mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-13 20:12:24 +00:00
Fix decode, remove unwanted files
This commit is contained in:
parent
2027b55233
commit
4426715bc8
@ -1 +0,0 @@
|
||||
../tdnn_lstm_ctc/asr_datamodule.py
|
286
egs/fisher_swbd/ASR/conformer_ctc/asr_datamodule.py
Normal file
286
egs/fisher_swbd/ASR/conformer_ctc/asr_datamodule.py
Normal file
@ -0,0 +1,286 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||
from lhotse.dataset import (
|
||||
BucketingSampler,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PerturbSpeed,
|
||||
PrecomputedFeatures,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class Resample16kHz:
|
||||
def __call__(self, cuts: CutSet) -> CutSet:
|
||||
return cuts.resample(16000).with_recording_path_prefix('download')
|
||||
|
||||
|
||||
class AsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/manifests"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the BucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=8,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
def train_dataloaders(self, cuts_train: CutSet) -> DataLoader:
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(
|
||||
self.args.manifest_dir / "musan_cuts.jsonl.gz"
|
||||
)
|
||||
|
||||
input_strategy = PrecomputedFeatures()
|
||||
if self.args.on_the_fly_feats:
|
||||
input_strategy = OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80, sampling_rate=16000)),
|
||||
)
|
||||
|
||||
train = K2SpeechRecognitionDataset(
|
||||
input_strategy=input_strategy,
|
||||
cut_transforms=[
|
||||
PerturbSpeed(factors=[0.9, 1.1], p=2 / 3, preserve_id=True),
|
||||
Resample16kHz(),
|
||||
CutMix(
|
||||
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
||||
),
|
||||
],
|
||||
input_transforms=[
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=2,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
],
|
||||
return_cuts=True,
|
||||
)
|
||||
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=True,
|
||||
)
|
||||
train_sampler.filter(lambda cut: 1.0 <= cut.duration <= 15.0)
|
||||
|
||||
logging.info("About to create train dataloader")
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
input_strategy = PrecomputedFeatures()
|
||||
if self.args.on_the_fly_feats:
|
||||
input_strategy = OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80, sampling_rate=16000)),
|
||||
)
|
||||
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
return_cuts=True,
|
||||
input_strategy=input_strategy,
|
||||
cut_transforms=[
|
||||
Resample16kHz(),
|
||||
],
|
||||
)
|
||||
|
||||
valid_sampler = BucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
|
||||
input_strategy = PrecomputedFeatures()
|
||||
if self.args.on_the_fly_feats:
|
||||
input_strategy = OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80, sampling_rate=16000)),
|
||||
)
|
||||
|
||||
test = K2SpeechRecognitionDataset(
|
||||
return_cuts=True,
|
||||
input_strategy=input_strategy,
|
||||
cut_transforms=[
|
||||
Resample16kHz(),
|
||||
],
|
||||
)
|
||||
sampler = BucketingSampler(
|
||||
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train Fisher + SWBD cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir
|
||||
/ "train_utterances_fisher-swbd_cuts.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev Fisher + SWBD cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "dev_utterances_fisher-swbd_cuts.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> CutSet:
|
||||
logging.info("About to get test-clean cuts")
|
||||
raise NotImplemented
|
||||
|
||||
|
||||
def test():
|
||||
parser = argparse.ArgumentParser()
|
||||
AsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
adm = AsrDataModule(args)
|
||||
|
||||
cuts = adm.train_cuts()
|
||||
dl = adm.train_dataloaders(cuts)
|
||||
for i, batch in tqdm(enumerate(dl)):
|
||||
if i == 100:
|
||||
break
|
||||
|
||||
cuts = adm.dev_cuts()
|
||||
dl = adm.valid_dataloaders(cuts)
|
||||
for i, batch in tqdm(enumerate(dl)):
|
||||
if i == 100:
|
||||
break
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test()
|
@ -26,7 +26,7 @@ import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from asr_datamodule import AsrDataModule
|
||||
from conformer import Conformer
|
||||
|
||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||
@ -534,7 +534,7 @@ def save_results(
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
AsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
@ -662,16 +662,13 @@ def main():
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
datamodule = AsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
fisher_swbd_dev_cuts = datamodule.dev_cuts()
|
||||
fisher_swbd_dev_dataloader = datamodule.test_dataloaders(fisher_swbd_dev_cuts)
|
||||
|
||||
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_dl = [test_clean_dl, test_other_dl]
|
||||
test_sets = ["dev-fisher-swbd"]
|
||||
test_dl = [fisher_swbd_dev_dataloader]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
|
@ -1,100 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the LibriSpeech dataset.
|
||||
It looks for manifests in the directory data/manifests.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def compute_fbank_librispeech():
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
num_mel_bins = 80
|
||||
|
||||
dataset_parts = (
|
||||
"dev-clean",
|
||||
"dev-other",
|
||||
"test-clean",
|
||||
"test-other",
|
||||
"train-clean-100",
|
||||
"train-clean-360",
|
||||
"train-other-500",
|
||||
)
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=dataset_parts, output_dir=src_dir
|
||||
)
|
||||
assert manifests is not None
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for partition, m in manifests.items():
|
||||
if (output_dir / f"cuts_{partition}.json.gz").is_file():
|
||||
logging.info(f"{partition} already exists - skipping.")
|
||||
continue
|
||||
logging.info(f"Processing {partition}")
|
||||
cut_set = CutSet.from_manifests(
|
||||
recordings=m["recordings"],
|
||||
supervisions=m["supervisions"],
|
||||
)
|
||||
if "train" in partition:
|
||||
cut_set = (
|
||||
cut_set
|
||||
+ cut_set.perturb_speed(0.9)
|
||||
+ cut_set.perturb_speed(1.1)
|
||||
)
|
||||
cut_set = cut_set.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/feats_{partition}",
|
||||
# when an executor is specified, make more partitions
|
||||
num_jobs=num_jobs if ex is None else 80,
|
||||
executor=ex,
|
||||
storage_type=LilcomHdf5Writer,
|
||||
)
|
||||
cut_set.to_json(output_dir / f"cuts_{partition}.json.gz")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
compute_fbank_librispeech()
|
@ -1,97 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the musan dataset.
|
||||
It looks for manifests in the directory data/manifests.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer, combine
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def compute_fbank_musan():
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank")
|
||||
num_jobs = min(15, os.cpu_count())
|
||||
num_mel_bins = 80
|
||||
|
||||
dataset_parts = (
|
||||
"music",
|
||||
"speech",
|
||||
"noise",
|
||||
)
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=dataset_parts, output_dir=src_dir
|
||||
)
|
||||
assert manifests is not None
|
||||
|
||||
musan_cuts_path = output_dir / "cuts_musan.json.gz"
|
||||
|
||||
if musan_cuts_path.is_file():
|
||||
logging.info(f"{musan_cuts_path} already exists - skipping")
|
||||
return
|
||||
|
||||
logging.info("Extracting features for Musan")
|
||||
|
||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
||||
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
# create chunks of Musan with duration 5 - 10 seconds
|
||||
musan_cuts = (
|
||||
CutSet.from_manifests(
|
||||
recordings=combine(
|
||||
part["recordings"] for part in manifests.values()
|
||||
)
|
||||
)
|
||||
.cut_into_windows(10.0)
|
||||
.filter(lambda c: c.duration > 5)
|
||||
.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/feats_musan",
|
||||
num_jobs=num_jobs if ex is None else 80,
|
||||
executor=ex,
|
||||
storage_type=LilcomHdf5Writer,
|
||||
)
|
||||
)
|
||||
musan_cuts.to_json(musan_cuts_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
compute_fbank_musan()
|
@ -1,107 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
"""
|
||||
Convert a transcript file containing words to a corpus file containing tokens
|
||||
for LM training with the help of a lexicon.
|
||||
|
||||
If the lexicon contains phones, the resulting LM will be a phone LM; If the
|
||||
lexicon contains word pieces, the resulting LM will be a word piece LM.
|
||||
|
||||
If a word has multiple pronunciations, the one that appears first in the lexicon
|
||||
is kept; others are removed.
|
||||
|
||||
If the input transcript is:
|
||||
|
||||
hello zoo world hello
|
||||
world zoo
|
||||
foo zoo world hellO
|
||||
|
||||
and if the lexicon is
|
||||
|
||||
<UNK> SPN
|
||||
hello h e l l o 2
|
||||
hello h e l l o
|
||||
world w o r l d
|
||||
zoo z o o
|
||||
|
||||
Then the output is
|
||||
|
||||
h e l l o 2 z o o w o r l d h e l l o 2
|
||||
w o r l d z o o
|
||||
SPN z o o w o r l d SPN
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
|
||||
from generate_unique_lexicon import filter_multiple_pronunications
|
||||
|
||||
from icefall.lexicon import read_lexicon
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--transcript",
|
||||
type=str,
|
||||
help="The input transcript file."
|
||||
"We assume that the transcript file consists of "
|
||||
"lines. Each line consists of space separated words.",
|
||||
)
|
||||
parser.add_argument("--lexicon", type=str, help="The input lexicon file.")
|
||||
parser.add_argument(
|
||||
"--oov", type=str, default="<UNK>", help="The OOV word."
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def process_line(
|
||||
lexicon: Dict[str, List[str]], line: str, oov_token: str
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
lexicon:
|
||||
A dict containing pronunciations. Its keys are words and values
|
||||
are pronunciations (i.e., tokens).
|
||||
line:
|
||||
A line of transcript consisting of space(s) separated words.
|
||||
oov_token:
|
||||
The pronunciation of the oov word if a word in `line` is not present
|
||||
in the lexicon.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
s = ""
|
||||
words = line.strip().split()
|
||||
for i, w in enumerate(words):
|
||||
tokens = lexicon.get(w, oov_token)
|
||||
s += " ".join(tokens)
|
||||
s += " "
|
||||
print(s.strip())
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
assert Path(args.lexicon).is_file()
|
||||
assert Path(args.transcript).is_file()
|
||||
assert len(args.oov) > 0
|
||||
|
||||
# Only the first pronunciation of a word is kept
|
||||
lexicon = filter_multiple_pronunications(read_lexicon(args.lexicon))
|
||||
|
||||
lexicon = dict(lexicon)
|
||||
|
||||
assert args.oov in lexicon
|
||||
|
||||
oov_token = lexicon[args.oov]
|
||||
|
||||
with open(args.transcript) as f:
|
||||
for line in f:
|
||||
process_line(lexicon=lexicon, line=line, oov_token=oov_token)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,215 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This file displays duration statistics of utterances in a manifest.
|
||||
You can use the displayed value to choose minimum/maximum duration
|
||||
to remove short and long utterances during the training.
|
||||
|
||||
See the function `remove_short_and_long_utt()` in transducer/train.py
|
||||
for usage.
|
||||
"""
|
||||
|
||||
|
||||
from lhotse import load_manifest
|
||||
|
||||
|
||||
def main():
|
||||
path = "./data/fbank/cuts_train-clean-100.json.gz"
|
||||
path = "./data/fbank/cuts_train-clean-360.json.gz"
|
||||
path = "./data/fbank/cuts_train-other-500.json.gz"
|
||||
path = "./data/fbank/cuts_dev-clean.json.gz"
|
||||
path = "./data/fbank/cuts_dev-other.json.gz"
|
||||
path = "./data/fbank/cuts_test-clean.json.gz"
|
||||
path = "./data/fbank/cuts_test-other.json.gz"
|
||||
|
||||
cuts = load_manifest(path)
|
||||
cuts.describe()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
"""
|
||||
## train-clean-100
|
||||
Cuts count: 85617
|
||||
Total duration (hours): 303.8
|
||||
Speech duration (hours): 303.8 (100.0%)
|
||||
***
|
||||
Duration statistics (seconds):
|
||||
mean 12.8
|
||||
std 3.8
|
||||
min 1.3
|
||||
0.1% 1.9
|
||||
0.5% 2.2
|
||||
1% 2.5
|
||||
5% 4.2
|
||||
10% 6.4
|
||||
25% 11.4
|
||||
50% 13.8
|
||||
75% 15.3
|
||||
90% 16.7
|
||||
95% 17.3
|
||||
99% 18.1
|
||||
99.5% 18.4
|
||||
99.9% 18.8
|
||||
max 27.2
|
||||
|
||||
## train-clean-360
|
||||
Cuts count: 312042
|
||||
Total duration (hours): 1098.2
|
||||
Speech duration (hours): 1098.2 (100.0%)
|
||||
***
|
||||
Duration statistics (seconds):
|
||||
mean 12.7
|
||||
std 3.8
|
||||
min 1.0
|
||||
0.1% 1.8
|
||||
0.5% 2.2
|
||||
1% 2.5
|
||||
5% 4.2
|
||||
10% 6.2
|
||||
25% 11.2
|
||||
50% 13.7
|
||||
75% 15.3
|
||||
90% 16.6
|
||||
95% 17.3
|
||||
99% 18.1
|
||||
99.5% 18.4
|
||||
99.9% 18.8
|
||||
max 33.0
|
||||
|
||||
## train-other 500
|
||||
Cuts count: 446064
|
||||
Total duration (hours): 1500.6
|
||||
Speech duration (hours): 1500.6 (100.0%)
|
||||
***
|
||||
Duration statistics (seconds):
|
||||
mean 12.1
|
||||
std 4.2
|
||||
min 0.8
|
||||
0.1% 1.7
|
||||
0.5% 2.1
|
||||
1% 2.3
|
||||
5% 3.5
|
||||
10% 5.0
|
||||
25% 9.8
|
||||
50% 13.4
|
||||
75% 15.1
|
||||
90% 16.5
|
||||
95% 17.2
|
||||
99% 18.1
|
||||
99.5% 18.4
|
||||
99.9% 18.9
|
||||
max 31.0
|
||||
|
||||
## dev-clean
|
||||
Cuts count: 2703
|
||||
Total duration (hours): 5.4
|
||||
Speech duration (hours): 5.4 (100.0%)
|
||||
***
|
||||
Duration statistics (seconds):
|
||||
mean 7.2
|
||||
std 4.7
|
||||
min 1.4
|
||||
0.1% 1.6
|
||||
0.5% 1.8
|
||||
1% 1.9
|
||||
5% 2.4
|
||||
10% 2.7
|
||||
25% 3.8
|
||||
50% 5.9
|
||||
75% 9.3
|
||||
90% 13.3
|
||||
95% 16.4
|
||||
99% 23.8
|
||||
99.5% 28.5
|
||||
99.9% 32.3
|
||||
max 32.6
|
||||
|
||||
## dev-other
|
||||
Cuts count: 2864
|
||||
Total duration (hours): 5.1
|
||||
Speech duration (hours): 5.1 (100.0%)
|
||||
***
|
||||
Duration statistics (seconds):
|
||||
mean 6.4
|
||||
std 4.3
|
||||
min 1.1
|
||||
0.1% 1.3
|
||||
0.5% 1.7
|
||||
1% 1.8
|
||||
5% 2.2
|
||||
10% 2.6
|
||||
25% 3.5
|
||||
50% 5.3
|
||||
75% 7.9
|
||||
90% 12.0
|
||||
95% 15.0
|
||||
99% 22.2
|
||||
99.5% 27.1
|
||||
99.9% 32.4
|
||||
max 35.2
|
||||
|
||||
## test-clean
|
||||
Cuts count: 2620
|
||||
Total duration (hours): 5.4
|
||||
Speech duration (hours): 5.4 (100.0%)
|
||||
***
|
||||
Duration statistics (seconds):
|
||||
mean 7.4
|
||||
std 5.2
|
||||
min 1.3
|
||||
0.1% 1.6
|
||||
0.5% 1.8
|
||||
1% 2.0
|
||||
5% 2.3
|
||||
10% 2.7
|
||||
25% 3.7
|
||||
50% 5.8
|
||||
75% 9.6
|
||||
90% 14.6
|
||||
95% 17.8
|
||||
99% 25.5
|
||||
99.5% 28.4
|
||||
99.9% 32.8
|
||||
max 35.0
|
||||
|
||||
## test-other
|
||||
Cuts count: 2939
|
||||
Total duration (hours): 5.3
|
||||
Speech duration (hours): 5.3 (100.0%)
|
||||
***
|
||||
Duration statistics (seconds):
|
||||
mean 6.5
|
||||
std 4.4
|
||||
min 1.2
|
||||
0.1% 1.5
|
||||
0.5% 1.8
|
||||
1% 1.9
|
||||
5% 2.3
|
||||
10% 2.6
|
||||
25% 3.4
|
||||
50% 5.2
|
||||
75% 8.2
|
||||
90% 12.6
|
||||
95% 15.8
|
||||
99% 21.4
|
||||
99.5% 23.8
|
||||
99.9% 33.5
|
||||
max 34.5
|
||||
"""
|
@ -1,97 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file downloads the following LibriSpeech LM files:
|
||||
|
||||
- 3-gram.pruned.1e-7.arpa.gz
|
||||
- 4-gram.arpa.gz
|
||||
- librispeech-vocab.txt
|
||||
- librispeech-lexicon.txt
|
||||
|
||||
from http://www.openslr.org/resources/11
|
||||
and save them in the user provided directory.
