2] == odim
|
||||||
|
|
||||||
|
|
||||||
|
def test_vgg_subsampling():
|
||||||
|
N = 3
|
||||||
|
odim = 2
|
||||||
|
|
||||||
|
for T in range(7, 19):
|
||||||
|
for idim in range(7, 20):
|
||||||
|
model = VggSubsampling(idim=idim, odim=odim)
|
||||||
|
x = torch.empty(N, T, idim)
|
||||||
|
y = model(x)
|
||||||
|
assert y.shape[0] == N
|
||||||
|
assert y.shape[1] == ((T - 1) // 2 - 1) // 2
|
||||||
|
assert y.shape[2] == odim
|
104
egs/librispeech/ASR/conformer_ctc_bn/test_transformer.py
Normal file
104
egs/librispeech/ASR/conformer_ctc_bn/test_transformer.py
Normal file
@ -0,0 +1,104 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from transformer import (
|
||||||
|
Transformer,
|
||||||
|
add_eos,
|
||||||
|
add_sos,
|
||||||
|
decoder_padding_mask,
|
||||||
|
encoder_padding_mask,
|
||||||
|
generate_square_subsequent_mask,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_encoder_padding_mask():
|
||||||
|
supervisions = {
|
||||||
|
"sequence_idx": torch.tensor([0, 1, 2]),
|
||||||
|
"start_frame": torch.tensor([0, 0, 0]),
|
||||||
|
"num_frames": torch.tensor([18, 7, 13]),
|
||||||
|
}
|
||||||
|
|
||||||
|
max_len = ((18 - 1) // 2 - 1) // 2
|
||||||
|
mask = encoder_padding_mask(max_len, supervisions)
|
||||||
|
expected_mask = torch.tensor(
|
||||||
|
[
|
||||||
|
[False, False, False], # ((18 - 1)//2 - 1)//2 = 3,
|
||||||
|
[False, True, True], # ((7 - 1)//2 - 1)//2 = 1,
|
||||||
|
[False, False, True], # ((13 - 1)//2 - 1)//2 = 2,
|
||||||
|
]
|
||||||
|
)
|
||||||
|
assert torch.all(torch.eq(mask, expected_mask))
|
||||||
|
|
||||||
|
|
||||||
|
def test_transformer():
|
||||||
|
num_features = 40
|
||||||
|
num_classes = 87
|
||||||
|
model = Transformer(num_features=num_features, num_classes=num_classes)
|
||||||
|
|
||||||
|
N = 31
|
||||||
|
|
||||||
|
for T in range(7, 30):
|
||||||
|
x = torch.rand(N, T, num_features)
|
||||||
|
y, _, _ = model(x)
|
||||||
|
assert y.shape == (N, (((T - 1) // 2) - 1) // 2, num_classes)
|
||||||
|
|
||||||
|
|
||||||
|
def test_generate_square_subsequent_mask():
|
||||||
|
s = 5
|
||||||
|
mask = generate_square_subsequent_mask(s)
|
||||||
|
inf = float("inf")
|
||||||
|
expected_mask = torch.tensor(
|
||||||
|
[
|
||||||
|
[0.0, -inf, -inf, -inf, -inf],
|
||||||
|
[0.0, 0.0, -inf, -inf, -inf],
|
||||||
|
[0.0, 0.0, 0.0, -inf, -inf],
|
||||||
|
[0.0, 0.0, 0.0, 0.0, -inf],
|
||||||
|
[0.0, 0.0, 0.0, 0.0, 0.0],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
assert torch.all(torch.eq(mask, expected_mask))
|
||||||
|
|
||||||
|
|
||||||
|
def test_decoder_padding_mask():
|
||||||
|
x = [torch.tensor([1, 2]), torch.tensor([3]), torch.tensor([2, 5, 8])]
|
||||||
|
y = pad_sequence(x, batch_first=True, padding_value=-1)
|
||||||
|
mask = decoder_padding_mask(y, ignore_id=-1)
|
||||||
|
expected_mask = torch.tensor(
|
||||||
|
[
|
||||||
|
[False, False, True],
|
||||||
|
[False, True, True],
|
||||||
|
[False, False, False],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
assert torch.all(torch.eq(mask, expected_mask))
|
||||||
|
|
||||||
|
|
||||||
|
def test_add_sos():
|
||||||
|
x = [[1, 2], [3], [2, 5, 8]]
|
||||||
|
y = add_sos(x, sos_id=0)
|
||||||
|
expected_y = [[0, 1, 2], [0, 3], [0, 2, 5, 8]]
|
||||||
|
assert y == expected_y
|
||||||
|
|
||||||
|
|
||||||
|
def test_add_eos():
|
||||||
|
x = [[1, 2], [3], [2, 5, 8]]
|
||||||
|
y = add_eos(x, eos_id=0)
|
||||||
|
expected_y = [[1, 2, 0], [3, 0], [2, 5, 8, 0]]
|
||||||
|
assert y == expected_y
|
743
egs/librispeech/ASR/conformer_ctc_bn/train.py
Executable file
743
egs/librispeech/ASR/conformer_ctc_bn/train.py
Executable file
@ -0,0 +1,743 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from shutil import copyfile
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
|
from conformer import Conformer
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.nn.utils import clip_grad_norm_
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
from madam import Gloam
|
||||||
|
|
||||||
|
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||||
|
from icefall.checkpoint import load_checkpoint
|
||||||
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||||
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
encode_supervisions,
|
||||||
|
setup_logger,
|
||||||
|
str2bool,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--world-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of GPUs for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--master-port",
|
||||||
|
type=int,
|
||||||
|
default=12354,
|
||||||
|
help="Master port to use for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=35,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""Resume training from from this epoch.
