Adding Dockerfile for Ubuntu18.04-pytorch1.12.1-cuda11.3-cudnn8 (#572)

* Changed Dockerfile

* Update Dockerfile

* Dockerfile

* Update README.md

* Add Dockerfiles

* Update README.md

Removed misleading CUDA version, as the Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8 Dockerfile can only support CUDA versions >11.0.
This commit is contained in:
Teo Wen Shen 2022-09-20 10:52:24 +08:00 committed by GitHub
parent 97b3fc53aa
commit 436942211c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 203 additions and 42 deletions

View File

@ -1,24 +1,114 @@
# icefall dockerfile # icefall dockerfile
We provide a dockerfile for some users, the configuration of dockerfile is : Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8-python3.8. You can use the dockerfile by following the steps: 2 sets of configuration are provided - (a) Ubuntu18.04-pytorch1.12.1-cuda11.3-cudnn8, and (b) Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8.
## Building images locally If your NVIDIA driver supports CUDA Version: 11.3, please go for case (a) Ubuntu18.04-pytorch1.12.1-cuda11.3-cudnn8.
Otherwise, since the older PyTorch images are not updated with the [apt-key rotation by NVIDIA](https://developer.nvidia.com/blog/updating-the-cuda-linux-gpg-repository-key), you have to go for case (b) Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8. Ensure that your NVDIA driver supports at least CUDA 11.0.
You can check the highest CUDA version within your NVIDIA driver's support with the `nvidia-smi` command below. In this example, the highest CUDA version is 11.0, i.e. case (b) Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8.
```bash ```bash
cd docker/Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8 $ nvidia-smi
docker build -t icefall/pytorch1.7.1:latest -f ./Dockerfile ./ Tue Sep 20 00:26:13 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.119.03 Driver Version: 450.119.03 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 TITAN RTX On | 00000000:03:00.0 Off | N/A |
| 41% 31C P8 4W / 280W | 16MiB / 24219MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 TITAN RTX On | 00000000:04:00.0 Off | N/A |
| 41% 30C P8 11W / 280W | 6MiB / 24220MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 2085 G /usr/lib/xorg/Xorg 9MiB |
| 0 N/A N/A 2240 G /usr/bin/gnome-shell 4MiB |
| 1 N/A N/A 2085 G /usr/lib/xorg/Xorg 4MiB |
+-----------------------------------------------------------------------------+
``` ```
## Using built images ## Building images locally
Sample usage of the GPU based images: If your environment requires a proxy to access the Internet, remember to add those information into the Dockerfile directly.
For most cases, you can uncomment these lines in the Dockerfile and add in your proxy details.
```dockerfile
ENV http_proxy=http://aaa.bb.cc.net:8080 \
https_proxy=http://aaa.bb.cc.net:8080
```
Then, proceed with these commands.
### If you are case (a), i.e. your NVIDIA driver supports CUDA version >= 11.3:
```bash
cd docker/Ubuntu18.04-pytorch1.12.1-cuda11.3-cudnn8
docker build -t icefall/pytorch1.12.1 .
```
### If you are case (b), i.e. your NVIDIA driver can only support CUDA versions 11.0 <= x < 11.3:
```bash
cd docker/Ubuntu18.04-pytorch1.7.1-cuda11.0-cudnn8
docker build -t icefall/pytorch1.7.1 .
```
## Running your built local image
Sample usage of the GPU based images. These commands are written with case (a) in mind, so please make the necessary changes to your image name if you are case (b).
Note: use [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) to run the GPU images. Note: use [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) to run the GPU images.
```bash ```bash
docker run -it --runtime=nvidia --name=icefall_username --gpus all icefall/pytorch1.7.1:latest docker run -it --runtime=nvidia --shm-size=2gb --name=icefall --gpus all icefall/pytorch1.12.1
``` ```
Sample usage of the CPU based images: ### Tips:
1. Since your data and models most probably won't be in the docker, you must use the -v flag to access the host machine. Do this by specifying `-v {/path/in/docker}:{/path/in/host/machine}`.
2. Also, if your environment requires a proxy, this would be a good time to add it in too: `-e http_proxy=http://aaa.bb.cc.net:8080 -e https_proxy=http://aaa.bb.cc.net:8080`.
Overall, your docker run command should look like this.
```bash ```bash
docker run -it icefall/pytorch1.7.1:latest /bin/bash docker run -it --runtime=nvidia --shm-size=2gb --name=icefall --gpus all -v {/path/in/docker}:{/path/in/host/machine} -e http_proxy=http://aaa.bb.cc.net:8080 -e https_proxy=http://aaa.bb.cc.net:8080 icefall/pytorch1.12.1
```
You can explore more docker run options [here](https://docs.docker.com/engine/reference/commandline/run/) to suit your environment.
### Linking to icefall in your host machine
If you already have icefall downloaded onto your host machine, you can use that repository instead so that changes in your code are visible inside and outside of the container.
Note: Remember to set the -v flag above during the first run of the container, as that is the only way for your container to access your host machine.
Warning: Check that the icefall in your host machine is visible from within your container before proceeding to the commands below.
Use these commands once you are inside the container.
```bash
rm -r /workspace/icefall
ln -s {/path/in/docker/to/icefall} /workspace/icefall
```
## Starting another session in the same running container.
```bash
docker exec -it icefall /bin/bash
```
## Restarting a killed container that has been run before.
```bash
docker start -ai icefall
```
## Sample usage of the CPU based images:
```bash
docker run -it icefall /bin/bash
``` ```