|
||||
|
||||
Files are not re-downloaded if they already exist.
|
||||
|
||||
Usage:
|
||||
./local/download_lm.py --out-dir ./download/lm
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import gzip
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
from lhotse.utils import urlretrieve_progress
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--out-dir", type=str, help="Output directory.")
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main(out_dir: str):
|
||||
url = "http://www.openslr.org/resources/11"
|
||||
out_dir = Path(out_dir)
|
||||
|
||||
files_to_download = (
|
||||
"3-gram.pruned.1e-7.arpa.gz",
|
||||
"4-gram.arpa.gz",
|
||||
"librispeech-vocab.txt",
|
||||
"librispeech-lexicon.txt",
|
||||
)
|
||||
|
||||
for f in tqdm(files_to_download, desc="Downloading LibriSpeech LM files"):
|
||||
filename = out_dir / f
|
||||
if filename.is_file() is False:
|
||||
urlretrieve_progress(
|
||||
f"{url}/{f}",
|
||||
filename=filename,
|
||||
desc=f"Downloading {filename}",
|
||||
)
|
||||
else:
|
||||
logging.info(f"{filename} already exists - skipping")
|
||||
|
||||
if ".gz" in str(filename):
|
||||
unzipped = Path(os.path.splitext(filename)[0])
|
||||
if unzipped.is_file() is False:
|
||||
with gzip.open(filename, "rb") as f_in:
|
||||
with open(unzipped, "wb") as f_out:
|
||||
shutil.copyfileobj(f_in, f_out)
|
||||
else:
|
||||
logging.info(f"{unzipped} already exist - skipping")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
args = get_args()
|
||||
logging.info(f"out_dir: {args.out_dir}")
|
||||
|
||||
main(out_dir=args.out_dir)
|
@ -1,413 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This script takes as input a lexicon file "data/lang_phone/lexicon.txt"
|
||||
consisting of words and tokens (i.e., phones) and does the following:
|
||||
|
||||
1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt
|
||||
|
||||
2. Generate tokens.txt, the token table mapping a token to a unique integer.
|
||||
|
||||
3. Generate words.txt, the word table mapping a word to a unique integer.
|
||||
|
||||
4. Generate L.pt, in k2 format. It can be loaded by
|
||||
|
||||
d = torch.load("L.pt")
|
||||
lexicon = k2.Fsa.from_dict(d)
|
||||
|
||||
5. Generate L_disambig.pt, in k2 format.
|
||||
"""
|
||||
import argparse
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
|
||||
from icefall.lexicon import read_lexicon, write_lexicon
|
||||
from icefall.utils import str2bool
|
||||
|
||||
Lexicon = List[Tuple[str, List[str]]]
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
It should contain a file lexicon.txt.
|
||||
Generated files by this script are saved into this directory.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--debug",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True for debugging, which will generate
|
||||
a visualization of the lexicon FST.
|
||||
|
||||
Caution: If your lexicon contains hundreds of thousands
|
||||
of lines, please set it to False!
|
||||
""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
|
||||
"""Write a symbol to ID mapping to a file.
|
||||
|
||||
Note:
|
||||
No need to implement `read_mapping` as it can be done
|
||||
through :func:`k2.SymbolTable.from_file`.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
Filename to save the mapping.
|
||||
sym2id:
|
||||
A dict mapping symbols to IDs.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
with open(filename, "w", encoding="utf-8") as f:
|
||||
for sym, i in sym2id.items():
|
||||
f.write(f"{sym} {i}\n")
|
||||
|
||||
|
||||
def get_tokens(lexicon: Lexicon) -> List[str]:
|
||||
"""Get tokens from a lexicon.
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
It is the return value of :func:`read_lexicon`.
|
||||
Returns:
|
||||
Return a list of unique tokens.
|
||||
"""
|
||||
ans = set()
|
||||
for _, tokens in lexicon:
|
||||
ans.update(tokens)
|
||||
sorted_ans = sorted(list(ans))
|
||||
return sorted_ans
|
||||
|
||||
|
||||
def get_words(lexicon: Lexicon) -> List[str]:
|
||||
"""Get words from a lexicon.
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
It is the return value of :func:`read_lexicon`.
|
||||
Returns:
|
||||
Return a list of unique words.
|
||||
"""
|
||||
ans = set()
|
||||
for word, _ in lexicon:
|
||||
ans.add(word)
|
||||
sorted_ans = sorted(list(ans))
|
||||
return sorted_ans
|
||||
|
||||
|
||||
def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
|
||||
"""It adds pseudo-token disambiguation symbols #1, #2 and so on
|
||||
at the ends of tokens to ensure that all pronunciations are different,
|
||||
and that none is a prefix of another.
|
||||
|
||||
See also add_lex_disambig.pl from kaldi.
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
It is returned by :func:`read_lexicon`.
|
||||
Returns:
|
||||
Return a tuple with two elements:
|
||||
|
||||
- The output lexicon with disambiguation symbols
|
||||
- The ID of the max disambiguation symbol that appears
|
||||
in the lexicon
|
||||
"""
|
||||
|
||||
# (1) Work out the count of each token-sequence in the
|
||||
# lexicon.
|
||||
count = defaultdict(int)
|
||||
for _, tokens in lexicon:
|
||||
count[" ".join(tokens)] += 1
|
||||
|
||||
# (2) For each left sub-sequence of each token-sequence, note down
|
||||
# that it exists (for identifying prefixes of longer strings).
|
||||
issubseq = defaultdict(int)
|
||||
for _, tokens in lexicon:
|
||||
tokens = tokens.copy()
|
||||
tokens.pop()
|
||||
while tokens:
|
||||
issubseq[" ".join(tokens)] = 1
|
||||
tokens.pop()
|
||||
|
||||
# (3) For each entry in the lexicon:
|
||||
# if the token sequence is unique and is not a
|
||||
# prefix of another word, no disambig symbol.
|
||||
# Else output #1, or #2, #3, ... if the same token-seq
|
||||
# has already been assigned a disambig symbol.
|
||||
ans = []
|
||||
|
||||
# We start with #1 since #0 has its own purpose
|
||||
first_allowed_disambig = 1
|
||||
max_disambig = first_allowed_disambig - 1
|
||||
last_used_disambig_symbol_of = defaultdict(int)
|
||||
|
||||
for word, tokens in lexicon:
|
||||
tokenseq = " ".join(tokens)
|
||||
assert tokenseq != ""
|
||||
if issubseq[tokenseq] == 0 and count[tokenseq] == 1:
|
||||
ans.append((word, tokens))
|
||||
continue
|
||||
|
||||
cur_disambig = last_used_disambig_symbol_of[tokenseq]
|
||||
if cur_disambig == 0:
|
||||
cur_disambig = first_allowed_disambig
|
||||
else:
|
||||
cur_disambig += 1
|
||||
|
||||
if cur_disambig > max_disambig:
|
||||
max_disambig = cur_disambig
|
||||
last_used_disambig_symbol_of[tokenseq] = cur_disambig
|
||||
tokenseq += f" #{cur_disambig}"
|
||||
ans.append((word, tokenseq.split()))
|
||||
return ans, max_disambig
|
||||
|
||||
|
||||
def generate_id_map(symbols: List[str]) -> Dict[str, int]:
|
||||
"""Generate ID maps, i.e., map a symbol to a unique ID.
|
||||
|
||||
Args:
|
||||
symbols:
|
||||
A list of unique symbols.
|
||||
Returns:
|
||||
A dict containing the mapping between symbols and IDs.
|
||||
"""
|
||||
return {sym: i for i, sym in enumerate(symbols)}
|
||||
|
||||
|
||||
def add_self_loops(
|
||||
arcs: List[List[Any]], disambig_token: int, disambig_word: int
|
||||
) -> List[List[Any]]:
|
||||
"""Adds self-loops to states of an FST to propagate disambiguation symbols
|
||||
through it. They are added on each state with non-epsilon output symbols
|
||||
on at least one arc out of the state.
|
||||
|
||||
See also fstaddselfloops.pl from Kaldi. One difference is that
|
||||
Kaldi uses OpenFst style FSTs and it has multiple final states.
|
||||
This function uses k2 style FSTs and it does not need to add self-loops
|
||||
to the final state.
|
||||
|
||||
The input label of a self-loop is `disambig_token`, while the output
|
||||
label is `disambig_word`.
|
||||
|
||||
Args:
|
||||
arcs:
|
||||
A list-of-list. The sublist contains
|
||||
`[src_state, dest_state, label, aux_label, score]`
|
||||
disambig_token:
|
||||
It is the token ID of the symbol `#0`.
|
||||
disambig_word:
|
||||
It is the word ID of the symbol `#0`.
|
||||
|
||||
Return:
|
||||
Return new `arcs` containing self-loops.
|
||||
"""
|
||||
states_needs_self_loops = set()
|
||||
for arc in arcs:
|
||||
src, dst, ilabel, olabel, score = arc
|
||||
if olabel != 0:
|
||||
states_needs_self_loops.add(src)
|
||||
|
||||
ans = []
|
||||
for s in states_needs_self_loops:
|
||||
ans.append([s, s, disambig_token, disambig_word, 0])
|
||||
|
||||
return arcs + ans
|
||||
|
||||
|
||||
def lexicon_to_fst(
|
||||
lexicon: Lexicon,
|
||||
token2id: Dict[str, int],
|
||||
word2id: Dict[str, int],
|
||||
sil_token: str = "SIL",
|
||||
sil_prob: float = 0.5,
|
||||
need_self_loops: bool = False,
|
||||
) -> k2.Fsa:
|
||||
"""Convert a lexicon to an FST (in k2 format) with optional silence at
|
||||
the beginning and end of each word.
|
||||
|
||||
Args:
|
||||
lexicon:
|
||||
The input lexicon. See also :func:`read_lexicon`
|
||||
token2id:
|
||||
A dict mapping tokens to IDs.
|
||||
word2id:
|
||||
A dict mapping words to IDs.
|
||||
sil_token:
|
||||
The silence token.
|
||||
sil_prob:
|
||||
The probability for adding a silence at the beginning and end
|
||||
of the word.
|
||||
need_self_loops:
|
||||
If True, add self-loop to states with non-epsilon output symbols
|
||||
on at least one arc out of the state. The input label for this
|
||||
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||
Returns:
|
||||
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||
"""
|
||||
assert sil_prob > 0.0 and sil_prob < 1.0
|
||||
# CAUTION: we use score, i.e, negative cost.
|
||||
sil_score = math.log(sil_prob)
|
||||
no_sil_score = math.log(1.0 - sil_prob)
|
||||
|
||||
start_state = 0
|
||||
loop_state = 1 # words enter and leave from here
|
||||
sil_state = 2 # words terminate here when followed by silence; this state
|
||||
# has a silence transition to loop_state.
|
||||
next_state = 3 # the next un-allocated state, will be incremented as we go.