|
||||||
|
If it is positive, it will load checkpoint from
|
||||||
|
conformer_ctc/exp/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
"""Return a dict containing training parameters.
|
||||||
|
|
||||||
|
All training related parameters that are not passed from the commandline
|
||||||
|
is saved in the variable `params`.
|
||||||
|
|
||||||
|
Commandline options are merged into `params` after they are parsed, so
|
||||||
|
you can also access them via `params`.
|
||||||
|
|
||||||
|
Explanation of options saved in `params`:
|
||||||
|
|
||||||
|
- exp_dir: It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
|
||||||
|
- lang_dir: It contains language related input files such as
|
||||||
|
"lexicon.txt"
|
||||||
|
|
||||||
|
- lr: It specifies the initial learning rate
|
||||||
|
|
||||||
|
- feature_dim: The model input dim. It has to match the one used
|
||||||
|
in computing features.
|
||||||
|
|
||||||
|
- weight_decay: The weight_decay for the optimizer.
|
||||||
|
|
||||||
|
- subsampling_factor: The subsampling factor for the model.
|
||||||
|
|
||||||
|
- best_train_loss: Best training loss so far. It is used to select
|
||||||
|
the model that has the lowest training loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_valid_loss: Best validation loss so far. It is used to select
|
||||||
|
the model that has the lowest validation loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_train_epoch: It is the epoch that has the best training loss.
|
||||||
|
|
||||||
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||||
|
|
||||||
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||||
|
contains number of batches trained so far across
|
||||||
|
epochs.
|
||||||
|
|
||||||
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||||
|
|
||||||
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||||
|
|
||||||
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||||
|
|
||||||
|
- beam_size: It is used in k2.ctc_loss
|
||||||
|
|
||||||
|
- reduction: It is used in k2.ctc_loss
|
||||||
|
|
||||||
|
- use_double_scores: It is used in k2.ctc_loss
|
||||||
|
"""
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"exp_dir": Path("conformer_ctc/exp_gloam_5e-4_0.85"),
|
||||||
|
"lang_dir": Path("data/lang_bpe"),
|
||||||
|
"feature_dim": 80,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"best_train_loss": float("inf"),
|
||||||
|
"best_valid_loss": float("inf"),
|
||||||
|
"best_train_epoch": -1,
|
||||||
|
"best_valid_epoch": -1,
|
||||||
|
"batch_idx_train": 0,
|
||||||
|
"log_interval": 10,
|
||||||
|
"reset_interval": 200,
|
||||||
|
"valid_interval": 3000,
|
||||||
|
"beam_size": 10,
|
||||||
|
"reduction": "sum",
|
||||||
|
"use_double_scores": True,
|
||||||
|
"accum_grad": 1,
|
||||||
|
"att_rate": 0.7,
|
||||||
|
"attention_dim": 512,
|
||||||
|
"nhead": 8,
|
||||||
|
"num_decoder_layers": 6,
|
||||||
|
"is_espnet_structure": True,
|
||||||
|
"mmi_loss": False,
|
||||||
|
"use_feat_batchnorm": True,
|
||||||
|
"max_lrate": 5.0e-04,
|
||||||
|
"first_decay_epoch": 1,
|
||||||
|
"decay_per_epoch": 0.85,
|
||||||
|
"warm_step": 40000,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def load_checkpoint_if_available(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
) -> None:
|
||||||
|
"""Load checkpoint from file.
|
||||||
|
|
||||||
|
If params.start_epoch is positive, it will load the checkpoint from
|
||||||
|
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||||
|
|
||||||
|
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||||
|
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||||
|
and `best_valid_loss` in `params`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
The return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
optimizer:
|
||||||
|
The optimizer that we are using.
|
||||||
|
scheduler:
|
||||||
|
The learning rate scheduler we are using.