View File

@ -0,0 +1,72 @@
FROM pytorch/pytorch:1.12.1-cuda11.3-cudnn8-devel
# ENV http_proxy=http://aaa.bbb.cc.net:8080 \
# https_proxy=http://aaa.bbb.cc.net:8080
# install normal source
RUN apt-get update && \
apt-get install -y --no-install-recommends \
g++ \
make \
automake \
autoconf \
bzip2 \
unzip \
wget \
sox \
libtool \
git \
subversion \
zlib1g-dev \
gfortran \
ca-certificates \
patch \
ffmpeg \
valgrind \
libssl-dev \
vim \
curl
# cmake
RUN wget -P /opt https://cmake.org/files/v3.18/cmake-3.18.0.tar.gz && \
cd /opt && \
tar -zxvf cmake-3.18.0.tar.gz && \
cd cmake-3.18.0 && \
./bootstrap && \
make && \
make install && \
rm -rf cmake-3.18.0.tar.gz && \
find /opt/cmake-3.18.0 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \
cd -
# flac
RUN wget -P /opt https://downloads.xiph.org/releases/flac/flac-1.3.2.tar.xz && \
cd /opt && \
xz -d flac-1.3.2.tar.xz && \
tar -xvf flac-1.3.2.tar && \
cd flac-1.3.2 && \
./configure && \
make && make install && \
rm -rf flac-1.3.2.tar && \
find /opt/flac-1.3.2 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \
cd -
RUN pip install kaldiio graphviz && \
conda install -y -c pytorch torchaudio
#install k2 from source
RUN git clone https://github.com/k2-fsa/k2.git /opt/k2 && \
cd /opt/k2 && \
python3 setup.py install && \
cd -
# install lhotse
RUN pip install git+https://github.com/lhotse-speech/lhotse
RUN git clone https://github.com/k2-fsa/icefall /workspace/icefall && \
cd /workspace/icefall && \
pip install -r requirements.txt
ENV PYTHONPATH /workspace/icefall:$PYTHONPATH
WORKDIR /workspace/icefall