|
||||
arcs = []
|
||||
|
||||
assert token2id["<eps>"] == 0
|
||||
assert word2id["<eps>"] == 0
|
||||
|
||||
eps = 0
|
||||
|
||||
sil_token = token2id[sil_token]
|
||||
|
||||
arcs.append([start_state, loop_state, eps, eps, no_sil_score])
|
||||
arcs.append([start_state, sil_state, eps, eps, sil_score])
|
||||
arcs.append([sil_state, loop_state, sil_token, eps, 0])
|
||||
|
||||
for word, tokens in lexicon:
|
||||
assert len(tokens) > 0, f"{word} has no pronunciations"
|
||||
cur_state = loop_state
|
||||
|
||||
word = word2id[word]
|
||||
tokens = [token2id[i] for i in tokens]
|
||||
|
||||
for i in range(len(tokens) - 1):
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, next_state, tokens[i], w, 0])
|
||||
|
||||
cur_state = next_state
|
||||
next_state += 1
|
||||
|
||||
# now for the last token of this word
|
||||
# It has two out-going arcs, one to the loop state,
|
||||
# the other one to the sil_state.
|
||||
i = len(tokens) - 1
|
||||
w = word if i == 0 else eps
|
||||
arcs.append([cur_state, loop_state, tokens[i], w, no_sil_score])
|
||||
arcs.append([cur_state, sil_state, tokens[i], w, sil_score])
|
||||
|
||||
if need_self_loops:
|
||||
disambig_token = token2id["#0"]
|
||||
disambig_word = word2id["#0"]
|
||||
arcs = add_self_loops(
|
||||
arcs,
|
||||
disambig_token=disambig_token,
|
||||
disambig_word=disambig_word,
|
||||
)
|
||||
|
||||
final_state = next_state
|
||||
arcs.append([loop_state, final_state, -1, -1, 0])
|
||||
arcs.append([final_state])
|
||||
|
||||
arcs = sorted(arcs, key=lambda arc: arc[0])
|
||||
arcs = [[str(i) for i in arc] for arc in arcs]
|
||||
arcs = [" ".join(arc) for arc in arcs]
|
||||
arcs = "\n".join(arcs)
|
||||
|
||||
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
||||
return fsa
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
lang_dir = Path(args.lang_dir)
|
||||
lexicon_filename = lang_dir / "lexicon.txt"
|
||||
sil_token = "SIL"
|
||||
sil_prob = 0.5
|
||||
|
||||
lexicon = read_lexicon(lexicon_filename)
|
||||
tokens = get_tokens(lexicon)
|
||||
words = get_words(lexicon)
|
||||
|
||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||
|
||||
for i in range(max_disambig + 1):
|
||||
disambig = f"#{i}"
|
||||
assert disambig not in tokens
|
||||
tokens.append(f"#{i}")
|
||||
|
||||
assert "<eps>" not in tokens
|
||||
tokens = ["<eps>"] + tokens
|
||||
|
||||
assert "<eps>" not in words
|
||||
assert "#0" not in words
|
||||
assert "<s>" not in words
|
||||
assert "</s>" not in words
|
||||
|
||||
words = ["<eps>"] + words + ["#0", "<s>", "</s>"]
|
||||
|
||||
token2id = generate_id_map(tokens)
|
||||
word2id = generate_id_map(words)
|
||||
|
||||
write_mapping(lang_dir / "tokens.txt", token2id)
|
||||
write_mapping(lang_dir / "words.txt", word2id)
|
||||
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||
|
||||
L = lexicon_to_fst(
|
||||
lexicon,
|
||||
token2id=token2id,
|
||||
word2id=word2id,
|
||||
sil_token=sil_token,
|
||||
sil_prob=sil_prob,
|
||||
)
|
||||
|
||||
L_disambig = lexicon_to_fst(
|
||||
lexicon_disambig,
|
||||
token2id=token2id,
|
||||
word2id=word2id,
|
||||
sil_token=sil_token,
|
||||
sil_prob=sil_prob,
|
||||
need_self_loops=True,
|
||||
)
|
||||
torch.save(L.as_dict(), lang_dir / "L.pt")
|
||||
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
||||
|
||||
if args.debug:
|
||||
labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||
aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||
|
||||
L.labels_sym = labels_sym
|
||||
L.aux_labels_sym = aux_labels_sym
|
||||
L.draw(f"{lang_dir / 'L.svg'}", title="L.pt")
|
||||
|
||||
L_disambig.labels_sym = labels_sym
|
||||
L_disambig.aux_labels_sym = aux_labels_sym
|
||||
L_disambig.draw(f"{lang_dir / 'L_disambig.svg'}", title="L_disambig.pt")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,106 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||
|
||||
import os
|
||||
import tempfile
|
||||
|
||||
import k2
|
||||
from prepare_lang import (
|
||||
add_disambig_symbols,
|
||||
generate_id_map,
|
||||
get_phones,
|
||||
get_words,
|
||||
lexicon_to_fst,
|
||||
read_lexicon,
|
||||
write_lexicon,
|
||||
write_mapping,
|
||||
)
|
||||
|
||||
|
||||
def generate_lexicon_file() -> str:
|
||||
fd, filename = tempfile.mkstemp()
|
||||
os.close(fd)
|
||||
s = """
|
||||
!SIL SIL
|
||||
<SPOKEN_NOISE> SPN
|
||||
<UNK> SPN
|
||||
f f
|
||||
a a
|
||||
foo f o o
|
||||
bar b a r
|
||||
bark b a r k
|
||||
food f o o d
|
||||
food2 f o o d
|
||||
fo f o
|
||||
""".strip()
|
||||
with open(filename, "w") as f:
|
||||
f.write(s)
|
||||
return filename
|
||||
|
||||
|
||||
def test_read_lexicon(filename: str):
|
||||
lexicon = read_lexicon(filename)
|
||||
phones = get_phones(lexicon)
|
||||
words = get_words(lexicon)
|
||||
print(lexicon)
|
||||
print(phones)
|
||||
print(words)
|
||||
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||
print(lexicon_disambig)
|
||||
print("max disambig:", f"#{max_disambig}")
|
||||
|
||||
phones = ["<eps>", "SIL", "SPN"] + phones
|
||||
for i in range(max_disambig + 1):
|
||||
phones.append(f"#{i}")
|
||||
words = ["<eps>"] + words
|
||||
|
||||
phone2id = generate_id_map(phones)
|
||||
word2id = generate_id_map(words)
|
||||
|
||||
print(phone2id)
|
||||
print(word2id)
|
||||
|
||||
write_mapping("phones.txt", phone2id)
|
||||
write_mapping("words.txt", word2id)
|
||||
|
||||
write_lexicon("a.txt", lexicon)
|
||||
write_lexicon("a_disambig.txt", lexicon_disambig)
|
||||
|
||||
fsa = lexicon_to_fst(lexicon, phone2id=phone2id, word2id=word2id)
|
||||
fsa.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
||||
fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||
fsa.draw("L.pdf", title="L")
|
||||
|
||||
fsa_disambig = lexicon_to_fst(
|
||||
lexicon_disambig, phone2id=phone2id, word2id=word2id
|
||||
)
|
||||
fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
|
||||
fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
|
||||
fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
|
||||
|
||||
|
||||
def main():
|
||||
filename = generate_lexicon_file()
|
||||
test_read_lexicon(filename)
|
||||
os.remove(filename)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -135,7 +135,8 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
|
||||
# Shuffle the cuts (pure bash pipes are fast).
|
||||
# We could technically skip this step but this helps ensure
|
||||
# SWBD is not only seen towards the end of training.
|
||||
# SWBD is not only seen towards the end of training
|
||||
# (we concatenated it after Fisher).
|
||||
gunzip -c data/manifests/fisher-swbd_cuts_unshuf.jsonl.gz \
|
||||
| shuf \
|
||||
| gzip -c \
|
||||
@ -163,6 +164,9 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
data/manifests/dev_fisher-swbd_cuts.jsonl.gz \
|
||||
data/manifests/dev_utterances_fisher-swbd_cuts.jsonl.gz
|
||||
|
||||
# Display some statistics about the data.
|
||||
lhotse cut describe data/manifests/train_utterances_fisher-swbd_cuts.jsonl.gz
|
||||
lhotse cut describe data/manifests/dev_utterances_fisher-swbd_cuts.jsonl.gz
|
||||
set +x
|
||||
fi
|
||||
|
||||
@ -204,6 +208,9 @@ if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
echo "#0 ${num_words}" >> $lang_dir/words.txt
|
||||
|
||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||
# We discard SWBD's lexicon and just use g2p_en
|
||||
# It was trained on CMUdict and looks it up before
|
||||
# resorting to an LSTM G2P model.
|
||||
pip install g2p_en
|
||||
./local/prepare_lang_g2pen.py --lang-dir $lang_dir
|
||||
fi
|
||||
|
@ -1,90 +0,0 @@
|
||||
## Train and Decode
|
||||
Commands of data preparation/train/decode steps are almost the same with
|
||||
../conformer_ctc experiment except some options.
|
||||
|
||||
Please read the code and understand following new added options before running this experiment:
|
||||
|
||||
For data preparation:
|
||||
|
||||
Nothing new.
|
||||
|
||||
For streaming_conformer_ctc/train.py:
|
||||
|
||||
--dynamic-chunk-training
|
||||
--short-chunk-proportion
|
||||
|
||||
For streaming_conformer_ctc/streaming_decode.py:
|
||||
|
||||
--chunk-size
|
||||
--tailing-num-frames
|
||||
--simulate-streaming
|
||||
|
||||
## Performence and a trained model.
|
||||
|
||||
The latest results with this streaming code is shown in following table:
|
||||
|
||||
chunk size | wer on test-clean | wer on test-other
|
||||
-- | -- | --
|
||||
full | 3.53 | 8.52
|
||||
40(1.96s) | 3.78 | 9.38
|
||||
32(1.28s) | 3.82 | 9.44
|
||||
24(0.96s) | 3.95 | 9.76
|
||||
16(0.64s) | 4.06 | 9.98
|
||||
8(0.32s) | 4.30 | 10.55
|
||||
4(0.16s) | 5.88 | 12.01
|
||||
|
||||
|
||||
A trained model is also provided.
|
||||
By run
|
||||
```
|
||||
git clone https://huggingface.co/GuoLiyong/streaming_conformer
|
||||
|
||||
# You may want to manually check md5sum values of downloaded files
|
||||
# 8e633bc1de37f5ae57a2694ceee32a93 trained_streaming_conformer.pt
|
||||
# 4c0aeefe26c784ec64873cc9b95420f1 L.pt
|
||||
# d1f91d81005fb8ce4d65953a4a984ee7 Linv.pt
|
||||
# e1c1902feb7b9fc69cd8d26e663c2608 bpe.model
|
||||
# 8617e67159b0ff9118baa54f04db24cc tokens.txt
|
||||
# 72b075ab5e851005cd854e666c82c3bb words.txt
|
||||
```
|
||||
|
||||
If there is any different md5sum values, please run
|
||||
```
|
||||
cd streaming_models
|
||||
git lfs pull
|
||||
```
|
||||
And check md5sum values again.
|
||||
|
||||
Finally, following files will be downloaded:
|
||||
<pre>
|
||||
streaming_models/
|
||||
|-- lang_bpe
|
||||
| |-- L.pt
|
||||
| |-- Linv.pt
|
||||
| |-- bpe.model
|
||||
| |-- tokens.txt
|
||||
| `-- words.txt
|
||||
`-- trained_streaming_conformer.pt
|
||||
</pre>
|
||||
|
||||
|
||||
And run commands you will get the same results of previous table:
|
||||
```
|
||||
trained_models=/path/to/downloaded/streaming_models/
|
||||
for chunk_size in 4 8 16 24 36 40 -1; do
|
||||
./streaming_conformer_ctc/streaming_decode.py \
|
||||
--chunk-size=${chunk_size} \
|
||||
--trained-dir=${trained_models}
|
||||
done
|
||||
```
|
||||
Results of following command is indentical to previous one,
|
||||
but model consumes features chunk_by_chunk, i.e. a streaming way.
|
||||
```
|
||||
trained_models=/path/to/downloaded/streaming_models/
|
||||
for chunk_size in 4 8 16 24 36 40 -1; do
|
||||
./streaming_conformer_ctc/streaming_decode.py \
|
||||
--simulate-streaming=True \
|
||||
--chunk-size=${chunk_size} \
|
||||
--trained-dir=${trained_models}
|
||||
done
|
||||
```
|
@ -1 +0,0 @@
|
||||
../conformer_ctc/asr_datamodule.py
|
File diff suppressed because it is too large
Load Diff
@ -1 +0,0 @@
|
||||
../conformer_ctc/label_smoothing.py
|
@ -1,521 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
# from https://github.com/wenet-e2e/wenet/blob/main/wenet/utils/common.py#L166
|
||||
def remove_duplicates_and_blank(hyp: List[int]) -> List[int]:
|
||||
new_hyp: List[int] = []
|
||||
cur = 0
|
||||
while cur < len(hyp):
|
||||
if hyp[cur] != 0:
|
||||
new_hyp.append(hyp[cur])
|
||||
prev = cur
|
||||
while cur < len(hyp) and hyp[cur] == hyp[prev]:
|
||||
cur += 1
|
||||
return new_hyp
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=34,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--chunk-size",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Frames of right context"
|
||||
"-1 for whole right context, i.e. non-streaming decoding",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tailing-num-frames",
|
||||
type=int,
|
||||
default=20,
|
||||
help="tailing dummy frames padded to the right,"
|
||||
"only used during decoding",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--simulate-streaming",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="simulate chunk by chunk decoding",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="ctc-greedy-search",
|
||||
help="Streaming Decoding method",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--export",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""When enabled, the averaged model is saved to
|
||||
conformer_ctc/exp/pretrained.pt. Note: only model.state_dict() is saved.
|
||||
pretrained.pt contains a dict {"model": model.state_dict()},
|
||||
which can be loaded by `icefall.checkpoint.load_checkpoint()`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=Path,
|
||||
default="streaming_conformer_ctc/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--trained-dir",
|
||||
type=Path,
|
||||
default=None,
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default="data/lang_bpe",
|
||||
help="The lang dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg-models",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Manually select models to average, seperated by comma;"
|
||||
"e.g. 60,62,63,72",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("conformer_ctc/exp"),
|
||||
"lang_dir": Path("data/lang_bpe"),
|
||||
# parameters for conformer
|
||||
"causal": True,
|
||||
"subsampling_factor": 4,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
"feature_dim": 80,
|
||||
"nhead": 8,
|
||||
"attention_dim": 512,
|
||||
"num_decoder_layers": 6,
|
||||
# parameters for decoding
|
||||
"search_beam": 20,
|
||||
"output_beam": 8,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
batch: dict,
|
||||
word_table: k2.SymbolTable,
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
chunk_size: int = -1,
|
||||
simulate_streaming=False,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if no rescoring is used, the key is the string `no_rescore`.
|
||||
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
||||
where `xxx` is the value of `lm_scale`. An example key is
|
||||
`lm_scale_0.7`
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
|
||||
model:
|
||||
The neural model.
|
||||
bpe_model:
|
||||
The BPE model. Used only when params.method is ctc-decoding.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
sos_id:
|
||||
The token ID of the SOS.