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
if params.start_epoch <= 0:
|
||||||
|
return
|
||||||
|
|
||||||
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||||
|
saved_params = load_checkpoint(
|
||||||
|
filename,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
)
|
||||||
|
|
||||||
|
keys = [
|
||||||
|
"best_train_epoch",
|
||||||
|
"best_valid_epoch",
|
||||||
|
"batch_idx_train",
|
||||||
|
"best_train_loss",
|
||||||
|
"best_valid_loss",
|
||||||
|
]
|
||||||
|
for k in keys:
|
||||||
|
params[k] = saved_params[k]
|
||||||
|
|
||||||
|
return saved_params
|
||||||
|
|
||||||
|
|
||||||
|
def save_checkpoint(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Save model, optimizer, scheduler and training stats to file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
"""
|
||||||
|
if rank != 0:
|
||||||
|
return
|
||||||
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||||
|
save_checkpoint_impl(
|
||||||
|
filename=filename,
|
||||||
|
model=model,
|
||||||
|
params=params,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.best_train_epoch == params.cur_epoch:
|
||||||
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_train_filename)
|
||||||
|
|
||||||
|
if params.best_valid_epoch == params.cur_epoch:
|
||||||
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_valid_filename)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
batch: dict,
|
||||||
|
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||||
|
is_training: bool,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Compute CTC loss given the model and its inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
Parameters for training. See :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training. It is an instance of Conformer in our case.
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
graph_compiler:
|
||||||
|
It is used to build a decoding graph from a ctc topo and training
|
||||||
|
transcript. The training transcript is contained in the given `batch`,
|
||||||
|
while the ctc topo is built when this compiler is instantiated.
|
||||||
|
is_training:
|
||||||
|
True for training. False for validation. When it is True, this
|
||||||
|
function enables autograd during computation; when it is False, it
|
||||||
|
disables autograd.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
device = graph_compiler.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
# at entry, feature is [N, T, C]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
|
||||||
|
# nnet_output is [N, T, C]
|
||||||
|
|
||||||
|
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||||
|
# different duration in decreasing order, required by
|
||||||
|
# `k2.intersect_dense` called in `k2.ctc_loss`
|
||||||
|
supervision_segments, texts = encode_supervisions(
|
||||||
|
supervisions, subsampling_factor=params.subsampling_factor
|
||||||
|
)
|
||||||
|
|
||||||
|
token_ids = graph_compiler.texts_to_ids(texts)
|
||||||
|
|
||||||
|
decoding_graph = graph_compiler.compile(token_ids)
|
||||||
|
|
||||||
|
dense_fsa_vec = k2.DenseFsaVec(
|
||||||
|
nnet_output,
|
||||||
|
supervision_segments,
|
||||||
|
allow_truncate=params.subsampling_factor - 1,
|
||||||
|
)
|
||||||
|
|
||||||
|
ctc_loss = k2.ctc_loss(
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
dense_fsa_vec=dense_fsa_vec,
|
||||||
|
output_beam=params.beam_size,
|
||||||
|
reduction=params.reduction,
|
||||||
|
use_double_scores=params.use_double_scores,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.att_rate != 0.0:
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
if hasattr(model, "module"):
|
||||||
|
att_loss = model.module.decoder_forward(
|
||||||
|
encoder_memory,
|
||||||
|
memory_mask,
|
||||||
|
token_ids=token_ids,
|
||||||
|
sos_id=graph_compiler.sos_id,
|
||||||
|
eos_id=graph_compiler.eos_id,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
att_loss = model.decoder_forward(
|
||||||
|
encoder_memory,
|
||||||
|
memory_mask,
|
||||||
|
token_ids=token_ids,
|
||||||
|
sos_id=graph_compiler.sos_id,
|
||||||
|
eos_id=graph_compiler.eos_id,
|
||||||
|
)
|
||||||
|
loss = (1.0 - params.att_rate) * ctc_loss + params.att_rate * att_loss
|
||||||
|
else:
|
||||||
|
loss = ctc_loss
|
||||||
|
att_loss = torch.tensor([0])
|
||||||
|
|
||||||
|
# train_frames and valid_frames are used for printing.
|
||||||
|
if is_training:
|
||||||
|
params.train_frames = supervision_segments[:, 2].sum().item()
|
||||||
|
else:
|
||||||
|
params.valid_frames = supervision_segments[:, 2].sum().item()
|
||||||
|
|
||||||
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
|
return loss, ctc_loss.detach(), att_loss.detach()
|
||||||
|
except RuntimeError as e:
|
||||||
|
print(f"Runtime error. feature.shape = {feature.shape}, supervisions = {supervisions}")
|
||||||
|
raise e
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Run the validation process. The validation loss
|
||||||
|
is saved in `params.valid_loss`.
