mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
clean commit for SURT recipe
This commit is contained in:
parent
674c9af713
commit
42daafee4e
@ -1,372 +0,0 @@
|
|||||||
# Copyright 2021 Piotr Żelasko
|
|
||||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import inspect
|
|
||||||
import logging
|
|
||||||
from functools import lru_cache
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Any, Callable, Dict, List, Optional
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
|
||||||
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|
||||||
CutMix,
|
|
||||||
DynamicBucketingSampler,
|
|
||||||
K2SurtDataset,
|
|
||||||
PrecomputedFeatures,
|
|
||||||
SimpleCutSampler,
|
|
||||||
SpecAugment,
|
|
||||||
)
|
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
|
||||||
from lhotse.utils import fix_random_seed
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
|
|
||||||
class _SeedWorkers:
|
|
||||||
def __init__(self, seed: int):
|
|
||||||
self.seed = seed
|
|
||||||
|
|
||||||
def __call__(self, worker_id: int):
|
|
||||||
fix_random_seed(self.seed + worker_id)
|
|
||||||
|
|
||||||
|
|
||||||
class LibrimixAsrDataModule:
|
|
||||||
"""
|
|
||||||
DataModule for k2 ASR experiments.
|
|
||||||
It assumes there is always one train and valid dataloader,
|
|
||||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
|
||||||
and test-other).
|
|
||||||
|
|
||||||
It contains all the common data pipeline modules used in ASR
|
|
||||||
experiments, e.g.:
|
|
||||||
- dynamic batch size,
|
|
||||||
- bucketing samplers,
|
|
||||||
- augmentation,
|
|
||||||
- on-the-fly feature extraction
|
|
||||||
|
|
||||||
This class should be derived for specific corpora used in ASR tasks.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, args: argparse.Namespace):
|
|
||||||
self.args = args
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
|
||||||
group = parser.add_argument_group(
|
|
||||||
title="ASR data related options",
|
|
||||||
description="These options are used for the preparation of "
|
|
||||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
|
||||||
"effective batch sizes, sampling strategies, applied data "
|
|
||||||
"augmentations, etc.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--manifest-dir",
|
|
||||||
type=Path,
|
|
||||||
default=Path("data/manifests"),
|
|
||||||
help="Path to directory with train/valid/test cuts.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--max-duration",
|
|
||||||
type=int,
|
|
||||||
default=200.0,
|
|
||||||
help="Maximum pooled recordings duration (seconds) in a "
|
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--max-cuts",
|
|
||||||
type=int,
|
|
||||||
default=100,
|
|
||||||
help="Maximum number of cuts in a single batch. You can "
|
|
||||||
"reduce it if it causes CUDA OOM.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--bucketing-sampler",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, the batches will come from buckets of "
|
|
||||||
"similar duration (saves padding frames).",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--num-buckets",
|
|
||||||
type=int,
|
|
||||||
default=30,
|
|
||||||
help="The number of buckets for the DynamicBucketingSampler"
|
|
||||||
"(you might want to increase it for larger datasets).",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--on-the-fly-feats",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help=(
|
|
||||||
"When enabled, use on-the-fly cut mixing and feature "
|
|
||||||
"extraction. Will drop existing precomputed feature manifests "
|
|
||||||
"if available."
|
|
||||||
),
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--shuffle",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled (=default), the examples will be "
|
|
||||||
"shuffled for each epoch.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--drop-last",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="Whether to drop last batch. Used by sampler.",
|
|
||||||
)
|
|
||||||
group.add_argument(
|
|
||||||
"--return-cuts",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, each batch will have the "
|
|
||||||
"field: batch['supervisions']['cut'] with the cuts that "
|
|
||||||
"were used to construct it.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--num-workers",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The number of training dataloader workers that "
|
|
||||||
"collect the batches.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--enable-spec-aug",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, use SpecAugment for training dataset.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--spec-aug-time-warp-factor",
|
|
||||||
type=int,
|
|
||||||
default=80,
|
|
||||||
help="Used only when --enable-spec-aug is True. "
|
|
||||||
"It specifies the factor for time warping in SpecAugment. "
|
|
||||||
"Larger values mean more warping. "
|
|
||||||
"A value less than 1 means to disable time warp.",
|
|
||||||
)
|
|
||||||
|
|
||||||
group.add_argument(
|
|
||||||
"--enable-musan",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="When enabled, select noise from MUSAN and mix it"
|
|
||||||
"with training dataset. ",
|
|
||||||
)
|
|
||||||
|
|
||||||
def train_dataloaders(
|
|
||||||
self,
|
|
||||||
cuts_train: CutSet,
|
|
||||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
|
||||||
) -> DataLoader:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
cuts_train:
|
|
||||||
CutSet for training.
|
|
||||||
sampler_state_dict:
|
|
||||||
The state dict for the training sampler.
|
|
||||||
"""
|
|
||||||
transforms = []
|
|
||||||
if self.args.enable_musan:
|
|
||||||
logging.info("Enable MUSAN")
|
|
||||||
logging.info("About to get Musan cuts")
|
|
||||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
|
||||||
transforms.append(
|
|
||||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logging.info("Disable MUSAN")
|
|
||||||
|
|
||||||
input_transforms = []
|
|
||||||
if self.args.enable_spec_aug:
|
|
||||||
logging.info("Enable SpecAugment")
|
|
||||||
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
|
||||||
# Set the value of num_frame_masks according to Lhotse's version.
|
|
||||||
# In different Lhotse's versions, the default of num_frame_masks is
|
|
||||||
# different.
|
|
||||||
num_frame_masks = 10
|
|
||||||
num_frame_masks_parameter = inspect.signature(
|
|
||||||
SpecAugment.__init__
|
|
||||||
).parameters["num_frame_masks"]
|
|
||||||
if num_frame_masks_parameter.default == 1:
|
|
||||||
num_frame_masks = 2
|
|
||||||
logging.info(f"Num frame mask: {num_frame_masks}")
|
|
||||||
input_transforms.append(
|
|
||||||
SpecAugment(
|
|
||||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
|
||||||
num_frame_masks=num_frame_masks,
|
|
||||||
features_mask_size=27,
|
|
||||||
num_feature_masks=2,
|
|
||||||
frames_mask_size=100,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logging.info("Disable SpecAugment")
|
|
||||||
|
|
||||||
logging.info("About to create train dataset")
|
|
||||||
train = K2SurtDataset(
|
|
||||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
|
||||||
if self.args.on_the_fly_feats
|
|
||||||
else PrecomputedFeatures(),
|
|
||||||
cut_transforms=transforms,
|
|
||||||
input_transforms=input_transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.args.bucketing_sampler:
|
|
||||||
logging.info("Using DynamicBucketingSampler.")