|
||||
eos_id:
|
||||
The token ID of the EOS.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
feature = batch["inputs"]
|
||||
device = torch.device("cuda")
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
# Extra dummy tailing frames my reduce deletion error
|
||||
# example WITHOUT padding:
|
||||
# CHAPTER SEVEN ON THE RACES OF MAN
|
||||
# example WITH padding:
|
||||
# CHAPTER SEVEN ON THE RACES OF (MAN->*)
|
||||
tailing_frames = (
|
||||
torch.tensor([-23.0259])
|
||||
.expand([feature.size(0), params.tailing_num_frames, 80])
|
||||
.to(feature.device)
|
||||
)
|
||||
feature = torch.cat([feature, tailing_frames], dim=1)
|
||||
supervisions["num_frames"] += params.tailing_num_frames
|
||||
|
||||
nnet_output, memory, memory_key_padding_mask = model(
|
||||
feature,
|
||||
supervisions,
|
||||
chunk_size=chunk_size,
|
||||
simulate_streaming=simulate_streaming,
|
||||
)
|
||||
|
||||
assert params.method == "ctc-greedy-search"
|
||||
key = "ctc-greedy-search"
|
||||
batch_size = nnet_output.size(0)
|
||||
maxlen = nnet_output.size(1)
|
||||
topk_prob, topk_index = nnet_output.topk(1, dim=2) # (B, maxlen, 1)
|
||||
topk_index = topk_index.view(batch_size, maxlen) # (B, maxlen)
|
||||
topk_index = topk_index.masked_fill_(
|
||||
memory_key_padding_mask, 0
|
||||
) # (B, maxlen)
|
||||
token_ids = [token_id.tolist() for token_id in topk_index]
|
||||
token_ids = [
|
||||
remove_duplicates_and_blank(token_id) for token_id in token_ids
|
||||
]
|
||||
hyps = bpe_model.decode(token_ids)
|
||||
hyps = [s.split() for s in hyps]
|
||||
return {key: hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
word_table: k2.SymbolTable,
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
chunk_size: int = -1,
|
||||
simulate_streaming=False,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
bpe_model:
|
||||
The BPE model. Used only when params.method is ctc-decoding.
|
||||
word_table:
|
||||
It is the word symbol table.
|
||||
sos_id:
|
||||
The token ID for SOS.
|
||||
eos_id:
|
||||
The token ID for EOS.
|
||||
chunk_size:
|
||||
right context to simulate streaming decoding
|
||||
-1 for whole right context, i.e. non-stream decoding
|
||||
Returns:
|
||||
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
||||
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
results = []
|
||||
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
bpe_model=bpe_model,
|
||||
batch=batch,
|
||||
word_table=word_table,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
chunk_size=chunk_size,
|
||||
simulate_streaming=simulate_streaming,
|
||||
)
|
||||
|
||||
for lm_scale, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
results[lm_scale].extend(this_batch)
|
||||
|
||||
num_cuts += len(batch["supervisions"]["text"])
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
if params.method == "attention-decoder":
|
||||
# Set it to False since there are too many logs.
|
||||
enable_log = False
|
||||
else:
|
||||
enable_log = True
|
||||
test_set_wers = dict()
|
||||
if params.avg_models is not None:
|
||||
avg_models = params.avg_models.replace(",", "_")
|
||||
result_file_prefix = f"epoch-avg-{avg_models}-chunksize \
|
||||
-{params.chunk_size}-tailing-num-frames-{params.tailing_num_frames}-"
|
||||
else:
|
||||
result_file_prefix = f"epoch-{params.epoch}-avg-{params.avg}-chunksize \
|
||||
-{params.chunk_size}-tailing-num-frames-{params.tailing_num_frames}-"
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.exp_dir
|
||||
/ f"{result_file_prefix}recogs-{test_set_name}-{key}.txt"
|
||||
)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
if enable_log:
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.exp_dir
|
||||
/ f"{result_file_prefix}-errs-{test_set_name}-{key}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=enable_log
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
if enable_log:
|
||||
logging.info(
|
||||
"Wrote detailed error stats to {}".format(errs_filename)
|
||||
)
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
|
||||
logging.info("Decoding started")
|
||||
logging.info(params)
|
||||
|
||||
if params.trained_dir is not None:
|
||||
params.lang_dir = Path(params.trained_dir) / "lang_bpe"
|
||||
# used naming result files
|
||||
params.epoch = "trained_model"
|
||||
params.avg = 1
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
graph_compiler = BpeCtcTrainingGraphCompiler(
|
||||
params.lang_dir,
|
||||
device=device,
|
||||
sos_token="<sos/eos>",
|
||||
eos_token="<sos/eos>",
|
||||
)
|
||||
sos_id = graph_compiler.sos_id
|
||||
eos_id = graph_compiler.eos_id
|
||||
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.attention_dim,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
causal=params.causal,
|
||||
)
|
||||
|
||||
if params.trained_dir is not None:
|
||||
model_name = f"{params.trained_dir}/trained_streaming_conformer.pt"
|
||||
load_checkpoint(model_name, model)
|
||||
elif params.avg == 1 and params.avg_models is not None:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
filenames = []
|
||||
if params.avg_models is not None:
|
||||
model_ids = params.avg_models.split(",")
|
||||
for i in model_ids:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.load_state_dict(average_checkpoints(filenames))
|
||||
|
||||
if params.export:
|
||||
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||
torch.save(
|
||||
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
||||
)
|
||||
return
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
# CAUTION: `test_sets` is for displaying only.
|
||||
# If you want to skip test-clean, you have to skip
|
||||
# it inside the for loop. That is, use
|
||||
#
|
||||
# if test_set == 'test-clean': continue
|
||||
#
|
||||
bpe_model = spm.SentencePieceProcessor()
|
||||
bpe_model.load(str(params.lang_dir / "bpe.model"))
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
for test_set, test_dl in zip(test_sets, librispeech.test_dataloaders()):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
bpe_model=bpe_model,
|
||||
word_table=lexicon.word_table,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
chunk_size=params.chunk_size,
|
||||
simulate_streaming=params.simulate_streaming,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params, test_set_name=test_set, results_dict=results_dict
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1 +0,0 @@
|
||||
../conformer_ctc/subsampling.py
|
@ -1,745 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang
|
||||
# Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch import Tensor
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from transformer import Noam
|
||||
|
||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
encode_supervisions,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=78,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
conformer_ctc/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="conformer_ctc/exp",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_bpe_500",
|
||||
help="""The lang dir
|
||||
It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--att-rate",
|
||||
type=float,
|
||||
default=0.8,
|
||||
help="""The attention rate.
|
||||
The total loss is (1 - att_rate) * ctc_loss + att_rate * att_loss
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--dynamic-chunk-training",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to use dynamic right context during training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--short-chunk-proportion",
|
||||
type=float,
|
||||
default=0.7,
|
||||
help="Proportion of samples trained with short right context",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
are saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_train_epoch: It is the epoch that has the best training loss.
|
||||
|
||||
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||
|
||||
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||
contains number of batches trained so far across
|
||||
epochs.
|
||||
|
||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||
|
||||
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- use_feat_batchnorm: Whether to do batch normalization for the
|
||||
input features.
|
||||
|
||||
- attention_dim: Hidden dim for multi-head attention model.
|
||||
|
||||
- head: Number of heads of multi-head attention model.
|
||||
|
||||
- num_decoder_layers: Number of decoder layer of transformer decoder.
|
||||
|
||||
- beam_size: It is used in k2.ctc_loss
|
||||
|
||||
- reduction: It is used in k2.ctc_loss
|
||||
|
||||
- use_double_scores: It is used in k2.ctc_loss
|
||||
|
||||
- weight_decay: The weight_decay for the optimizer.
|
||||
|
||||
- lr_factor: The lr_factor for Noam optimizer.
|
||||
|
||||
- warm_step: The warm_step for Noam optimizer.
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 50,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 3000,
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"subsampling_factor": 4,
|
||||
"use_feat_batchnorm": True,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"num_decoder_layers": 6,
|
||||
# parameters for loss
|
||||
"beam_size": 10,
|
||||
"reduction": "sum",
|
||||
"use_double_scores": True,
|
||||
# parameters for Noam
|
||||
"weight_decay": 1e-6,
|
||||
"lr_factor": 5.0,
|
||||
"warm_step": 80000,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch <= 0:
|
||||
return
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
batch: dict,
|
||||
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||
is_training: bool,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute CTC loss given the model and its inputs.
|
||||
|
||||
Args:
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
model:
|
||||
The model for training. It is an instance of Conformer in our case.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
graph_compiler:
|
||||
It is used to build a decoding graph from a ctc topo and training
|
||||
transcript. The training transcript is contained in the given `batch`,
|
||||
while the ctc topo is built when this compiler is instantiated.
|
||||
is_training:
|
||||
True for training. False for validation. When it is True, this
|
||||
function enables autograd during computation; when it is False, it
|
||||
disables autograd.
|
||||
"""
|
||||
device = graph_compiler.device
|
||||
feature = batch["inputs"]
|
||||
# at entry, feature is (N, T, C)
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
with torch.set_grad_enabled(is_training):
|
||||
nnet_output, encoder_memory, memory_mask = model(
|
||||
feature,
|
||||
supervisions,
|
||||
dynamic_chunk_training=params.dynamic_chunk_training,
|
||||
short_chunk_proportion=params.short_chunk_proportion,
|
||||
)
|
||||
# nnet_output is (N, T, C)
|
||||
|
||||
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||
# different duration in decreasing order, required by
|
||||
# `k2.intersect_dense` called in `k2.ctc_loss`
|
||||
supervision_segments, texts = encode_supervisions(
|
||||
supervisions, subsampling_factor=params.subsampling_factor
|
||||
)
|
||||
|
||||
token_ids = graph_compiler.texts_to_ids(texts)
|
||||
|
||||
decoding_graph = graph_compiler.compile(token_ids)
|
||||
|
||||
dense_fsa_vec = k2.DenseFsaVec(
|
||||
nnet_output,
|
||||
supervision_segments,
|
||||
allow_truncate=params.subsampling_factor - 1,
|
||||
)
|
||||
|
||||
ctc_loss = k2.ctc_loss(
|
||||
decoding_graph=decoding_graph,
|
||||
dense_fsa_vec=dense_fsa_vec,
|
||||
output_beam=params.beam_size,
|
||||
reduction=params.reduction,
|
||||
use_double_scores=params.use_double_scores,
|
||||
)
|
||||
|
||||
if params.att_rate != 0.0:
|
||||
with torch.set_grad_enabled(is_training):
|
||||
mmodel = model.module if hasattr(model, "module") else model
|
||||
# Note: We need to generate an unsorted version of token_ids
|
||||
# `encode_supervisions()` called above sorts text, but
|
||||
# encoder_memory and memory_mask are not sorted, so we
|
||||
# use an unsorted version `supervisions["text"]` to regenerate
|
||||
# the token_ids
|
||||
#
|
||||
# See https://github.com/k2-fsa/icefall/issues/97
|
||||
# for more details
|
||||
unsorted_token_ids = graph_compiler.texts_to_ids(
|
||||
supervisions["text"]
|
||||
)
|
||||
att_loss = mmodel.decoder_forward(
|
||||
encoder_memory,
|
||||
memory_mask,
|
||||
token_ids=unsorted_token_ids,
|
||||
sos_id=graph_compiler.sos_id,
|
||||
eos_id=graph_compiler.eos_id,
|
||||
)
|
||||
loss = (1.0 - params.att_rate) * ctc_loss + params.att_rate * att_loss
|
||||
else:
|
||||
loss = ctc_loss
|
||||
att_loss = torch.tensor([0])
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
info = MetricsTracker()
|
||||
info["frames"] = supervision_segments[:, 2].sum().item()
|
||||
info["ctc_loss"] = ctc_loss.detach().cpu().item()
|
||||
if params.att_rate != 0.0:
|
||||
info["att_loss"] = att_loss.detach().cpu().item()
|
||||
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
|
||||
return loss, info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process."""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
graph_compiler:
|
||||
It is used to convert transcripts to FSAs.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=True,
|
||||
)
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}"
|
||||
)
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
|
||||
if tb_writer is not None:
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(
|
||||
tb_writer, "train/tot_", params.batch_idx_train
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
logging.info("Computing validation loss")
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(42)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
|
||||
graph_compiler = BpeCtcTrainingGraphCompiler(
|
||||
params.lang_dir,
|
||||
device=device,
|
||||
sos_token="<sos/eos>",
|
||||
eos_token="<sos/eos>",
|
||||
)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.attention_dim,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
vgg_frontend=False,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
model = DDP(model, device_ids=[rank])
|
||||
|
||||
optimizer = Noam(
|
||||
model.parameters(),
|
||||
model_size=params.attention_dim,
|
||||
factor=params.lr_factor,
|
||||
warm_step=params.warm_step,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
|
||||
if checkpoints:
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
train_dl = librispeech.train_dataloaders()
|
||||
valid_dl = librispeech.valid_dataloaders()
|
||||
|
||||
scan_pessimistic_batches_for_oom(
|
||||
model=model,
|
||||
train_dl=train_dl,
|
||||
optimizer=optimizer,
|
||||
graph_compiler=graph_compiler,
|
||||
params=params,
|
||||
)
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
cur_lr = optimizer._rate
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||
)
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
if rank == 0:
|
||||
logging.info("epoch {}, learning rate {}".format(epoch, cur_lr))
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
graph_compiler=graph_compiler,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def scan_pessimistic_batches_for_oom(
|
||||
model: nn.Module,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
graph_compiler: BpeCtcTrainingGraphCompiler,
|
||||
params: AttributeDict,
|
||||
):
|
||||
from lhotse.dataset import find_pessimistic_batches
|
||||
|
||||
logging.info(
|
||||
"Sanity check -- see if any of the batches in epoch 0 would cause OOM."
|
||||
)
|
||||
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
|
||||
for criterion, cuts in batches.items():
|
||||
batch = train_dl.dataset[cuts]
|
||||
try:
|
||||
optimizer.zero_grad()
|
||||
loss, _ = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=True,
|
||||
)
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
except RuntimeError as e:
|
||||
if "CUDA out of memory" in str(e):
|
||||
logging.error(
|
||||
"Your GPU ran out of memory with the current "
|
||||
"max_duration setting. We recommend decreasing "
|
||||
"max_duration and trying again.\n"
|
||||
f"Failing criterion: {criterion} "
|
||||
f"(={crit_values[criterion]}) ..."
|
||||
)
|
||||
raise
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,966 +0,0 @@
|
||||
# Copyright 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import math
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from label_smoothing import LabelSmoothingLoss
|
||||
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
# Note: TorchScript requires Dict/List/etc. to be fully typed.
|
||||
Supervisions = Dict[str, torch.Tensor]
|
||||
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_features: int,
|
||||
num_classes: int,
|
||||
subsampling_factor: int = 4,
|
||||
d_model: int = 256,
|
||||
nhead: int = 4,
|
||||
dim_feedforward: int = 2048,
|
||||
num_encoder_layers: int = 12,
|
||||
num_decoder_layers: int = 6,
|
||||
dropout: float = 0.1,
|
||||
normalize_before: bool = True,
|
||||
vgg_frontend: bool = False,
|
||||
use_feat_batchnorm: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
num_features:
|
||||
The input dimension of the model.