|
||||||
|
"""
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
tot_loss = 0.0
|
||||||
|
tot_ctc_loss = 0.0
|
||||||
|
tot_att_loss = 0.0
|
||||||
|
tot_frames = 0.0
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
loss, ctc_loss, att_loss = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
is_training=False,
|
||||||
|
)
|
||||||
|
assert loss.requires_grad is False
|
||||||
|
assert ctc_loss.requires_grad is False
|
||||||
|
assert att_loss.requires_grad is False
|
||||||
|
|
||||||
|
loss_cpu = loss.detach().cpu().item()
|
||||||
|
tot_loss += loss_cpu
|
||||||
|
|
||||||
|
tot_ctc_loss += ctc_loss.detach().cpu().item()
|
||||||
|
tot_att_loss += att_loss.detach().cpu().item()
|
||||||
|
|
||||||
|
tot_frames += params.valid_frames
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
s = torch.tensor(
|
||||||
|
[tot_loss, tot_ctc_loss, tot_att_loss, tot_frames],
|
||||||
|
device=loss.device,
|
||||||
|
)
|
||||||
|
dist.all_reduce(s, op=dist.ReduceOp.SUM)
|
||||||
|
s = s.cpu().tolist()
|
||||||
|
tot_loss = s[0]
|
||||||
|
tot_ctc_loss = s[1]
|
||||||
|
tot_att_loss = s[2]
|
||||||
|
tot_frames = s[3]
|
||||||
|
|
||||||
|
params.valid_loss = tot_loss / tot_frames
|
||||||
|
params.valid_ctc_loss = tot_ctc_loss / tot_frames
|
||||||
|
params.valid_att_loss = tot_att_loss / tot_frames
|
||||||
|
|
||||||
|
if params.valid_loss < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = params.valid_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all frames is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer we are using.
|
||||||
|
graph_compiler:
|
||||||
|
It is used to convert transcripts to FSAs.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
world_size:
|
||||||
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||||
|
"""
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
tot_loss = 0.0 # sum of losses over all batches
|
||||||
|
tot_ctc_loss = 0.0
|
||||||
|
tot_att_loss = 0.0
|
||||||
|
|
||||||
|
tot_frames = 0.0 # sum of frames over all batches
|
||||||
|
params.tot_loss = 0.0
|
||||||
|
params.tot_frames = 0.0
|
||||||
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
loss, ctc_loss, att_loss = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
batch=batch,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
is_training=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||||
|
# in the batch and there is no normalization to it so far.
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
loss_cpu = loss.detach().cpu().item()
|
||||||
|
ctc_loss_cpu = ctc_loss.detach().cpu().item()
|
||||||
|
att_loss_cpu = att_loss.detach().cpu().item()
|
||||||
|
|
||||||
|
tot_frames += params.train_frames
|
||||||
|
tot_loss += loss_cpu
|
||||||
|
tot_ctc_loss += ctc_loss_cpu
|
||||||
|
tot_att_loss += att_loss_cpu
|
||||||
|
|
||||||
|
params.tot_frames += params.train_frames
|
||||||
|
params.tot_loss += loss_cpu
|
||||||
|
|
||||||
|
tot_avg_loss = tot_loss / tot_frames
|
||||||
|
tot_avg_ctc_loss = tot_ctc_loss / tot_frames
|
||||||
|
tot_avg_att_loss = tot_att_loss / tot_frames
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
||||||
|
f"batch avg ctc loss {ctc_loss_cpu/params.train_frames:.4f}, "
|
||||||
|
f"batch avg att loss {att_loss_cpu/params.train_frames:.4f}, "
|
||||||
|
f"batch avg loss {loss_cpu/params.train_frames:.4f}, "
|
||||||
|
f"total avg ctc loss: {tot_avg_ctc_loss:.4f}, "
|
||||||
|
f"total avg att loss: {tot_avg_att_loss:.4f}, "
|
||||||
|
f"total avg loss: {tot_avg_loss:.4f}, "
|
||||||
|
f"batch size: {batch_size}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/current_ctc_loss",
|
||||||
|
ctc_loss_cpu / params.train_frames,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/current_att_loss",
|
||||||
|
att_loss_cpu / params.train_frames,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/current_loss",
|
||||||
|
loss_cpu / params.train_frames,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/tot_avg_ctc_loss",
|
||||||
|
tot_avg_ctc_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/tot_avg_att_loss",
|
||||||
|
tot_avg_att_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/tot_avg_loss",
|
||||||
|
tot_avg_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
if batch_idx > 0 and batch_idx % params.reset_interval == 0:
|
||||||
|
tot_loss = 0.0 # sum of losses over all batches