|
|
||||||
train_sampler = DynamicBucketingSampler(
|
|
||||||
cuts_train,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
quadratic_duration=30.0,
|
|
||||||
max_cuts=self.args.max_cuts,
|
|
||||||
shuffle=self.args.shuffle,
|
|
||||||
num_buckets=self.args.num_buckets,
|
|
||||||
drop_last=self.args.drop_last,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logging.info("Using SingleCutSampler.")
|
|
||||||
train_sampler = SimpleCutSampler(
|
|
||||||
cuts_train,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
max_cuts=self.args.max_cuts,
|
|
||||||
shuffle=self.args.shuffle,
|
|
||||||
)
|
|
||||||
logging.info("About to create train dataloader")
|
|
||||||
|
|
||||||
if sampler_state_dict is not None:
|
|
||||||
logging.info("Loading sampler state dict")
|
|
||||||
train_sampler.load_state_dict(sampler_state_dict)
|
|
||||||
|
|
||||||
# 'seed' is derived from the current random state, which will have
|
|
||||||
# previously been set in the main process.
|
|
||||||
seed = torch.randint(0, 100000, ()).item()
|
|
||||||
worker_init_fn = _SeedWorkers(seed)
|
|
||||||
|
|
||||||
train_dl = DataLoader(
|
|
||||||
train,
|
|
||||||
sampler=train_sampler,
|
|
||||||
batch_size=None,
|
|
||||||
num_workers=self.args.num_workers,
|
|
||||||
persistent_workers=False,
|
|
||||||
worker_init_fn=worker_init_fn,
|
|
||||||
)
|
|
||||||
|
|
||||||
return train_dl
|
|
||||||
|
|
||||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
|
||||||
transforms = []
|
|
||||||
|
|
||||||
logging.info("About to create dev dataset")
|
|
||||||
validate = K2SurtDataset(
|
|
||||||
input_strategy=OnTheFlyFeatures(
|
|
||||||
OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
|
||||||
)
|
|
||||||
if self.args.on_the_fly_feats
|
|
||||||
else PrecomputedFeatures(),
|
|
||||||
cut_transforms=transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
valid_sampler = DynamicBucketingSampler(
|
|
||||||
cuts_valid,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
max_cuts=self.args.max_cuts,
|
|
||||||
shuffle=False,
|
|
||||||
)
|
|
||||||
logging.info("About to create dev dataloader")
|
|
||||||
valid_dl = DataLoader(
|
|
||||||
validate,
|
|
||||||
sampler=valid_sampler,
|
|
||||||
batch_size=None,
|
|
||||||
num_workers=2,
|
|
||||||
persistent_workers=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
return valid_dl
|
|
||||||
|
|
||||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
|
||||||
logging.debug("About to create test dataset")
|
|
||||||
test = K2SurtDataset(
|
|
||||||
input_strategy=OnTheFlyFeatures(
|
|
||||||
OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
|
||||||
)
|
|
||||||
if self.args.on_the_fly_feats
|
|
||||||
else PrecomputedFeatures(),
|
|
||||||
return_cuts=self.args.return_cuts,
|
|
||||||
)
|
|
||||||
sampler = DynamicBucketingSampler(
|
|
||||||
cuts,
|
|
||||||
max_duration=self.args.max_duration,
|
|
||||||
max_cuts=self.args.max_cuts,
|
|
||||||
shuffle=False,
|
|
||||||
)
|
|
||||||
logging.debug("About to create test dataloader")
|
|
||||||
test_dl = DataLoader(
|
|
||||||
test,
|
|
||||||
batch_size=None,
|
|
||||||
sampler=sampler,
|
|
||||||
num_workers=self.args.num_workers,
|
|
||||||
)
|
|
||||||
return test_dl
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def train_cuts(self, reverberated: bool = False) -> CutSet:
|
|
||||||
logging.info("About to get train cuts")
|
|
||||||
rvb_affix = "_rvb" if reverberated else "_norvb"
|
|
||||||
cs = load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / f"cuts_train{rvb_affix}_v1.jsonl.gz"
|
|
||||||
)
|
|
||||||
# Trim to supervision groups
|
|
||||||
cs = cs.trim_to_supervision_groups(max_pause=1.0)
|
|
||||||
cs = cs.filter(lambda c: c.duration >= 1.0 and c.duration <= 30.0)
|
|
||||||
return cs
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def dev_cuts(self, reverberated: bool = False) -> CutSet:
|
|
||||||
logging.info("About to get dev cuts")
|
|
||||||
rvb_affix = "_rvb" if reverberated else "_norvb"
|
|
||||||
cs = load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / f"cuts_dev{rvb_affix}_v1.jsonl.gz"
|
|
||||||
)
|
|
||||||
cs = cs.filter(lambda c: c.duration >= 0.1)
|
|
||||||
return cs
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def train_cuts_2spk(self, reverberated: bool = False) -> CutSet:
|
|
||||||
logging.info("About to get 2-spk train cuts")
|
|
||||||
rvb_affix = "_rvb" if reverberated else "_norvb"
|
|
||||||
cs = load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / f"cuts_train_2spk{rvb_affix}.jsonl.gz"
|
|
||||||
)
|
|
||||||
cs = cs.filter(lambda c: c.duration >= 1.0 and c.duration <= 30.0)
|
|
||||||
return cs
|
|
||||||
|
|
||||||
@lru_cache()
|
|
||||||
def libricss_cuts(self, split="dev", type="sdm") -> CutSet:
|
|
||||||
logging.info(f"About to get LibriCSS {split} {type} cuts")
|
|
||||||
cs = load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / f"cuts_{split}_libricss-{type}.jsonl.gz"
|
|
||||||
)
|
|
||||||
return cs
|
|
||||||
@ -1,885 +0,0 @@
|
|||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
|
||||||
# Xiaoyu Yang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import warnings
|
|
||||||
from dataclasses import dataclass, field
|
|
||||||
from typing import Dict, List, Optional, Tuple, Union
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
|
||||||
from model import SURT
|
|
||||||
|
|
||||||
from icefall import NgramLm, NgramLmStateCost
|
|
||||||
from icefall.decode import Nbest, one_best_decoding
|
|
||||||
from icefall.lm_wrapper import LmScorer
|
|
||||||
from icefall.utils import (
|
|
||||||
DecodingResults,
|
|
||||||
add_eos,
|
|
||||||
add_sos,
|
|
||||||
get_texts,
|
|
||||||
get_texts_with_timestamp,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def fast_beam_search_one_best(
|
|
||||||
model: SURT,
|
|
||||||
decoding_graph: k2.Fsa,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
encoder_out_lens: torch.Tensor,
|
|
||||||
beam: float,
|
|
||||||
max_states: int,
|
|
||||||
max_contexts: int,
|
|
||||||
temperature: float = 1.0,
|
|
||||||
return_timestamps: bool = False,
|
|
||||||
) -> Union[List[List[int]], DecodingResults]:
|
|
||||||
"""It limits the maximum number of symbols per frame to 1.