|
||||
num_classes:
|
||||
The output dimension of the model.
|
||||
subsampling_factor:
|
||||
Number of output frames is num_in_frames // subsampling_factor.
|
||||
Currently, subsampling_factor MUST be 4.
|
||||
d_model:
|
||||
Attention dimension.
|
||||
nhead:
|
||||
Number of heads in multi-head attention.
|
||||
Must satisfy d_model // nhead == 0.
|
||||
dim_feedforward:
|
||||
The output dimension of the feedforward layers in encoder/decoder.
|
||||
num_encoder_layers:
|
||||
Number of encoder layers.
|
||||
num_decoder_layers:
|
||||
Number of decoder layers.
|
||||
dropout:
|
||||
Dropout in encoder/decoder.
|
||||
normalize_before:
|
||||
If True, use pre-layer norm; False to use post-layer norm.
|
||||
vgg_frontend:
|
||||
True to use vgg style frontend for subsampling.
|
||||
use_feat_batchnorm:
|
||||
True to use batchnorm for the input layer.
|
||||
"""
|
||||
super().__init__()
|
||||
self.use_feat_batchnorm = use_feat_batchnorm
|
||||
if use_feat_batchnorm:
|
||||
self.feat_batchnorm = nn.BatchNorm1d(num_features)
|
||||
|
||||
self.num_features = num_features
|
||||
self.num_classes = num_classes
|
||||
self.subsampling_factor = subsampling_factor
|
||||
if subsampling_factor != 4:
|
||||
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
||||
|
||||
# self.encoder_embed converts the input of shape (N, T, num_classes)
|
||||
# to the shape (N, T//subsampling_factor, d_model).
|
||||
# That is, it does two things simultaneously:
|
||||
# (1) subsampling: T -> T//subsampling_factor
|
||||
# (2) embedding: num_classes -> d_model
|
||||
if vgg_frontend:
|
||||
self.encoder_embed = VggSubsampling(num_features, d_model)
|
||||
else:
|
||||
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
||||
|
||||
self.encoder_pos = PositionalEncoding(d_model, dropout)
|
||||
|
||||
encoder_layer = TransformerEncoderLayer(
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=dim_feedforward,
|
||||
dropout=dropout,
|
||||
normalize_before=normalize_before,
|
||||
)
|
||||
|
||||
if normalize_before:
|
||||
encoder_norm = nn.LayerNorm(d_model)
|
||||
else:
|
||||
encoder_norm = None
|
||||
|
||||
self.encoder = nn.TransformerEncoder(
|
||||
encoder_layer=encoder_layer,
|
||||
num_layers=num_encoder_layers,
|
||||
norm=encoder_norm,
|
||||
)
|
||||
|
||||
# TODO(fangjun): remove dropout
|
||||
self.encoder_output_layer = nn.Sequential(
|
||||
nn.Dropout(p=dropout), nn.Linear(d_model, num_classes)
|
||||
)
|
||||
|
||||
if num_decoder_layers > 0:
|
||||
self.decoder_num_class = (
|
||||
self.num_classes
|
||||
) # bpe model already has sos/eos symbol
|
||||
|
||||
self.decoder_embed = nn.Embedding(
|
||||
num_embeddings=self.decoder_num_class, embedding_dim=d_model
|
||||
)
|
||||
self.decoder_pos = PositionalEncoding(d_model, dropout)
|
||||
|
||||
decoder_layer = TransformerDecoderLayer(
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=dim_feedforward,
|
||||
dropout=dropout,
|
||||
normalize_before=normalize_before,
|
||||
)
|
||||
|
||||
if normalize_before:
|
||||
decoder_norm = nn.LayerNorm(d_model)
|
||||
else:
|
||||
decoder_norm = None
|
||||
|
||||
self.decoder = nn.TransformerDecoder(
|
||||
decoder_layer=decoder_layer,
|
||||
num_layers=num_decoder_layers,
|
||||
norm=decoder_norm,
|
||||
)
|
||||
|
||||
self.decoder_output_layer = torch.nn.Linear(
|
||||
d_model, self.decoder_num_class
|
||||
)
|
||||
|
||||
self.decoder_criterion = LabelSmoothingLoss()
|
||||
else:
|
||||
self.decoder_criterion = None
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
supervision: Optional[Supervisions] = None,
|
||||
dynamic_chunk_training: bool = False,
|
||||
short_chunk_proportion: float = 0.5,
|
||||
chunk_size: int = -1,
|
||||
simulate_streaming=False,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
The input tensor. Its shape is (N, T, C).
|
||||
supervision:
|
||||
Supervision in lhotse format.
|
||||
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||
(CAUTION: It contains length information, i.e., start and number of
|
||||
frames, before subsampling)
|
||||
|
||||
Returns:
|
||||
Return a tuple containing 3 tensors:
|
||||
- CTC output for ctc decoding. Its shape is (N, T, C)
|
||||
- Encoder output with shape (T, N, C). It can be used as key and
|
||||
value for the decoder.
|
||||
- Encoder output padding mask. It can be used as
|
||||
memory_key_padding_mask for the decoder. Its shape is (N, T).
|
||||
It is None if `supervision` is None.
|
||||
"""
|
||||
if self.use_feat_batchnorm:
|
||||
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
|
||||
x = self.feat_batchnorm(x)
|
||||
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
|
||||
encoder_memory, memory_key_padding_mask = self.run_encoder(
|
||||
x,
|
||||
supervision,
|
||||
dynamic_chunk_training=dynamic_chunk_training,
|
||||
short_chunk_proportion=short_chunk_proportion,
|
||||
chunk_size=chunk_size,
|
||||
simulate_streaming=simulate_streaming,
|
||||
)
|
||||
x = self.ctc_output(encoder_memory)
|
||||
return x, encoder_memory, memory_key_padding_mask
|
||||
|
||||
def run_encoder(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
supervisions: Optional[Supervisions] = None,
|
||||
chunk_size: int = -1,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
"""Run the transformer encoder.
|
||||
|
||||
Args:
|
||||
x:
|
||||
The model input. Its shape is (N, T, C).
|
||||
supervisions:
|
||||
Supervision in lhotse format.
|
||||
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||
CAUTION: It contains length information, i.e., start and number of
|
||||
frames, before subsampling
|
||||
It is read directly from the batch, without any sorting. It is used
|
||||
to compute the encoder padding mask, which is used as memory key
|
||||
padding mask for the decoder.
|
||||
chunk_size: right chunk_size to simulate streaming decoding
|
||||
-1 for whole right context
|
||||
Returns:
|
||||
Return a tuple with two tensors:
|
||||
- The encoder output, with shape (T, N, C)
|
||||
- encoder padding mask, with shape (N, T).
|
||||
The mask is None if `supervisions` is None.
|
||||
It is used as memory key padding mask in the decoder.
|
||||
"""
|
||||
# streaming decoding(chunk_size >= 0) is only verified with Conformer
|
||||
assert chunk_size == -1
|
||||
x = self.encoder_embed(x)
|
||||
x = self.encoder_pos(x)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
mask = encoder_padding_mask(x.size(0), supervisions)
|
||||
mask = mask.to(x.device) if mask is not None else None
|
||||
x = self.encoder(
|
||||
x, src_key_padding_mask=mask, chunk_size=chunk_size
|
||||
) # (T, N, C)
|
||||
|
||||
return x, mask
|
||||
|
||||
def ctc_output(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
The output tensor from the transformer encoder.
|
||||
Its shape is (T, N, C)
|
||||
|
||||
Returns:
|
||||
Return a tensor that can be used for CTC decoding.
|
||||
Its shape is (N, T, C)
|
||||
"""
|
||||
x = self.encoder_output_layer(x)
|
||||
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
x = nn.functional.log_softmax(x, dim=-1) # (N, T, C)
|
||||
return x
|
||||
|
||||
@torch.jit.export
|
||||
def decoder_forward(
|
||||
self,
|
||||
memory: torch.Tensor,
|
||||
memory_key_padding_mask: torch.Tensor,
|
||||
token_ids: List[List[int]],
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
memory:
|
||||
It's the output of the encoder with shape (T, N, C)
|
||||
memory_key_padding_mask:
|
||||
The padding mask from the encoder.
|
||||
token_ids:
|
||||
A list-of-list IDs. Each sublist contains IDs for an utterance.
|
||||
The IDs can be either phone IDs or word piece IDs.
|
||||
sos_id:
|
||||
sos token id
|
||||
eos_id:
|
||||
eos token id
|
||||
|
||||
Returns:
|
||||
A scalar, the **sum** of label smoothing loss over utterances
|
||||
in the batch without any normalization.
|
||||
"""
|
||||
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||
ys_in = [torch.tensor(y) for y in ys_in]
|
||||
ys_in_pad = pad_sequence(
|
||||
ys_in, batch_first=True, padding_value=float(eos_id)
|
||||
)
|
||||
|
||||
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||
ys_out = [torch.tensor(y) for y in ys_out]
|
||||
ys_out_pad = pad_sequence(
|
||||
ys_out, batch_first=True, padding_value=float(-1)
|
||||
)
|
||||
|
||||
device = memory.device
|
||||
ys_in_pad = ys_in_pad.to(device)
|
||||
ys_out_pad = ys_out_pad.to(device)
|
||||
|
||||
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(
|
||||
device
|
||||
)
|
||||
|
||||
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||
# TODO: Use length information to create the decoder padding mask
|
||||
# We set the first column to False since the first column in ys_in_pad
|
||||
# contains sos_id, which is the same as eos_id in our current setting.
|
||||
tgt_key_padding_mask[:, 0] = False
|
||||
|
||||
tgt = self.decoder_embed(ys_in_pad) # (N, T) -> (N, T, C)
|
||||
tgt = self.decoder_pos(tgt)
|
||||
tgt = tgt.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
pred_pad = self.decoder(
|
||||
tgt=tgt,
|
||||
memory=memory,
|
||||
tgt_mask=tgt_mask,
|
||||
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
) # (T, N, C)
|
||||
pred_pad = pred_pad.permute(1, 0, 2) # (T, N, C) -> (N, T, C)
|
||||
pred_pad = self.decoder_output_layer(pred_pad) # (N, T, C)
|
||||
|
||||
decoder_loss = self.decoder_criterion(pred_pad, ys_out_pad)
|
||||
|
||||
return decoder_loss
|
||||
|
||||
@torch.jit.export
|
||||
def decoder_nll(
|
||||
self,
|
||||
memory: torch.Tensor,
|
||||
memory_key_padding_mask: torch.Tensor,
|
||||
token_ids: List[torch.Tensor],
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
memory:
|
||||
It's the output of the encoder with shape (T, N, C)
|
||||
memory_key_padding_mask:
|
||||
The padding mask from the encoder.
|
||||
token_ids:
|
||||
A list-of-list IDs (e.g., word piece IDs).
|
||||
Each sublist represents an utterance.
|
||||
sos_id:
|
||||
The token ID for SOS.
|
||||
eos_id:
|
||||
The token ID for EOS.
|
||||
Returns:
|
||||
A 2-D tensor of shape (len(token_ids), max_token_length)
|
||||
representing the cross entropy loss (i.e., negative log-likelihood).
|
||||
"""
|
||||
# The common part between this function and decoder_forward could be
|
||||
# extracted as a separate function.
|
||||
if isinstance(token_ids[0], torch.Tensor):
|
||||
# This branch is executed by torchscript in C++.
|
||||
# See https://github.com/k2-fsa/k2/pull/870
|
||||
# https://github.com/k2-fsa/k2/blob/3c1c18400060415b141ccea0115fd4bf0ad6234e/k2/torch/bin/attention_rescore.cu#L286
|
||||
token_ids = [tolist(t) for t in token_ids]
|
||||
|
||||
ys_in = add_sos(token_ids, sos_id=sos_id)
|
||||
ys_in = [torch.tensor(y) for y in ys_in]
|
||||
ys_in_pad = pad_sequence(
|
||||
ys_in, batch_first=True, padding_value=float(eos_id)
|
||||
)
|
||||
|
||||
ys_out = add_eos(token_ids, eos_id=eos_id)
|
||||
ys_out = [torch.tensor(y) for y in ys_out]
|
||||
ys_out_pad = pad_sequence(
|
||||
ys_out, batch_first=True, padding_value=float(-1)
|
||||
)
|
||||
|
||||
device = memory.device
|
||||
ys_in_pad = ys_in_pad.to(device, dtype=torch.int64)
|
||||
ys_out_pad = ys_out_pad.to(device, dtype=torch.int64)
|
||||
|
||||
tgt_mask = generate_square_subsequent_mask(ys_in_pad.shape[-1]).to(
|
||||
device
|
||||
)
|
||||
|
||||
tgt_key_padding_mask = decoder_padding_mask(ys_in_pad, ignore_id=eos_id)
|
||||
# TODO: Use length information to create the decoder padding mask
|
||||
# We set the first column to False since the first column in ys_in_pad
|
||||
# contains sos_id, which is the same as eos_id in our current setting.
|
||||
tgt_key_padding_mask[:, 0] = False
|
||||
|
||||
tgt = self.decoder_embed(ys_in_pad) # (B, T) -> (B, T, F)
|
||||
tgt = self.decoder_pos(tgt)
|
||||
tgt = tgt.permute(1, 0, 2) # (B, T, F) -> (T, B, F)
|
||||
pred_pad = self.decoder(
|
||||
tgt=tgt,
|
||||
memory=memory,
|
||||
tgt_mask=tgt_mask,
|
||||
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
) # (T, B, F)
|
||||
pred_pad = pred_pad.permute(1, 0, 2) # (T, B, F) -> (B, T, F)
|
||||
pred_pad = self.decoder_output_layer(pred_pad) # (B, T, F)
|
||||
# nll: negative log-likelihood
|
||||
nll = torch.nn.functional.cross_entropy(
|
||||
pred_pad.view(-1, self.decoder_num_class),
|
||||
ys_out_pad.view(-1),
|
||||
ignore_index=-1,
|
||||
reduction="none",
|
||||
)
|
||||
|
||||
nll = nll.view(pred_pad.shape[0], -1)
|
||||
|
||||
return nll
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
"""
|
||||
Modified from torch.nn.TransformerEncoderLayer.
|
||||
Add support of normalize_before,
|
||||
i.e., use layer_norm before the first block.
|
||||
|
||||
Args:
|
||||
d_model:
|
||||
the number of expected features in the input (required).
|
||||
nhead:
|
||||
the number of heads in the multiheadattention models (required).
|
||||
dim_feedforward:
|
||||
the dimension of the feedforward network model (default=2048).
|
||||
dropout:
|
||||
the dropout value (default=0.1).
|
||||
activation:
|
||||
the activation function of intermediate layer, relu or
|
||||
gelu (default=relu).
|
||||
normalize_before:
|
||||
whether to use layer_norm before the first block.