|
||||||
|
tot_ctc_loss = 0.0
|
||||||
|
tot_att_loss = 0.0
|
||||||
|
|
||||||
|
tot_frames = 0.0 # sum of frames over all batches
|
||||||
|
|
||||||
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
|
compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, "
|
||||||
|
f"valid ctc loss {params.valid_ctc_loss:.4f},"
|
||||||
|
f"valid att loss {params.valid_att_loss:.4f},"
|
||||||
|
f"valid loss {params.valid_loss:.4f},"
|
||||||
|
f" best valid loss: {params.best_valid_loss:.4f} "
|
||||||
|
f"best valid epoch: {params.best_valid_epoch}"
|
||||||
|
)
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/valid_ctc_loss",
|
||||||
|
params.valid_ctc_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/valid_att_loss",
|
||||||
|
params.valid_att_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/valid_loss",
|
||||||
|
params.valid_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
|
||||||
|
params.train_loss = params.tot_loss / params.tot_frames
|
||||||
|
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
rank:
|
||||||
|
It is a value between 0 and `world_size-1`, which is
|
||||||
|
passed automatically by `mp.spawn()` in :func:`main`.
|
||||||
|
The node with rank 0 is responsible for saving checkpoint.
|
||||||
|
world_size:
|
||||||
|
Number of GPUs for DDP training.
|
||||||
|
args:
|
||||||
|
The return value of get_parser().parse_args()
|
||||||
|
"""
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
fix_random_seed(42)
|
||||||
|
if world_size > 1:
|
||||||
|
setup_dist(rank, world_size, params.master_port)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info("Training started")
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
num_classes = max_token_id + 1 # +1 for the blank
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
|
||||||
|
graph_compiler = BpeCtcTrainingGraphCompiler(
|
||||||
|
params.lang_dir,
|
||||||
|
device=device,
|
||||||
|
sos_token="<sos/eos>",
|
||||||
|
eos_token="<sos/eos>",
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = Conformer(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
nhead=params.nhead,
|
||||||
|
d_model=params.attention_dim,
|
||||||
|
num_classes=num_classes,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
num_decoder_layers=params.num_decoder_layers,
|
||||||
|
vgg_frontend=False,
|
||||||
|
is_espnet_structure=params.is_espnet_structure,
|
||||||
|
mmi_loss=params.mmi_loss,
|
||||||
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||||
|
)
|
||||||
|
|
||||||
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
if world_size > 1:
|
||||||
|
model = DDP(model, device_ids=[rank])
|
||||||
|
|
||||||
|
# Remember: with Gloam, you need to cal set_epoch() on every epoch.
|
||||||
|
optimizer = Gloam(
|
||||||
|
model.parameters(),
|
||||||
|
warm_step=params.warm_step,
|
||||||
|
max_lrate=params.max_lrate,
|
||||||
|
first_decay_epoch=params.first_decay_epoch,
|
||||||
|
decay_per_epoch=params.decay_per_epoch,
|
||||||
|
)
|
||||||
|
|
||||||
|
if checkpoints:
|
||||||
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||||
|
|
||||||
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
train_dl = librispeech.train_dataloaders()
|
||||||
|
valid_dl = librispeech.valid_dataloaders()
|
||||||
|
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs):
|
||||||
|
optimizer.set_epoch(epoch) # specific to Gloam
|
||||||
|
train_dl.sampler.set_epoch(epoch)
|
||||||
|
|
||||||
|
cur_lr = optimizer._rate
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||||
|
)
|
||||||
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
|
if rank == 0:
|
||||||
|
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
graph_compiler=graph_compiler,
|
||||||
|
train_dl=train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_checkpoint(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
cleanup_dist()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
world_size = args.world_size
|
||||||
|
assert world_size >= 1
|
||||||
|
if world_size > 1:
|
||||||
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||||
|
else:
|
||||||
|
run(rank=0, world_size=1, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1005
egs/librispeech/ASR/conformer_ctc_bn/transformer.py
Normal file
1005
egs/librispeech/ASR/conformer_ctc_bn/transformer.py
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user