|
|
||||||
|
|
||||||
A lattice is first obtained using fast beam search, and then
|
|
||||||
the shortest path within the lattice is used as the final output.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
An instance of `SURT`.
|
|
||||||
decoding_graph:
|
|
||||||
Decoding graph used for decoding, may be a TrivialGraph or a LG.
|
|
||||||
encoder_out:
|
|
||||||
A tensor of shape (N, T, C) from the encoder.
|
|
||||||
encoder_out_lens:
|
|
||||||
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
|
||||||
before padding.
|
|
||||||
beam:
|
|
||||||
Beam value, similar to the beam used in Kaldi..
|
|
||||||
max_states:
|
|
||||||
Max states per stream per frame.
|
|
||||||
max_contexts:
|
|
||||||
Max contexts pre stream per frame.
|
|
||||||
temperature:
|
|
||||||
Softmax temperature.
|
|
||||||
return_timestamps:
|
|
||||||
Whether to return timestamps.
|
|
||||||
Returns:
|
|
||||||
If return_timestamps is False, return the decoded result.
|
|
||||||
Else, return a DecodingResults object containing
|
|
||||||
decoded result and corresponding timestamps.
|
|
||||||
"""
|
|
||||||
lattice = fast_beam_search(
|
|
||||||
model=model,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
beam=beam,
|
|
||||||
max_states=max_states,
|
|
||||||
max_contexts=max_contexts,
|
|
||||||
temperature=temperature,
|
|
||||||
)
|
|
||||||
|
|
||||||
best_path = one_best_decoding(lattice)
|
|
||||||
|
|
||||||
if not return_timestamps:
|
|
||||||
return get_texts(best_path)
|
|
||||||
else:
|
|
||||||
return get_texts_with_timestamp(best_path)
|
|
||||||
|
|
||||||
|
|
||||||
def fast_beam_search(
|
|
||||||
model: SURT,
|
|
||||||
decoding_graph: k2.Fsa,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
encoder_out_lens: torch.Tensor,
|
|
||||||
beam: float,
|
|
||||||
max_states: int,
|
|
||||||
max_contexts: int,
|
|
||||||
temperature: float = 1.0,
|
|
||||||
) -> k2.Fsa:
|
|
||||||
"""It limits the maximum number of symbols per frame to 1.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
An instance of `SURT`.
|
|
||||||
decoding_graph:
|
|
||||||
Decoding graph used for decoding, may be a TrivialGraph or a LG.
|
|
||||||
encoder_out:
|
|
||||||
A tensor of shape (N, T, C) from the encoder.
|
|
||||||
encoder_out_lens:
|
|
||||||
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
|
||||||
before padding.
|
|
||||||
beam:
|
|
||||||
Beam value, similar to the beam used in Kaldi..
|
|
||||||
max_states:
|
|
||||||
Max states per stream per frame.
|
|
||||||
max_contexts:
|
|
||||||
Max contexts pre stream per frame.
|
|
||||||
temperature:
|
|
||||||
Softmax temperature.
|
|
||||||
Returns:
|
|
||||||
Return an FsaVec with axes [utt][state][arc] containing the decoded
|
|
||||||
lattice. Note: When the input graph is a TrivialGraph, the returned
|
|
||||||
lattice is actually an acceptor.
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
vocab_size = model.decoder.vocab_size
|
|
||||||
|
|
||||||
B, T, C = encoder_out.shape
|
|
||||||
|
|
||||||
config = k2.RnntDecodingConfig(
|
|
||||||
vocab_size=vocab_size,
|
|
||||||
decoder_history_len=context_size,
|
|
||||||
beam=beam,
|
|
||||||
max_contexts=max_contexts,
|
|
||||||
max_states=max_states,
|
|
||||||
)
|
|
||||||
individual_streams = []
|
|
||||||
for i in range(B):
|
|
||||||
individual_streams.append(k2.RnntDecodingStream(decoding_graph))
|
|
||||||
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
|
|
||||||
|
|
||||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
|
||||||
|
|
||||||
for t in range(T):
|
|
||||||
# shape is a RaggedShape of shape (B, context)
|
|
||||||
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
|
||||||
shape, contexts = decoding_streams.get_contexts()
|
|
||||||
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
|
||||||
contexts = contexts.to(torch.int64)
|
|
||||||
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
|
||||||
decoder_out = model.decoder(contexts, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
# current_encoder_out is of shape
|
|
||||||
# (shape.NumElements(), 1, joiner_dim)
|
|
||||||
# fmt: off
|
|
||||||
current_encoder_out = torch.index_select(
|
|
||||||
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
|
|
||||||
)
|
|
||||||
# fmt: on
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out.unsqueeze(2),
|
|
||||||
decoder_out.unsqueeze(1),
|
|
||||||
project_input=False,
|
|
||||||
)
|
|
||||||
logits = logits.squeeze(1).squeeze(1)
|
|
||||||
log_probs = (logits / temperature).log_softmax(dim=-1)
|
|
||||||
decoding_streams.advance(log_probs)
|
|
||||||
decoding_streams.terminate_and_flush_to_streams()
|
|
||||||
lattice = decoding_streams.format_output(encoder_out_lens.tolist())
|
|
||||||
|
|
||||||
return lattice
|
|
||||||
|
|
||||||
|
|
||||||
def greedy_search(
|
|
||||||
model: SURT,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
max_sym_per_frame: int,
|
|
||||||
return_timestamps: bool = False,
|
|
||||||
) -> Union[List[int], DecodingResults]:
|
|
||||||
"""Greedy search for a single utterance.