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> out = encoder_layer(src)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
activation: str = "relu",
|
||||
normalize_before: bool = True,
|
||||
) -> None:
|
||||
super(TransformerEncoderLayer, self).__init__()
|
||||
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
|
||||
self.activation = _get_activation_fn(activation)
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def __setstate__(self, state):
|
||||
if "activation" not in state:
|
||||
state["activation"] = nn.functional.relu
|
||||
super(TransformerEncoderLayer, self).__setstate__(state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: torch.Tensor,
|
||||
src_mask: Optional[torch.Tensor] = None,
|
||||
src_key_padding_mask: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Pass the input through the encoder layer.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder layer (required).
|
||||
src_mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional)
|
||||
|
||||
Shape:
|
||||
src: (S, N, E).
|
||||
src_mask: (S, S).
|
||||
src_key_padding_mask: (N, S).
|
||||
S is the source sequence length, T is the target sequence length,
|
||||
N is the batch size, E is the feature number
|
||||
"""
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm1(src)
|
||||
src2 = self.self_attn(
|
||||
src,
|
||||
src,
|
||||
src,
|
||||
attn_mask=src_mask,
|
||||
key_padding_mask=src_key_padding_mask,
|
||||
)[0]
|
||||
src = residual + self.dropout1(src2)
|
||||
if not self.normalize_before:
|
||||
src = self.norm1(src)
|
||||
|
||||
residual = src
|
||||
if self.normalize_before:
|
||||
src = self.norm2(src)
|
||||
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
||||
src = residual + self.dropout2(src2)
|
||||
if not self.normalize_before:
|
||||
src = self.norm2(src)
|
||||
return src
|
||||
|
||||
|
||||
class TransformerDecoderLayer(nn.Module):
|
||||
"""
|
||||
Modified from torch.nn.TransformerDecoderLayer.
|
||||
Add support of normalize_before,
|
||||
i.e., use layer_norm before the first block.
|
||||
|
||||
Args:
|
||||
d_model:
|
||||
the number of expected features in the input (required).
|
||||
nhead:
|
||||
the number of heads in the multiheadattention models (required).
|
||||
dim_feedforward:
|
||||
the dimension of the feedforward network model (default=2048).
|
||||
dropout:
|
||||
the dropout value (default=0.1).
|
||||
activation:
|
||||
the activation function of intermediate layer, relu or
|
||||
gelu (default=relu).
|
||||
|
||||
Examples::
|
||||
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
|
||||
>>> memory = torch.rand(10, 32, 512)
|
||||
>>> tgt = torch.rand(20, 32, 512)
|
||||
>>> out = decoder_layer(tgt, memory)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
activation: str = "relu",
|
||||
normalize_before: bool = True,
|
||||
) -> None:
|
||||
super(TransformerDecoderLayer, self).__init__()
|
||||
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
||||
self.src_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
self.norm3 = nn.LayerNorm(d_model)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
self.dropout3 = nn.Dropout(dropout)
|
||||
|
||||
self.activation = _get_activation_fn(activation)
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def __setstate__(self, state):
|
||||
if "activation" not in state:
|
||||
state["activation"] = nn.functional.relu
|
||||
super(TransformerDecoderLayer, self).__setstate__(state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tgt: torch.Tensor,
|
||||
memory: torch.Tensor,
|
||||
tgt_mask: Optional[torch.Tensor] = None,
|
||||
memory_mask: Optional[torch.Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[torch.Tensor] = None,
|
||||
memory_key_padding_mask: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""Pass the inputs (and mask) through the decoder layer.
|
||||
|
||||
Args:
|
||||
tgt:
|
||||
the sequence to the decoder layer (required).
|
||||
memory:
|
||||
the sequence from the last layer of the encoder (required).
|
||||
tgt_mask:
|
||||
the mask for the tgt sequence (optional).
|
||||
memory_mask:
|
||||
the mask for the memory sequence (optional).
|
||||
tgt_key_padding_mask:
|
||||
the mask for the tgt keys per batch (optional).
|
||||
memory_key_padding_mask:
|
||||
the mask for the memory keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
tgt: (T, N, E).
|
||||
memory: (S, N, E).
|
||||
tgt_mask: (T, T).
|
||||
memory_mask: (T, S).
|
||||
tgt_key_padding_mask: (N, T).
|
||||
memory_key_padding_mask: (N, S).
|
||||
S is the source sequence length, T is the target sequence length,
|
||||
N is the batch size, E is the feature number
|
||||
"""
|
||||
residual = tgt
|
||||
if self.normalize_before:
|
||||
tgt = self.norm1(tgt)
|
||||
tgt2 = self.self_attn(
|
||||
tgt,
|
||||
tgt,
|
||||
tgt,
|
||||
attn_mask=tgt_mask,
|
||||
key_padding_mask=tgt_key_padding_mask,
|
||||
)[0]
|
||||
tgt = residual + self.dropout1(tgt2)
|
||||
if not self.normalize_before:
|
||||
tgt = self.norm1(tgt)
|
||||
|
||||
residual = tgt
|
||||
if self.normalize_before:
|
||||
tgt = self.norm2(tgt)
|
||||
tgt2 = self.src_attn(
|
||||
tgt,
|
||||
memory,
|
||||
memory,
|
||||
attn_mask=memory_mask,
|
||||
key_padding_mask=memory_key_padding_mask,
|
||||
)[0]
|
||||
tgt = residual + self.dropout2(tgt2)
|
||||
if not self.normalize_before:
|
||||
tgt = self.norm2(tgt)
|
||||
|
||||
residual = tgt
|
||||
if self.normalize_before:
|
||||
tgt = self.norm3(tgt)
|
||||
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
||||
tgt = residual + self.dropout3(tgt2)
|
||||
if not self.normalize_before:
|
||||
tgt = self.norm3(tgt)
|
||||
return tgt
|
||||
|
||||
|
||||
def _get_activation_fn(activation: str):
|
||||
if activation == "relu":
|
||||
return nn.functional.relu
|
||||
elif activation == "gelu":
|
||||
return nn.functional.gelu
|
||||
|
||||
raise RuntimeError(
|
||||
"activation should be relu/gelu, not {}".format(activation)
|
||||
)
|
||||
|
||||
|
||||
class PositionalEncoding(nn.Module):
|
||||
"""This class implements the positional encoding
|
||||
proposed in the following paper:
|
||||
|
||||
- Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
|
||||
|
||||
PE(pos, 2i) = sin(pos / (10000^(2i/d_modle))
|
||||
PE(pos, 2i+1) = cos(pos / (10000^(2i/d_modle))
|
||||
|
||||
Note::
|
||||
|
||||
1 / (10000^(2i/d_model)) = exp(-log(10000^(2i/d_model)))
|
||||
= exp(-1* 2i / d_model * log(100000))
|
||||
= exp(2i * -(log(10000) / d_model))
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: int, dropout: float = 0.1) -> None:
|
||||
"""
|
||||
Args:
|
||||
d_model:
|
||||
Embedding dimension.
|
||||
dropout:
|
||||
Dropout probability to be applied to the output of this module.
|
||||
"""
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.xscale = math.sqrt(self.d_model)
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
# not doing: self.pe = None because of errors thrown by torchscript
|
||||
self.pe = torch.zeros(1, 0, self.d_model, dtype=torch.float32)
|
||||
|
||||
def extend_pe(self, x: torch.Tensor) -> None:
|
||||
"""Extend the time t in the positional encoding if required.
|
||||
|
||||
The shape of `self.pe` is (1, T1, d_model). The shape of the input x
|
||||
is (N, T, d_model). If T > T1, then we change the shape of self.pe
|
||||
to (N, T, d_model). Otherwise, nothing is done.
|
||||
|
||||
Args:
|
||||
x:
|
||||
It is a tensor of shape (N, T, C).
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if self.pe is not None:
|
||||
if self.pe.size(1) >= x.size(1):
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
pe = torch.zeros(x.size(1), self.d_model, dtype=torch.float32)
|
||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||
* -(math.log(10000.0) / self.d_model)
|
||||
)
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
pe = pe.unsqueeze(0)
|
||||
# Now pe is of shape (1, T, d_model), where T is x.size(1)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Add positional encoding.
|
||||
|
||||
Args:
|
||||
x:
|
||||
Its shape is (N, T, C)
|
||||
|
||||
Returns:
|
||||
Return a tensor of shape (N, T, C)
|
||||
"""
|
||||
self.extend_pe(x)
|
||||
x = x * self.xscale + self.pe[:, : x.size(1), :]
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class Noam(object):
|
||||
"""
|
||||
Implements Noam optimizer.
|
||||
|
||||
Proposed in
|
||||
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
||||
|
||||
Modified from
|
||||
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/optimizer.py # noqa
|
||||
|
||||
Args:
|
||||
params:
|
||||
iterable of parameters to optimize or dicts defining parameter groups
|
||||
model_size:
|
||||
attention dimension of the transformer model
|
||||
factor:
|
||||
learning rate factor
|
||||
warm_step:
|
||||
warmup steps
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
model_size: int = 256,
|
||||
factor: float = 10.0,
|
||||
warm_step: int = 25000,
|
||||
weight_decay=0,
|
||||
) -> None:
|
||||
"""Construct an Noam object."""
|
||||
self.optimizer = torch.optim.Adam(
|
||||
params, lr=0, betas=(0.9, 0.98), eps=1e-9, weight_decay=weight_decay
|
||||
)
|
||||
self._step = 0
|
||||
self.warmup = warm_step
|
||||
self.factor = factor
|
||||
self.model_size = model_size
|
||||
self._rate = 0
|
||||
|
||||
@property
|
||||
def param_groups(self):
|
||||
"""Return param_groups."""
|
||||
return self.optimizer.param_groups
|
||||
|
||||
def step(self):
|
||||
"""Update parameters and rate."""
|
||||
self._step += 1
|
||||
rate = self.rate()
|
||||
for p in self.optimizer.param_groups:
|
||||
p["lr"] = rate
|
||||
self._rate = rate
|
||||
self.optimizer.step()
|
||||
|
||||
def rate(self, step=None):
|
||||
"""Implement `lrate` above."""
|
||||
if step is None:
|
||||
step = self._step
|
||||
return (
|
||||
self.factor
|
||||
* self.model_size ** (-0.5)
|
||||
* min(step ** (-0.5), step * self.warmup ** (-1.5))
|
||||
)
|
||||
|
||||
def zero_grad(self):
|
||||
"""Reset gradient."""
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
def state_dict(self):
|
||||
"""Return state_dict."""
|
||||
return {
|
||||
"_step": self._step,
|
||||
"warmup": self.warmup,
|
||||
"factor": self.factor,
|
||||
"model_size": self.model_size,
|
||||
"_rate": self._rate,
|
||||
"optimizer": self.optimizer.state_dict(),
|
||||
}
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""Load state_dict."""
|
||||
for key, value in state_dict.items():
|
||||
if key == "optimizer":
|
||||
self.optimizer.load_state_dict(state_dict["optimizer"])
|
||||
else:
|
||||
setattr(self, key, value)
|
||||
|
||||
|
||||
def encoder_padding_mask(
|
||||
max_len: int, supervisions: Optional[Supervisions] = None
|
||||
) -> Optional[torch.Tensor]:
|
||||
"""Make mask tensor containing indexes of padded part.
|
||||
|
||||
TODO::
|
||||
This function **assumes** that the model uses
|
||||
a subsampling factor of 4. We should remove that
|
||||
assumption later.
|
||||
|
||||
Args:
|
||||
max_len:
|
||||
Maximum length of input features.
|
||||
CAUTION: It is the length after subsampling.
|
||||
supervisions:
|
||||
Supervision in lhotse format.
|
||||
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||
(CAUTION: It contains length information, i.e., start and number of
|
||||
frames, before subsampling)
|
||||
|
||||
Returns:
|
||||
Tensor: Mask tensor of dimension (batch_size, input_length),
|
||||
True denote the masked indices.
|
||||
"""
|
||||
if supervisions is None:
|
||||
return None
|
||||
|
||||
supervision_segments = torch.stack(
|
||||
(
|
||||
supervisions["sequence_idx"],
|
||||
supervisions["start_frame"],
|
||||
supervisions["num_frames"],
|
||||
),
|
||||
1,
|
||||
).to(torch.int32)
|
||||
|
||||
lengths = [
|
||||
0 for _ in range(int(supervision_segments[:, 0].max().item()) + 1)
|
||||
]
|
||||
for idx in range(supervision_segments.size(0)):
|
||||
# Note: TorchScript doesn't allow to unpack tensors as tuples
|
||||
sequence_idx = supervision_segments[idx, 0].item()
|
||||
start_frame = supervision_segments[idx, 1].item()
|
||||
num_frames = supervision_segments[idx, 2].item()
|
||||
lengths[sequence_idx] = start_frame + num_frames
|
||||
|
||||
lengths = [((i - 1) // 2 - 1) // 2 for i in lengths]
|
||||
bs = int(len(lengths))
|
||||
seq_range = torch.arange(0, max_len, dtype=torch.int64)
|
||||
seq_range_expand = seq_range.unsqueeze(0).expand(bs, max_len)
|
||||
# Note: TorchScript doesn't implement Tensor.new()
|
||||
seq_length_expand = torch.tensor(
|
||||
lengths, device=seq_range_expand.device, dtype=seq_range_expand.dtype
|
||||
).unsqueeze(-1)
|
||||
mask = seq_range_expand >= seq_length_expand
|
||||
|
||||
return mask
|
||||
|
||||
|
||||
def decoder_padding_mask(
|
||||
ys_pad: torch.Tensor, ignore_id: int = -1
|
||||
) -> torch.Tensor:
|
||||
"""Generate a length mask for input.
|
||||
|
||||
The masked position are filled with True,
|
||||
Unmasked positions are filled with False.
|
||||
|
||||
Args:
|
||||
ys_pad:
|
||||
padded tensor of dimension (batch_size, input_length).
|
||||
ignore_id:
|
||||
the ignored number (the padding number) in ys_pad
|
||||
|
||||
Returns:
|
||||
Tensor:
|
||||
a bool tensor of the same shape as the input tensor.
|
||||
"""
|
||||
ys_mask = ys_pad == ignore_id
|
||||
return ys_mask
|
||||
|
||||
|
||||
def generate_square_subsequent_mask(sz: int) -> torch.Tensor:
|
||||
"""Generate a square mask for the sequence. The masked positions are
|
||||
filled with float('-inf'). Unmasked positions are filled with float(0.0).