View File

@ -1,7 +1,13 @@
FROM pytorch/pytorch:1.7.1-cuda11.0-cudnn8-devel FROM pytorch/pytorch:1.7.1-cuda11.0-cudnn8-devel
# install normal source # ENV http_proxy=http://aaa.bbb.cc.net:8080 \
# https_proxy=http://aaa.bbb.cc.net:8080
RUN rm /etc/apt/sources.list.d/cuda.list && \
rm /etc/apt/sources.list.d/nvidia-ml.list && \
apt-key del 7fa2af80
# install normal source
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y --no-install-recommends \ apt-get install -y --no-install-recommends \
g++ \ g++ \
@ -21,20 +27,25 @@ RUN apt-get update && \
patch \ patch \
ffmpeg \ ffmpeg \
valgrind \ valgrind \
libssl-dev \ libssl-dev \
vim && \ vim \
rm -rf /var/lib/apt/lists/* curl
# Add new keys and reupdate
RUN mv /opt/conda/lib/libcufft.so.10 /opt/libcufft.so.10.bak && \ RUN curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub | apt-key add - && \
curl -fsSL https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub | apt-key add - && \
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 /" > /etc/apt/sources.list.d/cuda.list && \
echo "deb https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64 /" > /etc/apt/sources.list.d/nvidia-ml.list && \
rm -rf /var/lib/apt/lists/* && \
mv /opt/conda/lib/libcufft.so.10 /opt/libcufft.so.10.bak && \
mv /opt/conda/lib/libcurand.so.10 /opt/libcurand.so.10.bak && \ mv /opt/conda/lib/libcurand.so.10 /opt/libcurand.so.10.bak && \
mv /opt/conda/lib/libcublas.so.11 /opt/libcublas.so.11.bak && \ mv /opt/conda/lib/libcublas.so.11 /opt/libcublas.so.11.bak && \
mv /opt/conda/lib/libnvrtc.so.11.0 /opt/libnvrtc.so.11.1.bak && \ mv /opt/conda/lib/libnvrtc.so.11.0 /opt/libnvrtc.so.11.1.bak && \
mv /opt/conda/lib/libnvToolsExt.so.1 /opt/libnvToolsExt.so.1.bak && \ # mv /opt/conda/lib/libnvToolsExt.so.1 /opt/libnvToolsExt.so.1.bak && \
mv /opt/conda/lib/libcudart.so.11.0 /opt/libcudart.so.11.0.bak mv /opt/conda/lib/libcudart.so.11.0 /opt/libcudart.so.11.0.bak && \
apt-get update && apt-get -y upgrade
# cmake # cmake
RUN wget -P /opt https://cmake.org/files/v3.18/cmake-3.18.0.tar.gz && \ RUN wget -P /opt https://cmake.org/files/v3.18/cmake-3.18.0.tar.gz && \
cd /opt && \ cd /opt && \
tar -zxvf cmake-3.18.0.tar.gz && \ tar -zxvf cmake-3.18.0.tar.gz && \
@ -46,10 +57,6 @@ RUN wget -P /opt https://cmake.org/files/v3.18/cmake-3.18.0.tar.gz && \
find /opt/cmake-3.18.0 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \ find /opt/cmake-3.18.0 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \
cd - cd -
#kaldiio
RUN pip install kaldiio
# flac # flac
RUN wget -P /opt https://downloads.xiph.org/releases/flac/flac-1.3.2.tar.xz && \ RUN wget -P /opt https://downloads.xiph.org/releases/flac/flac-1.3.2.tar.xz && \
cd /opt && \ cd /opt && \
@ -62,15 +69,8 @@ RUN wget -P /opt https://downloads.xiph.org/releases/flac/flac-1.3.2.tar.xz &&
find /opt/flac-1.3.2 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \ find /opt/flac-1.3.2 -type f \( -name "*.o" -o -name "*.la" -o -name "*.a" \) -exec rm {} \; && \
cd - cd -
# graphviz RUN pip install kaldiio graphviz && \
RUN pip install graphviz conda install -y -c pytorch torchaudio=0.7.1
# kaldifeat
RUN git clone https://github.com/csukuangfj/kaldifeat.git /opt/kaldifeat && \
cd /opt/kaldifeat && \
python setup.py install && \
cd -
#install k2 from source #install k2 from source
RUN git clone https://github.com/k2-fsa/k2.git /opt/k2 && \ RUN git clone https://github.com/k2-fsa/k2.git /opt/k2 && \
@ -79,14 +79,13 @@ RUN git clone https://github.com/k2-fsa/k2.git /opt/k2 && \
cd - cd -
# install lhotse # install lhotse
RUN pip install torchaudio==0.7.2
RUN pip install git+https://github.com/lhotse-speech/lhotse RUN pip install git+https://github.com/lhotse-speech/lhotse
#RUN pip install lhotse
# install icefall RUN git clone https://github.com/k2-fsa/icefall /workspace/icefall && \
RUN git clone https://github.com/k2-fsa/icefall && \ cd /workspace/icefall && \
cd icefall && \ pip install -r requirements.txt
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
ENV PYTHONPATH /workspace/icefall:$PYTHONPATH ENV PYTHONPATH /workspace/icefall:$PYTHONPATH
WORKDIR /workspace/icefall