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
An instance of `SURT`.
|
|
||||||
encoder_out:
|
|
||||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
|
||||||
max_sym_per_frame:
|
|
||||||
Maximum number of symbols per frame. If it is set to 0, the WER
|
|
||||||
would be 100%.
|
|
||||||
return_timestamps:
|
|
||||||
Whether to return timestamps.
|
|
||||||
Returns:
|
|
||||||
If return_timestamps is False, return the decoded result.
|
|
||||||
Else, return a DecodingResults object containing
|
|
||||||
decoded result and corresponding timestamps.
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 4
|
|
||||||
|
|
||||||
# support only batch_size == 1 for now
|
|
||||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
unk_id = getattr(model, "unk_id", blank_id)
|
|
||||||
|
|
||||||
device = next(model.parameters()).device
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[-1] * (context_size - 1) + [blank_id], device=device, dtype=torch.int64
|
|
||||||
).reshape(1, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
|
|
||||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
|
||||||
|
|
||||||
T = encoder_out.size(1)
|
|
||||||
t = 0
|
|
||||||
hyp = [blank_id] * context_size
|
|
||||||
|
|
||||||
# timestamp[i] is the frame index after subsampling
|
|
||||||
# on which hyp[i] is decoded
|
|
||||||
timestamp = []
|
|
||||||
|
|
||||||
# Maximum symbols per utterance.
|
|
||||||
max_sym_per_utt = 1000
|
|
||||||
|
|
||||||
# symbols per frame
|
|
||||||
sym_per_frame = 0
|
|
||||||
|
|
||||||
# symbols per utterance decoded so far
|
|
||||||
sym_per_utt = 0
|
|
||||||
|
|
||||||
while t < T and sym_per_utt < max_sym_per_utt:
|
|
||||||
if sym_per_frame >= max_sym_per_frame:
|
|
||||||
sym_per_frame = 0
|
|
||||||
t += 1
|
|
||||||
continue
|
|
||||||
|
|
||||||
# fmt: off
|
|
||||||
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
|
||||||
# fmt: on
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out, decoder_out.unsqueeze(1), project_input=False
|
|
||||||
)
|
|
||||||
# logits is (1, 1, 1, vocab_size)
|
|
||||||
|
|
||||||
y = logits.argmax().item()
|
|
||||||
if y not in (blank_id, unk_id):
|
|
||||||
hyp.append(y)
|
|
||||||
timestamp.append(t)
|
|
||||||
decoder_input = torch.tensor([hyp[-context_size:]], device=device).reshape(
|
|
||||||
1, context_size
|
|
||||||
)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
|
|
||||||
sym_per_utt += 1
|
|
||||||
sym_per_frame += 1
|
|
||||||
else:
|
|
||||||
sym_per_frame = 0
|
|
||||||
t += 1
|
|
||||||
hyp = hyp[context_size:] # remove blanks
|
|
||||||
|
|
||||||
if not return_timestamps:
|
|
||||||
return hyp
|
|
||||||
else:
|
|
||||||
return DecodingResults(
|
|
||||||
hyps=[hyp],
|
|
||||||
timestamps=[timestamp],
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def greedy_search_batch(
|
|
||||||
model: SURT,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
encoder_out_lens: torch.Tensor,
|
|
||||||
return_timestamps: bool = False,
|
|
||||||
) -> Union[List[List[int]], DecodingResults]:
|
|
||||||
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
The SURT model.
|
|
||||||
encoder_out:
|
|
||||||
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
|
||||||
encoder_out_lens:
|
|
||||||
A 1-D tensor of shape (N,), containing number of valid frames in
|
|
||||||
encoder_out before padding.
|
|
||||||
return_timestamps:
|
|
||||||
Whether to return timestamps.
|
|
||||||
Returns:
|
|
||||||
If return_timestamps is False, return the decoded result.
|
|
||||||
Else, return a DecodingResults object containing
|
|
||||||
decoded result and corresponding timestamps.
