diff --git a/egs/tokenizer/CODEC/encodec/train.py b/egs/tokenizer/CODEC/encodec/train.py index ccc4c4cb3..f74be7d4c 100755 --- a/egs/tokenizer/CODEC/encodec/train.py +++ b/egs/tokenizer/CODEC/encodec/train.py @@ -170,6 +170,12 @@ def get_parser(): help="The chunk size of the biomarker (in second).", ) + parser.add_argument( + "--n-q", + type=int, + help="The number of quantization levels.", + ) + return parser @@ -300,7 +306,7 @@ def get_model(params: AttributeDict) -> nn.Module: generator_params = { "generator_n_filters": 32, "dimension": 512, - "ratios": [8, 5, 4, 2], + "ratios": [8, 6, 4, 2], "target_bandwidths": [1.5, 3, 6, 12, 24], "bins": 1024, } @@ -315,6 +321,9 @@ def get_model(params: AttributeDict) -> nn.Module: "target_bw": 6, } + logging.info(f"Generator params: {generator_params}") + logging.info(f"Discriminator params: {discriminator_params}") + logging.info(f"Inference params: {inference_params}") params.update(generator_params) params.update(discriminator_params) params.update(inference_params) @@ -324,7 +333,7 @@ def get_model(params: AttributeDict) -> nn.Module: 1000 * params.target_bandwidths[-1] // (math.ceil(params.sampling_rate / hop_length) * 10) - ) + ) if params.n_q is None else params.n_q encoder = SEANetEncoder( n_filters=params.generator_n_filters,