|
||||
The mask can be used for masked self-attention.
|
||||
|
||||
For instance, if sz is 3, it returns::
|
||||
|
||||
tensor([[0., -inf, -inf],
|
||||
[0., 0., -inf],
|
||||
[0., 0., 0]])
|
||||
|
||||
Args:
|
||||
sz: mask size
|
||||
|
||||
Returns:
|
||||
A square mask of dimension (sz, sz)
|
||||
"""
|
||||
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
|
||||
mask = (
|
||||
mask.float()
|
||||
.masked_fill(mask == 0, float("-inf"))
|
||||
.masked_fill(mask == 1, float(0.0))
|
||||
)
|
||||
return mask
|
||||
|
||||
|
||||
def add_sos(token_ids: List[List[int]], sos_id: int) -> List[List[int]]:
|
||||
"""Prepend sos_id to each utterance.
|
||||
|
||||
Args:
|
||||
token_ids:
|
||||
A list-of-list of token IDs. Each sublist contains
|
||||
token IDs (e.g., word piece IDs) of an utterance.
|
||||
sos_id:
|
||||
The ID of the SOS token.
|
||||
|
||||
Return:
|
||||
Return a new list-of-list, where each sublist starts
|
||||
with SOS ID.
|
||||
"""
|
||||
return [[sos_id] + utt for utt in token_ids]
|
||||
|
||||
|
||||
def add_eos(token_ids: List[List[int]], eos_id: int) -> List[List[int]]:
|
||||
"""Append eos_id to each utterance.
|
||||
|
||||
Args:
|
||||
token_ids:
|
||||
A list-of-list of token IDs. Each sublist contains
|
||||
token IDs (e.g., word piece IDs) of an utterance.
|
||||
eos_id:
|
||||
The ID of the EOS token.
|
||||
|
||||
Return:
|
||||
Return a new list-of-list, where each sublist ends
|
||||
with EOS ID.
|
||||
"""
|
||||
return [utt + [eos_id] for utt in token_ids]
|
||||
|
||||
|
||||
def tolist(t: torch.Tensor) -> List[int]:
|
||||
"""Used by jit"""
|
||||
return torch.jit.annotate(List[int], t.tolist())
|
@ -1,4 +0,0 @@
|
||||
|
||||
Please visit
|
||||
<https://icefall.readthedocs.io/en/latest/recipes/librispeech/tdnn_lstm_ctc.html>
|
||||
for how to run this recipe.
|
@ -1,286 +0,0 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||
from lhotse.dataset import (
|
||||
BucketingSampler,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PerturbSpeed,
|
||||
PrecomputedFeatures,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class Resample16kHz:
|
||||
def __call__(self, cuts: CutSet) -> CutSet:
|
||||
return cuts.resample(16000).with_recording_path_prefix('download')
|
||||
|
||||
|
||||
class AsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/manifests"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the BucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=8,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
def train_dataloaders(self, cuts_train: CutSet) -> DataLoader:
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(
|
||||
self.args.manifest_dir / "musan_cuts.jsonl.gz"
|
||||
)
|
||||
|
||||
input_strategy = PrecomputedFeatures()
|
||||
if self.args.on_the_fly_feats:
|
||||
input_strategy = OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80, sampling_rate=16000)),
|
||||
)
|
||||
|
||||
train = K2SpeechRecognitionDataset(
|
||||
input_strategy=input_strategy,
|
||||
cut_transforms=[
|
||||
PerturbSpeed(factors=[0.9, 1.1], p=2 / 3, preserve_id=True),
|
||||
Resample16kHz(),
|
||||
CutMix(
|
||||
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
||||
),
|
||||
],
|
||||
input_transforms=[
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=2,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
],
|
||||
return_cuts=True,
|
||||
)
|
||||
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=True,
|
||||
)
|
||||
train_sampler.filter(lambda cut: 1.0 <= cut.duration <= 15.0)
|
||||
|
||||
logging.info("About to create train dataloader")
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
input_strategy = PrecomputedFeatures()
|
||||
if self.args.on_the_fly_feats:
|
||||
input_strategy = OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80, sampling_rate=16000)),
|
||||
)
|
||||
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
return_cuts=True,
|
||||
input_strategy=input_strategy,
|
||||
cut_transforms=[
|
||||
Resample16kHz(),
|
||||
],
|
||||
)
|
||||
|
||||
valid_sampler = BucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
|
||||
input_strategy = PrecomputedFeatures()
|
||||
if self.args.on_the_fly_feats:
|
||||
input_strategy = OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80, sampling_rate=16000)),
|
||||
)
|
||||
|
||||
test = K2SpeechRecognitionDataset(
|
||||
return_cuts=True,
|
||||
input_strategy=input_strategy,
|
||||
cut_transforms=[
|
||||
Resample16kHz(),
|
||||
],
|
||||
)
|
||||
sampler = BucketingSampler(
|
||||
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train Fisher + SWBD cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir
|
||||
/ "train_utterances_fisher-swbd_cuts.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev Fisher + SWBD cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "dev_utterances_fisher-swbd_cuts.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> CutSet:
|
||||
logging.info("About to get test-clean cuts")
|
||||
raise NotImplemented
|
||||
|
||||
|
||||
def test():
|
||||
parser = argparse.ArgumentParser()
|
||||
AsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
adm = AsrDataModule(args)
|
||||
|
||||
cuts = adm.train_cuts()
|
||||
dl = adm.train_dataloaders(cuts)
|
||||
for i, batch in tqdm(enumerate(dl)):
|
||||
if i == 100:
|
||||
break
|
||||
|
||||
cuts = adm.dev_cuts()
|
||||
dl = adm.valid_dataloaders(cuts)
|
||||
for i, batch in tqdm(enumerate(dl)):
|
||||
if i == 100:
|
||||
break
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test()
|
@ -1,505 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from model import TdnnLstm
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
nbest_decoding,
|
||||
one_best_decoding,
|
||||
rescore_with_n_best_list,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.env import get_env_info
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
get_texts,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=19,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="whole-lattice-rescoring",
|
||||
help="""Decoding method.
|
||||
Supported values are:
|
||||
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||
decoding result.
|
||||
- (2) nbest. Extract n paths from the decoding lattice; the path
|
||||
with the highest score is the decoding result.
|
||||
- (3) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
||||
the highest score is the decoding result.
|
||||
- (4) whole-lattice-rescoring. Rescore the decoding lattice with an
|
||||
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
|
||||
is the decoding result.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=100,
|
||||
help="""Number of paths for n-best based decoding method.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""The scale to be applied to `lattice.scores`.
|
||||
It's needed if you use any kinds of n-best based rescoring.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring
|
||||
A smaller value results in more unique paths.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--export",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""When enabled, the averaged model is saved to
|
||||
tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved.
|
||||
pretrained.pt contains a dict {"model": model.state_dict()},
|
||||
which can be loaded by `icefall.checkpoint.load_checkpoint()`.
|
||||
""",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("tdnn_lstm_ctc/exp/"),
|
||||
"lang_dir": Path("data/lang_phone"),
|
||||
"lm_dir": Path("data/lm"),
|
||||
"feature_dim": 80,
|
||||
"subsampling_factor": 3,
|
||||
"search_beam": 20,
|
||||
"output_beam": 5,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
batch: dict,
|
||||
lexicon: Lexicon,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if no rescoring is used, the key is the string `no_rescore`.
|
||||
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
||||
where `xxx` is the value of `lm_scale`. An example key is
|
||||
`lm_scale_0.7`
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
|
||||
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
||||
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
||||
- params.method is "nbest-rescoring", it uses nbest LM rescoring.
|
||||
- params.method is "whole-lattice-rescoring", it uses whole lattice LM
|
||||
rescoring.
|
||||
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
lexicon:
|
||||
It contains word symbol table.
|
||||
G:
|
||||
An LM. It is not None when params.method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = HLG.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
feature = feature.permute(0, 2, 1) # now feature is (N, C, T)
|
||||
|
||||
nnet_output = model(feature)
|
||||
# nnet_output is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
|
||||
supervision_segments = torch.stack(
|
||||
(
|
||||
supervisions["sequence_idx"],
|
||||
supervisions["start_frame"] // params.subsampling_factor,
|
||||
supervisions["num_frames"] // params.subsampling_factor,
|
||||
),
|
||||
1,
|
||||
).to(torch.int32)
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
decoding_graph=HLG,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
)
|
||||
|
||||
if params.method in ["1best", "nbest"]:
|
||||
if params.method == "1best":
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
key = "no_rescore"
|
||||
else:
|
||||
best_path = nbest_decoding(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
use_double_scores=params.use_double_scores,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
key = f"no_rescore-{params.num_paths}"
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
return {key: hyps}
|
||||
|
||||
assert params.method in ["nbest-rescoring", "whole-lattice-rescoring"]
|
||||
|
||||
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
||||
lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
||||
|
||||
if params.method == "nbest-rescoring":
|
||||
best_path_dict = rescore_with_n_best_list(
|
||||
lattice=lattice,
|
||||
G=G,
|
||||
num_paths=params.num_paths,
|
||||
lm_scale_list=lm_scale_list,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
else:
|
||||
best_path_dict = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=lm_scale_list,
|
||||
)
|
||||
|
||||
ans = dict()
|
||||
for lm_scale_str, best_path in best_path_dict.items():
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
ans[lm_scale_str] = hyps
|
||||
return ans
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
lexicon: Lexicon,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
lexicon:
|
||||
It contains word symbol table.
|
||||
G:
|
||||
An LM. It is not None when params.method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
||||
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
results = []
|
||||
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
batch=batch,
|
||||
lexicon=lexicon,
|
||||
G=G,
|
||||
)
|
||||
|
||||
for lm_scale, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
results[lm_scale].extend(this_batch)
|
||||
|
||||
num_cuts += len(batch["supervisions"]["text"])
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(f, f"{test_set_name}-{key}", results)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-decode")
|
||||
logging.info("Decoding started")
|
||||
logging.info(params)
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_phone_id = max(lexicon.tokens)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
HLG = k2.Fsa.from_dict(
|
||||
torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu")
|
||||
)
|
||||
HLG = HLG.to(device)
|
||||
assert HLG.requires_grad is False
|
||||
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
if params.method in ["nbest-rescoring", "whole-lattice-rescoring"]:
|
||||
if not (params.lm_dir / "G_4_gram.pt").is_file():
|
||||
logging.info("Loading G_4_gram.fst.txt")
|
||||
logging.warning("It may take 8 minutes.")
|
||||
with open(params.lm_dir / "G_4_gram.fst.txt") as f:
|
||||
first_word_disambig_id = lexicon.word_table["#0"]
|
||||
|
||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||
# G.aux_labels is not needed in later computations, so
|
||||
# remove it here.
|
||||
del G.aux_labels
|
||||
# CAUTION: The following line is crucial.
|
||||
# Arcs entering the back-off state have label equal to #0.
|
||||
# We have to change it to 0 here.
|
||||
G.labels[G.labels >= first_word_disambig_id] = 0
|
||||
# See https://github.com/k2-fsa/k2/issues/874
|
||||
# for why we need to set G.properties to None
|
||||
G.__dict__["_properties"] = None
|
||||
G = k2.Fsa.from_fsas([G]).to(device)
|
||||
G = k2.arc_sort(G)
|
||||
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
||||
else:
|
||||
logging.info("Loading pre-compiled G_4_gram.pt")
|
||||
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location="cpu")
|
||||
G = k2.Fsa.from_dict(d).to(device)
|
||||
|
||||
if params.method == "whole-lattice-rescoring":
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
G = k2.add_epsilon_self_loops(G)
|
||||
G = k2.arc_sort(G)
|
||||
G = G.to(device)
|
||||
|
||||
# G.lm_scores is used to replace HLG.lm_scores during
|
||||
# LM rescoring.
|
||||
G.lm_scores = G.scores.clone()
|
||||
else:
|
||||
G = None
|
||||
|
||||
model = TdnnLstm(
|
||||
num_features=params.feature_dim,
|
||||
num_classes=max_phone_id + 1, # +1 for the blank symbol
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
if params.export:
|
||||
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||
torch.save(
|
||||
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
||||
)
|
||||
return
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
|
||||
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_dl = [test_clean_dl, test_other_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
lexicon=lexicon,
|
||||
G=G,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params, test_set_name=test_set, results_dict=results_dict
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,103 +0,0 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class TdnnLstm(nn.Module):
|
||||
def __init__(
|
||||
self, num_features: int, num_classes: int, subsampling_factor: int = 3
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
num_features:
|
||||
The input dimension of the model.
|
||||
num_classes:
|
||||
The output dimension of the model.
|
||||
subsampling_factor:
|
||||
It reduces the number of output frames by this factor.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_features = num_features
|
||||
self.num_classes = num_classes
|
||||
self.subsampling_factor = subsampling_factor
|
||||
self.tdnn = nn.Sequential(
|
||||
nn.Conv1d(
|
||||
in_channels=num_features,
|
||||
out_channels=500,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=500, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=500,
|
||||
out_channels=500,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=500, affine=False),
|
||||
nn.Conv1d(
|
||||
in_channels=500,
|
||||
out_channels=500,
|
||||
kernel_size=3,
|
||||
stride=self.subsampling_factor, # stride: subsampling_factor!
|
||||
padding=1,
|
||||
),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.BatchNorm1d(num_features=500, affine=False),
|
||||
)
|
||||
self.lstms = nn.ModuleList(
|
||||
[
|
||||
nn.LSTM(input_size=500, hidden_size=500, num_layers=1)
|
||||
for _ in range(5)
|
||||
]
|
||||
)
|
||||
self.lstm_bnorms = nn.ModuleList(
|
||||
[nn.BatchNorm1d(num_features=500, affine=False) for _ in range(5)]
|
||||
)
|
||||
self.dropout = nn.Dropout(0.2)
|
||||
self.linear = nn.Linear(in_features=500, out_features=self.num_classes)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
Its shape is [N, C, T]
|
||||
|
||||
Returns:
|
||||
The output tensor has shape [N, T, C]
|
||||
"""
|
||||
x = self.tdnn(x)
|
||||
x = x.permute(2, 0, 1) # (N, C, T) -> (T, N, C) -> how LSTM expects it
|
||||
for lstm, bnorm in zip(self.lstms, self.lstm_bnorms):
|
||||
x_new, _ = lstm(x)
|
||||
x_new = bnorm(x_new.permute(1, 2, 0)).permute(
|
||||
2, 0, 1
|
||||
) # (T, N, C) -> (N, C, T) -> (T, N, C)
|
||||
x_new = self.dropout(x_new)
|
||||
x = x_new + x # skip connections
|
||||
x = x.transpose(
|
||||
1, 0
|
||||
) # (T, N, C) -> (N, T, C) -> linear expects "features" in the last dim
|
||||
x = self.linear(x)
|
||||
x = nn.functional.log_softmax(x, dim=-1)
|
||||
return x
|
@ -1,277 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
import k2
|
||||
import kaldifeat
|
||||
import torch
|
||||
import torchaudio
|
||||
from model import TdnnLstm
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
one_best_decoding,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.utils import AttributeDict, get_texts
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--checkpoint",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint. "
|
||||
"The checkpoint is assumed to be saved by "
|
||||
"icefall.checkpoint.save_checkpoint().",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--words-file",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to words.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--HLG", type=str, required=True, help="Path to HLG.pt."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="1best",
|
||||
help="""Decoding method.
|
||||
Possible values are:
|
||||
(1) 1best - Use the best path as decoding output. Only
|
||||
the transformer encoder output is used for decoding.
|
||||
We call it HLG decoding.
|
||||
(2) whole-lattice-rescoring - Use an LM to rescore the
|
||||
decoding lattice and then use 1best to decode the
|
||||
rescored lattice.
|
||||
We call it HLG decoding + n-gram LM rescoring.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--G",
|
||||
type=str,
|
||||
help="""An LM for rescoring.
|
||||
Used only when method is
|
||||
whole-lattice-rescoring.
|
||||
It's usually a 4-gram LM.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ngram-lm-scale",
|
||||
type=float,
|
||||
default=0.8,
|
||||
help="""
|
||||
Used only when method is whole-lattice-rescoring.
|
||||
It specifies the scale for n-gram LM scores.
|
||||
(Note: You need to tune it on a dataset.)