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
|
||||||
|
|
||||||
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
|
||||||
input=encoder_out,
|
|
||||||
lengths=encoder_out_lens.cpu(),
|
|
||||||
batch_first=True,
|
|
||||||
enforce_sorted=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
device = next(model.parameters()).device
|
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
unk_id = getattr(model, "unk_id", blank_id)
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
|
|
||||||
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
|
||||||
N = encoder_out.size(0)
|
|
||||||
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
|
||||||
assert N == batch_size_list[0], (N, batch_size_list)
|
|
||||||
|
|
||||||
hyps = [[-1] * (context_size - 1) + [blank_id] for _ in range(N)]
|
|
||||||
|
|
||||||
# timestamp[n][i] is the frame index after subsampling
|
|
||||||
# on which hyp[n][i] is decoded
|
|
||||||
timestamps = [[] for _ in range(N)]
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
hyps,
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
) # (N, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
# decoder_out: (N, 1, decoder_out_dim)
|
|
||||||
|
|
||||||
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
|
|
||||||
|
|
||||||
offset = 0
|
|
||||||
for (t, batch_size) in enumerate(batch_size_list):
|
|
||||||
start = offset
|
|
||||||
end = offset + batch_size
|
|
||||||
current_encoder_out = encoder_out.data[start:end]
|
|
||||||
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
|
|
||||||
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
|
||||||
offset = end
|
|
||||||
|
|
||||||
decoder_out = decoder_out[:batch_size]
|
|
||||||
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out, decoder_out.unsqueeze(1), project_input=False
|
|
||||||
)
|
|
||||||
# logits'shape (batch_size, 1, 1, vocab_size)
|
|
||||||
|
|
||||||
logits = logits.squeeze(1).squeeze(1) # (batch_size, vocab_size)
|
|
||||||
assert logits.ndim == 2, logits.shape
|
|
||||||
y = logits.argmax(dim=1).tolist()
|
|
||||||
emitted = False
|
|
||||||
for i, v in enumerate(y):
|
|
||||||
if v not in (blank_id, unk_id):
|
|
||||||
hyps[i].append(v)
|
|
||||||
timestamps[i].append(t)
|
|
||||||
emitted = True
|
|
||||||
if emitted:
|
|
||||||
# update decoder output
|
|
||||||
decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
decoder_input,
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
)
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
|
|
||||||
sorted_ans = [h[context_size:] for h in hyps]
|
|
||||||
ans = []
|
|
||||||
ans_timestamps = []
|
|
||||||
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
|
||||||
for i in range(N):
|
|
||||||
ans.append(sorted_ans[unsorted_indices[i]])
|
|
||||||
ans_timestamps.append(timestamps[unsorted_indices[i]])
|
|
||||||
|
|
||||||
if not return_timestamps:
|
|
||||||
return ans
|
|
||||||
else:
|
|
||||||
return DecodingResults(
|
|
||||||
hyps=ans,
|
|
||||||
timestamps=ans_timestamps,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def modified_beam_search(
|
|
||||||
model: SURT,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
encoder_out_lens: torch.Tensor,
|
|
||||||
beam: int = 4,
|
|
||||||
temperature: float = 1.0,
|
|
||||||
return_timestamps: bool = False,
|
|
||||||
) -> Union[List[List[int]], DecodingResults]:
|
|
||||||
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
The SURT model.
|
|
||||||
encoder_out:
|
|
||||||
Output from the encoder. Its shape is (N, T, C).
|
|
||||||
encoder_out_lens:
|
|
||||||
A 1-D tensor of shape (N,), containing number of valid frames in
|
|
||||||
encoder_out before padding.
|
|
||||||
beam:
|
|
||||||
Number of active paths during the beam search.
|
|
||||||
temperature:
|
|
||||||
Softmax temperature.
|
|
||||||
return_timestamps:
|
|
||||||
Whether to return timestamps.
|
|
||||||
Returns:
|
|
||||||
If return_timestamps is False, return the decoded result.
|
|
||||||
Else, return a DecodingResults object containing
|
|
||||||
decoded result and corresponding timestamps.
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3, encoder_out.shape
|
|
||||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
|
||||||
|
|
||||||
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
|
||||||
input=encoder_out,
|
|
||||||
lengths=encoder_out_lens.cpu(),
|
|
||||||
batch_first=True,
|
|
||||||
enforce_sorted=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
unk_id = getattr(model, "unk_id", blank_id)
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
device = next(model.parameters()).device
|
|
||||||
|
|
||||||
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
|
||||||
N = encoder_out.size(0)
|
|
||||||
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
|
||||||
assert N == batch_size_list[0], (N, batch_size_list)
|
|
||||||
|
|
||||||
B = [HypothesisList() for _ in range(N)]
|
|
||||||
for i in range(N):
|
|
||||||
B[i].add(
|
|
||||||
Hypothesis(
|
|
||||||
ys=[blank_id] * context_size,
|
|
||||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
|
||||||
timestamp=[],
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
|
|
||||||
|
|
||||||
offset = 0
|
|
||||||
finalized_B = []
|
|
||||||
for (t, batch_size) in enumerate(batch_size_list):
|
|
||||||
start = offset
|
|
||||||
end = offset + batch_size
|
|
||||||
current_encoder_out = encoder_out.data[start:end]
|
|
||||||
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
|
|
||||||
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
|
|
||||||
offset = end
|
|
||||||
|
|
||||||
finalized_B = B[batch_size:] + finalized_B
|
|
||||||
B = B[:batch_size]
|
|
||||||
|
|
||||||
hyps_shape = get_hyps_shape(B).to(device)
|
|
||||||
|
|
||||||
A = [list(b) for b in B]
|
|
||||||
B = [HypothesisList() for _ in range(batch_size)]
|
|
||||||
|
|
||||||
ys_log_probs = torch.cat(
|
|
||||||
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
|
|
||||||
) # (num_hyps, 1)