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to transcribe. "
|
||||
"Supported formats are those supported by torchaudio.load(). "
|
||||
"For example, wav and flac are supported. "
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"feature_dim": 80,
|
||||
"subsampling_factor": 3,
|
||||
"num_classes": 72,
|
||||
"sample_rate": 16000,
|
||||
"search_beam": 20,
|
||||
"output_beam": 5,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||
Args:
|
||||
filenames:
|
||||
A list of sound filenames.
|
||||
expected_sample_rate:
|
||||
The expected sample rate of the sound files.
|
||||
Returns:
|
||||
Return a list of 1-D float32 torch tensors.
|
||||
"""
|
||||
ans = []
|
||||
for f in filenames:
|
||||
wave, sample_rate = torchaudio.load(f)
|
||||
assert sample_rate == expected_sample_rate, (
|
||||
f"expected sample rate: {expected_sample_rate}. "
|
||||
f"Given: {sample_rate}"
|
||||
)
|
||||
# We use only the first channel
|
||||
ans.append(wave[0])
|
||||
return ans
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
logging.info(f"{params}")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info("Creating model")
|
||||
model = TdnnLstm(
|
||||
num_features=params.feature_dim,
|
||||
num_classes=params.num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||
model.load_state_dict(checkpoint["model"])
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
logging.info(f"Loading HLG from {params.HLG}")
|
||||
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||
HLG = HLG.to(device)
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
# For whole-lattice-rescoring and attention-decoder
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
if params.method == "whole-lattice-rescoring":
|
||||
logging.info(f"Loading G from {params.G}")
|
||||
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
G = G.to(device)
|
||||
G = k2.add_epsilon_self_loops(G)
|
||||
G = k2.arc_sort(G)
|
||||
G.lm_scores = G.scores.clone()
|
||||
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = params.sample_rate
|
||||
opts.mel_opts.num_bins = params.feature_dim
|
||||
|
||||
fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
logging.info(f"Reading sound files: {params.sound_files}")
|
||||
waves = read_sound_files(
|
||||
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||
)
|
||||
waves = [w.to(device) for w in waves]
|
||||
|
||||
logging.info("Decoding started")
|
||||
features = fbank(waves)
|
||||
|
||||
features = pad_sequence(
|
||||
features, batch_first=True, padding_value=math.log(1e-10)
|
||||
)
|
||||
features = features.permute(0, 2, 1) # now features is (N, C, T)
|
||||
|
||||
with torch.no_grad():
|
||||
nnet_output = model(features)
|
||||
# nnet_output is (N, T, C)
|
||||
|
||||
batch_size = nnet_output.shape[0]
|
||||
supervision_segments = torch.tensor(
|
||||
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
|
||||
dtype=torch.int32,
|
||||
)
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
decoding_graph=HLG,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
if params.method == "1best":
|
||||
logging.info("Use HLG decoding")
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
elif params.method == "whole-lattice-rescoring":
|
||||
logging.info("Use HLG decoding + LM rescoring")
|
||||
best_path_dict = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=[params.ngram_lm_scale],
|
||||
)
|
||||
best_path = next(iter(best_path_dict.values()))
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
words = " ".join(hyp)
|
||||
s += f"{filename}:\n{words}\n\n"
|
||||
logging.info(s)
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -1,603 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
||||
# Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import TdnnLstm
|
||||
from torch import Tensor
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.optim.lr_scheduler import StepLR
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.dist import cleanup_dist, setup_dist
|
||||
from icefall.env import get_env_info
|
||||
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
encode_supervisions,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--world-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
default=12354,
|
||||
help="Master port to use for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start-epoch",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""Resume training from from this epoch.
|
||||
If it is positive, it will load checkpoint from
|
||||
tdnn_lstm_ctc/exp/epoch-{start_epoch-1}.pt
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
"""Return a dict containing training parameters.
|
||||
|
||||
All training related parameters that are not passed from the commandline
|
||||
is saved in the variable `params`.
|
||||
|
||||
Commandline options are merged into `params` after they are parsed, so
|
||||
you can also access them via `params`.
|
||||
|
||||
Explanation of options saved in `params`:
|
||||
|
||||
- exp_dir: It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
|
||||
- lang_dir: It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
|
||||
- lr: It specifies the initial learning rate
|
||||
|
||||
- feature_dim: The model input dim. It has to match the one used
|
||||
in computing features.
|
||||
|
||||
- weight_decay: The weight_decay for the optimizer.
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- best_train_loss: Best training loss so far. It is used to select
|
||||
the model that has the lowest training loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_valid_loss: Best validation loss so far. It is used to select
|
||||
the model that has the lowest validation loss. It is
|
||||
updated during the training.
|
||||
|
||||
- best_train_epoch: It is the epoch that has the best training loss.
|
||||
|
||||
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||
|
||||
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||
contains number of batches trained so far across
|
||||
epochs.
|
||||
|
||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||
|
||||
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||
|
||||
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
||||
|
||||
- beam_size: It is used in k2.ctc_loss
|
||||
|
||||
- reduction: It is used in k2.ctc_loss
|
||||
|
||||
- use_double_scores: It is used in k2.ctc_loss
|
||||
"""
|
||||
params = AttributeDict(
|
||||
{
|
||||
"exp_dir": Path("tdnn_lstm_ctc/exp"),
|
||||
"lang_dir": Path("data/lang_phone"),
|
||||
"lr": 1e-3,
|
||||
"feature_dim": 80,
|
||||
"weight_decay": 5e-4,
|
||||
"subsampling_factor": 3,
|
||||
"best_train_loss": float("inf"),
|
||||
"best_valid_loss": float("inf"),
|
||||
"best_train_epoch": -1,
|
||||
"best_valid_epoch": -1,
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 10,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 1000,
|
||||
"beam_size": 10,
|
||||
"reduction": "sum",
|
||||
"use_double_scores": True,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def load_checkpoint_if_available(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
||||
) -> None:
|
||||
"""Load checkpoint from file.
|
||||
|
||||
If params.start_epoch is positive, it will load the checkpoint from
|
||||
`params.start_epoch - 1`. Otherwise, this function does nothing.
|
||||
|
||||
Apart from loading state dict for `model`, `optimizer` and `scheduler`,
|
||||
it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||
and `best_valid_loss` in `params`.
|
||||
|
||||
Args:
|
||||
params:
|
||||
The return value of :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
optimizer:
|
||||
The optimizer that we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler we are using.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if params.start_epoch <= 0:
|
||||
return
|
||||
|
||||
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||
saved_params = load_checkpoint(
|
||||
filename,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
keys = [
|
||||
"best_train_epoch",
|
||||
"best_valid_epoch",
|
||||
"batch_idx_train",
|
||||
"best_train_loss",
|
||||
"best_valid_loss",
|
||||
]
|
||||
for k in keys:
|
||||
params[k] = saved_params[k]
|
||||
|
||||
return saved_params
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
scheduler: torch.optim.lr_scheduler._LRScheduler,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The training model.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||
save_checkpoint_impl(
|
||||
filename=filename,
|
||||
model=model,
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
if params.best_train_epoch == params.cur_epoch:
|
||||
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||
copyfile(src=filename, dst=best_train_filename)
|
||||
|
||||
if params.best_valid_epoch == params.cur_epoch:
|
||||
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||
copyfile(src=filename, dst=best_valid_filename)
|
||||
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
batch: dict,
|
||||
graph_compiler: CtcTrainingGraphCompiler,
|
||||
is_training: bool,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute CTC loss given the model and its inputs.
|
||||
|
||||
Args:
|
||||
params:
|
||||
Parameters for training. See :func:`get_params`.
|
||||
model:
|
||||
The model for training. It is an instance of TdnnLstm in our case.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
graph_compiler:
|
||||
It is used to build a decoding graph from a ctc topo and training
|
||||
transcript. The training transcript is contained in the given `batch`,
|
||||
while the ctc topo is built when this compiler is instantiated.
|
||||
is_training:
|
||||
True for training. False for validation. When it is True, this
|
||||
function enables autograd during computation; when it is False, it
|
||||
disables autograd.
|
||||
"""
|
||||
device = graph_compiler.device
|
||||
feature = batch["inputs"]
|
||||
# at entry, feature is (N, T, C)
|
||||
feature = feature.permute(0, 2, 1) # now feature is (N, C, T)
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
with torch.set_grad_enabled(is_training):
|
||||
nnet_output = model(feature)
|
||||
# nnet_output is (N, T, C)
|
||||
|
||||
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||
# different duration in decreasing order, required by
|
||||
# `k2.intersect_dense` called in `k2.ctc_loss`
|
||||
supervisions = batch["supervisions"]
|
||||
supervision_segments, texts = encode_supervisions(
|
||||
supervisions, subsampling_factor=params.subsampling_factor
|
||||
)
|
||||
decoding_graph = graph_compiler.compile(texts)
|
||||
|
||||
dense_fsa_vec = k2.DenseFsaVec(
|
||||
nnet_output,
|
||||
supervision_segments,
|
||||
allow_truncate=params.subsampling_factor - 1,
|
||||
)
|
||||
|
||||
loss = k2.ctc_loss(
|
||||
decoding_graph=decoding_graph,
|
||||
dense_fsa_vec=dense_fsa_vec,
|
||||
output_beam=params.beam_size,
|
||||
reduction=params.reduction,
|
||||
use_double_scores=params.use_double_scores,
|
||||
)
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
info = MetricsTracker()
|
||||
info["frames"] = supervision_segments[:, 2].sum().item()
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
|
||||
return loss, info
|
||||
|
||||
|
||||
def compute_validation_loss(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
graph_compiler: CtcTrainingGraphCompiler,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
world_size: int = 1,
|
||||
) -> MetricsTracker:
|
||||
"""Run the validation process. The validation loss
|
||||
is saved in `params.valid_loss`.
|
||||
"""
|
||||
model.eval()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(valid_dl):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=False,
|
||||
)
|
||||
assert loss.requires_grad is False
|
||||
|
||||
tot_loss = tot_loss + loss_info
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(loss.device)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
|
||||
if loss_value < params.best_valid_loss:
|
||||
params.best_valid_epoch = params.cur_epoch
|
||||
params.best_valid_loss = loss_value
|
||||
|
||||
return tot_loss
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
graph_compiler: CtcTrainingGraphCompiler,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
graph_compiler:
|
||||
It is used to convert transcripts to FSAs.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
"""
|
||||
model.train()
|
||||
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
batch=batch,
|
||||
graph_compiler=graph_compiler,
|
||||
is_training=True,
|
||||
)
|
||||
# summary stats.
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}"
|
||||
)
|
||||
if batch_idx % params.log_interval == 0:
|
||||
|
||||
if tb_writer is not None:
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(
|
||||
tb_writer, "train/tot_", params.batch_idx_train
|
||||
)
|
||||
|
||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
graph_compiler=graph_compiler,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation {valid_info}")
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer,
|
||||
"train/valid_",
|
||||
params.batch_idx_train,
|
||||
)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(42)
|
||||
if world_size > 1:
|
||||
setup_dist(rank, world_size, params.master_port)
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info("Training started")
|
||||
logging.info(params)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_phone_id = max(lexicon.tokens)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", rank)
|
||||
|
||||
graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device)
|
||||
|
||||
model = TdnnLstm(
|
||||
num_features=params.feature_dim,
|
||||
num_classes=max_phone_id + 1, # +1 for the blank symbol
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
|
||||
model.to(device)
|
||||
if world_size > 1:
|
||||
model = DDP(model, device_ids=[rank])
|
||||
|
||||
optimizer = optim.AdamW(
|
||||
model.parameters(),
|
||||
lr=params.lr,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
scheduler = StepLR(optimizer, step_size=8, gamma=0.1)
|
||||
|
||||
if checkpoints:
|
||||
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||
scheduler.load_state_dict(checkpoints["scheduler"])
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
train_cuts = librispeech.train_clean_100_cuts()
|
||||
if params.full_libri:
|
||||
train_cuts += librispeech.train_clean_360_cuts()
|
||||
train_cuts += librispeech.train_other_500_cuts()
|
||||
train_dl = librispeech.train_dataloaders(train_cuts)
|
||||
|
||||
valid_cuts = librispeech.dev_clean_cuts()
|
||||
valid_cuts += librispeech.dev_other_cuts()
|
||||
valid_dl = librispeech.valid_dataloaders(valid_cuts)
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
|
||||
if epoch > params.start_epoch:
|
||||
logging.info(f"epoch {epoch}, lr: {scheduler.get_last_lr()[0]}")
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/lr",
|
||||
scheduler.get_last_lr()[0],
|
||||
params.batch_idx_train,
|
||||
)
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
graph_compiler=graph_compiler,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
scheduler.step()
|
||||
|
||||
save_checkpoint(
|
||||
params=params,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
if world_size > 1:
|
||||
torch.distributed.barrier()
|
||||
cleanup_dist()
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
world_size = args.world_size
|
||||
assert world_size >= 1
|
||||
if world_size > 1:
|
||||
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||
else:
|
||||
run(rank=0, world_size=1, args=args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user