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
) # (num_hyps, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
# decoder_out is of shape (num_hyps, 1, 1, joiner_dim)
|
|
||||||
|
|
||||||
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
|
||||||
# as index, so we use `to(torch.int64)` below.
|
|
||||||
current_encoder_out = torch.index_select(
|
|
||||||
current_encoder_out,
|
|
||||||
dim=0,
|
|
||||||
index=hyps_shape.row_ids(1).to(torch.int64),
|
|
||||||
) # (num_hyps, 1, 1, encoder_out_dim)
|
|
||||||
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out,
|
|
||||||
decoder_out,
|
|
||||||
project_input=False,
|
|
||||||
) # (num_hyps, 1, 1, vocab_size)
|
|
||||||
|
|
||||||
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
|
|
||||||
|
|
||||||
log_probs = (logits / temperature).log_softmax(dim=-1) # (num_hyps, vocab_size)
|
|
||||||
|
|
||||||
log_probs.add_(ys_log_probs)
|
|
||||||
|
|
||||||
vocab_size = log_probs.size(-1)
|
|
||||||
|
|
||||||
log_probs = log_probs.reshape(-1)
|
|
||||||
|
|
||||||
row_splits = hyps_shape.row_splits(1) * vocab_size
|
|
||||||
log_probs_shape = k2.ragged.create_ragged_shape2(
|
|
||||||
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
|
||||||
)
|
|
||||||
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
|
|
||||||
|
|
||||||
for i in range(batch_size):
|
|
||||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
|
||||||
|
|
||||||
with warnings.catch_warnings():
|
|
||||||
warnings.simplefilter("ignore")
|
|
||||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
|
||||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
|
||||||
|
|
||||||
for k in range(len(topk_hyp_indexes)):
|
|
||||||
hyp_idx = topk_hyp_indexes[k]
|
|
||||||
hyp = A[i][hyp_idx]
|
|
||||||
|
|
||||||
new_ys = hyp.ys[:]
|
|
||||||
new_token = topk_token_indexes[k]
|
|
||||||
new_timestamp = hyp.timestamp[:]
|
|
||||||
if new_token not in (blank_id, unk_id):
|
|
||||||
new_ys.append(new_token)
|
|
||||||
new_timestamp.append(t)
|
|
||||||
|
|
||||||
new_log_prob = topk_log_probs[k]
|
|
||||||
new_hyp = Hypothesis(
|
|
||||||
ys=new_ys, log_prob=new_log_prob, timestamp=new_timestamp
|
|
||||||
)
|
|
||||||
B[i].add(new_hyp)
|
|
||||||
|
|
||||||
B = B + finalized_B
|
|
||||||
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
|
|
||||||
|
|
||||||
sorted_ans = [h.ys[context_size:] for h in best_hyps]
|
|
||||||
sorted_timestamps = [h.timestamp for h in best_hyps]
|
|
||||||
ans = []
|
|
||||||
ans_timestamps = []
|
|
||||||
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
|
||||||
for i in range(N):
|
|
||||||
ans.append(sorted_ans[unsorted_indices[i]])
|
|
||||||
ans_timestamps.append(sorted_timestamps[unsorted_indices[i]])
|
|
||||||
|
|
||||||
if not return_timestamps:
|
|
||||||
return ans
|
|
||||||
else:
|
|
||||||
return DecodingResults(
|
|
||||||
hyps=ans,
|
|
||||||
timestamps=ans_timestamps,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def beam_search(
|
|
||||||
model: SURT,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
beam: int = 4,
|
|
||||||
temperature: float = 1.0,
|
|
||||||
return_timestamps: bool = False,
|
|
||||||
) -> Union[List[int], DecodingResults]:
|
|
||||||
"""
|
|
||||||
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
|
|
||||||
|
|
||||||
espnet/nets/beam_search_SURT.py#L247 is used as a reference.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
An instance of `SURT`.
|
|
||||||
encoder_out:
|
|
||||||
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
|
||||||
beam:
|
|
||||||
Beam size.
|
|
||||||
temperature:
|
|
||||||
Softmax temperature.
|
|
||||||
return_timestamps:
|
|
||||||
Whether to return timestamps.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
If return_timestamps is False, return the decoded result.
|
|
||||||
Else, return a DecodingResults object containing
|
|
||||||
decoded result and corresponding timestamps.
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
|
|
||||||
# support only batch_size == 1 for now
|
|
||||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
unk_id = getattr(model, "unk_id", blank_id)
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
|
|
||||||
device = next(model.parameters()).device
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[blank_id] * context_size,
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
).reshape(1, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
|
|
||||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
|
||||||
|
|
||||||
T = encoder_out.size(1)
|
|
||||||
t = 0
|
|
||||||
|
|
||||||
B = HypothesisList()
|
|
||||||
B.add(Hypothesis(ys=[blank_id] * context_size, log_prob=0.0, timestamp=[]))
|
|
||||||
|
|
||||||
max_sym_per_utt = 20000
|
|
||||||
|
|
||||||
sym_per_utt = 0
|
|
||||||
|
|
||||||
decoder_cache: Dict[str, torch.Tensor] = {}
|
|
||||||
|
|
||||||
while t < T and sym_per_utt < max_sym_per_utt:
|
|
||||||
# fmt: off
|
|
||||||
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
|
||||||
# fmt: on
|
|
||||||
A = B
|
|
||||||
B = HypothesisList()
|
|
||||||
|
|
||||||
joint_cache: Dict[str, torch.Tensor] = {}
|
|
||||||
|
|
||||||
# TODO(fangjun): Implement prefix search to update the `log_prob`
|
|
||||||
# of hypotheses in A
|
|
||||||
|
|
||||||
while True:
|
|
||||||
y_star = A.get_most_probable()
|
|
||||||
A.remove(y_star)
|
|
||||||
|
|
||||||
cached_key = y_star.key
|
|
||||||
|
|
||||||
if cached_key not in decoder_cache:
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[y_star.ys[-context_size:]],
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
).reshape(1, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
decoder_cache[cached_key] = decoder_out
|
|
||||||
else:
|
|
||||||
decoder_out = decoder_cache[cached_key]
|
|
||||||
|
|
||||||
cached_key += f"-t-{t}"
|
|
||||||
if cached_key not in joint_cache:
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out,
|
|
||||||
decoder_out.unsqueeze(1),
|
|
||||||
project_input=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
# TODO(fangjun): Scale the blank posterior
|
|
||||||
log_prob = (logits / temperature).log_softmax(dim=-1)
|
|
||||||
# log_prob is (1, 1, 1, vocab_size)
|
|
||||||
log_prob = log_prob.squeeze()
|
|
||||||
# Now log_prob is (vocab_size,)
|
|
||||||
joint_cache[cached_key] = log_prob
|
|
||||||
else:
|
|
||||||
log_prob = joint_cache[cached_key]
|
|
||||||
|
|
||||||
# First, process the blank symbol
|
|
||||||
skip_log_prob = log_prob[blank_id]
|
|
||||||
new_y_star_log_prob = y_star.log_prob + skip_log_prob
|
|
||||||
|
|
||||||
# ys[:] returns a copy of ys
|
|
||||||
B.add(
|
|
||||||
Hypothesis(
|
|
||||||
ys=y_star.ys[:],
|
|
||||||
log_prob=new_y_star_log_prob,
|
|
||||||
timestamp=y_star.timestamp[:],
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Second, process other non-blank labels
|
|
||||||
values, indices = log_prob.topk(beam + 1)
|
|
||||||
for i, v in zip(indices.tolist(), values.tolist()):
|
|
||||||
if i in (blank_id, unk_id):
|
|
||||||
continue
|
|
||||||
new_ys = y_star.ys + [i]
|
|
||||||
new_log_prob = y_star.log_prob + v
|
|
||||||
new_timestamp = y_star.timestamp + [t]
|
|
||||||
A.add(
|
|
||||||
Hypothesis(
|
|
||||||
ys=new_ys,
|
|
||||||
log_prob=new_log_prob,
|
|
||||||
timestamp=new_timestamp,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Check whether B contains more than "beam" elements more probable
|
|
||||||
# than the most probable in A
|
|
||||||
A_most_probable = A.get_most_probable()
|
|
||||||
|
|
||||||
kept_B = B.filter(A_most_probable.log_prob)
|
|
||||||
|
|
||||||
if len(kept_B) >= beam:
|
|
||||||
B = kept_B.topk(beam)
|
|
||||||
break
|
|
||||||
|
|
||||||
t += 1
|
|
||||||
|
|
||||||
best_hyp = B.get_most_probable(length_norm=True)
|
|
||||||
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
|
||||||
|
|
||||||
if not return_timestamps:
|
|
||||||
return ys
|
|
||||||
else:
|
|
||||||
return DecodingResults(hyps=[ys], timestamps=[best_hyp.timestamp])
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class Hypothesis:
|
|
||||||
# The predicted tokens so far.
|
|
||||||
# Newly predicted tokens are appended to `ys`.
|
|
||||||
ys: List[int]
|
|
||||||
|
|
||||||
# The log prob of ys.
|
|
||||||
# It contains only one entry.
|
|
||||||
log_prob: torch.Tensor
|
|
||||||
|
|
||||||
# timestamp[i] is the frame index after subsampling
|
|
||||||
# on which ys[i] is decoded
|
|
||||||
timestamp: List[int] = field(default_factory=list)
|
|
||||||
|
|
||||||
# the lm score for next token given the current ys
|
|
||||||
lm_score: Optional[torch.Tensor] = None
|
|
||||||
|
|
||||||
# the RNNLM states (h and c in LSTM)
|
|
||||||
state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
|
|
||||||
|
|
||||||
# N-gram LM state
|
|
||||||
state_cost: Optional[NgramLmStateCost] = None
|
|
||||||
|
|
||||||
@property
|
|
||||||
def key(self) -> str:
|
|
||||||
"""Return a string representation of self.ys"""
|
|
||||||
return "_".join(map(str, self.ys))
|
|
||||||
|
|
||||||
|
|
||||||
class HypothesisList(object):
|
|
||||||
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
data:
|
|
||||||
A dict of Hypotheses. Its key is its `value.key`.
|
|
||||||
"""
|
|
||||||
if data is None:
|
|
||||||
self._data = {}
|
|
||||||
else:
|
|
||||||
self._data = data
|
|
||||||
|
|
||||||
@property
|
|
||||||
def data(self) -> Dict[str, Hypothesis]:
|
|
||||||
return self._data
|
|
||||||
|
|
||||||
def add(self, hyp: Hypothesis) -> None:
|
|
||||||
"""Add a Hypothesis to `self`.
|
|
||||||
|
|
||||||
If `hyp` already exists in `self`, its probability is updated using
|
|
||||||
`log-sum-exp` with the existed one.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
hyp:
|
|
||||||
The hypothesis to be added.
|
|
||||||
"""
|
|
||||||
key = hyp.key
|
|
||||||
if key in self:
|
|
||||||
old_hyp = self._data[key] # shallow copy
|
|
||||||
torch.logaddexp(old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob)
|
|
||||||
else:
|
|
||||||
self._data[key] = hyp
|
|
||||||
|
|
||||||
def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
|
|
||||||
"""Get the most probable hypothesis, i.e., the one with
|
|
||||||
the largest `log_prob`.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
length_norm:
|
|
||||||
If True, the `log_prob` of a hypothesis is normalized by the
|
|
||||||
number of tokens in it.
|
|
||||||
Returns:
|
|
||||||
Return the hypothesis that has the largest `log_prob`.
|
|
||||||
"""
|
|
||||||
if length_norm:
|
|
||||||
return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys))
|
|
||||||
else:
|
|
||||||
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
|
|
||||||
|
|
||||||
def remove(self, hyp: Hypothesis) -> None:
|
|
||||||
"""Remove a given hypothesis.
|
|
||||||
|
|
||||||
Caution:
|
|
||||||
`self` is modified **in-place**.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
hyp:
|
|
||||||
The hypothesis to be removed from `self`.
|
|
||||||
Note: It must be contained in `self`. Otherwise,
|
|
||||||
an exception is raised.
|
|
||||||
"""
|
|
||||||
key = hyp.key
|
|
||||||
assert key in self, f"{key} does not exist"
|
|
||||||
del self._data[key]
|
|
||||||
|
|
||||||
def filter(self, threshold: torch.Tensor) -> "HypothesisList":
|
|
||||||
"""Remove all Hypotheses whose log_prob is less than threshold.
|
|
||||||
|
|
||||||
Caution:
|
|
||||||
`self` is not modified. Instead, a new HypothesisList is returned.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Return a new HypothesisList containing all hypotheses from `self`
|
|
||||||
with `log_prob` being greater than the given `threshold`.
|
|
||||||
"""
|
|
||||||
ans = HypothesisList()
|
|
||||||
for _, hyp in self._data.items():
|
|
||||||
if hyp.log_prob > threshold:
|
|
||||||
ans.add(hyp) # shallow copy
|
|
||||||
return ans
|
|
||||||
|
|
||||||
def topk(self, k: int) -> "HypothesisList":
|
|
||||||
"""Return the top-k hypothesis."""
|
|
||||||
hyps = list(self._data.items())
|
|
||||||
|
|
||||||
hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]
|
|
||||||
|
|
||||||
ans = HypothesisList(dict(hyps))
|
|
||||||
return ans
|
|
||||||
|
|
||||||
def __contains__(self, key: str):
|
|
||||||
return key in self._data
|
|
||||||
|
|
||||||
def __iter__(self):
|
|
||||||
return iter(self._data.values())
|
|
||||||
|
|
||||||
def __len__(self) -> int:
|
|
||||||
return len(self._data)
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
s = []
|
|
||||||
for key in self:
|
|
||||||
s.append(key)
|
|
||||||
return ", ".join(s)
|
|
||||||
|
|
||||||
|
|
||||||
def get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
|
|
||||||
"""Return a ragged shape with axes [utt][num_hyps].
|
|
||||||
|
|
||||||
Args:
|
|
||||||
hyps:
|
|
||||||
len(hyps) == batch_size. It contains the current hypothesis for
|
|
||||||
each utterance in the batch.
|
|
||||||
Returns:
|
|
||||||
Return a ragged shape with 2 axes [utt][num_hyps]. Note that
|
|
||||||
the shape is on CPU.
|
|
||||||
"""
|
|
||||||
num_hyps = [len(h) for h in hyps]
|
|
||||||
|
|
||||||
# torch.cumsum() is inclusive sum, so we put a 0 at the beginning
|
|
||||||
# to get exclusive sum later.
|
|
||||||
num_hyps.insert(0, 0)
|
|
||||||
|
|
||||||
num_hyps = torch.tensor(num_hyps)
|
|
||||||
row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32)
|
|
||||||
ans = k2.ragged.create_ragged_shape2(
|
|
||||||
row_splits=row_splits, cached_tot_size=row_splits[-1].item()
|
|
||||||
)
|
|
||||||
return ans
|
|
||||||
@ -1,770 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
#
|
|
||||||
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
|
||||||
# Zengwei Yao)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""
|
|
||||||
Usage:
|
|
||||||
(1) greedy search
|
|
||||||
./conv_lstm_transducer_stateless_ctc/decode.py \
|
|
||||||
--epoch 28 \
|
|
||||||
--avg 15 \
|
|
||||||
--exp-dir ./conv_lstm_transducer_stateless_ctc/exp \
|
|
||||||
--max-duration 600 \
|
|
||||||
--decoding-method greedy_search
|
|
||||||
|
|
||||||
(2) beam search (not recommended)
|
|
||||||
./conv_lstm_transducer_stateless_ctc/decode.py \
|
|
||||||
--epoch 28 \
|
|
||||||
--avg 15 \
|
|
||||||
--exp-dir ./conv_lstm_transducer_stateless_ctc/exp \
|
|
||||||
--max-duration 600 \
|
|
||||||
--decoding-method beam_search \
|
|
||||||
--beam-size 4
|
|
||||||
|
|
||||||
(3) modified beam search
|
|
||||||
./conv_lstm_transducer_stateless_ctc/decode.py \
|
|
||||||
--epoch 28 \
|
|
||||||
--avg 15 \
|
|
||||||
--exp-dir ./conv_lstm_transducer_stateless_ctc/exp \
|
|
||||||
--max-duration 600 \
|
|
||||||
--decoding-method modified_beam_search \
|
|
||||||
--beam-size 4
|
|
||||||
|
|
||||||
(4) fast beam search (one best)
|
|
||||||
./conv_lstm_transducer_stateless_ctc/decode.py \
|
|
||||||
--epoch 28 \
|
|
||||||
--avg 15 \
|
|
||||||
--exp-dir ./conv_lstm_transducer_stateless_ctc/exp \
|
|
||||||
--max-duration 600 \
|
|
||||||
--decoding-method fast_beam_search \
|
|
||||||
--beam 20.0 \
|
|
||||||
--max-contexts 8 \
|
|
||||||
--max-states 64
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from collections import defaultdict
|
|
||||||
from itertools import chain, groupby, repeat
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict, List, Optional, Tuple
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from asr_datamodule import LibrimixAsrDataModule
|
|
||||||
from beam_search import (
|
|
||||||
beam_search,
|
|
||||||
fast_beam_search_one_best,
|
|
||||||
greedy_search,
|
|
||||||
greedy_search_batch,
|
|
||||||
modified_beam_search,
|
|
||||||
)
|
|
||||||
from lhotse.utils import EPSILON
|
|
||||||
from train import add_model_arguments, get_params, get_surt_model
|
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
|
||||||
average_checkpoints,
|
|
||||||
average_checkpoints_with_averaged_model,
|
|
||||||
find_checkpoints,
|
|
||||||
load_checkpoint,
|
|
||||||
)
|
|
||||||
from icefall.lexicon import Lexicon
|
|
||||||
from icefall.utils import (
|
|
||||||
AttributeDict,
|
|
||||||
setup_logger,
|
|
||||||
store_transcripts,
|
|
||||||
str2bool,
|
|
||||||
write_surt_error_stats,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--epoch",
|
|
||||||
type=int,
|
|
||||||
default=30,
|
|
||||||
help="""It specifies the checkpoint to use for decoding.
|
|
||||||
Note: Epoch counts from 1.
|
|
||||||
You can specify --avg to use more checkpoints for model averaging.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--iter",
|
|
||||||
type=int,
|
|
||||||
default=0,
|
|
||||||
help="""If positive, --epoch is ignored and it
|
|
||||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
||||||
You can specify --avg to use more checkpoints for model averaging.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--avg",
|
|
||||||
type=int,
|
|
||||||
default=9,
|
|
||||||
help="Number of checkpoints to average. Automatically select "
|
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
|
||||||
"'--epoch' and '--iter'",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--use-averaged-model",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="Whether to load averaged model. Currently it only supports "
|
|
||||||
"using --epoch. If True, it would decode with the averaged model "
|
|
||||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
||||||
"Actually only the models with epoch number of `epoch-avg` and "
|
|
||||||
"`epoch` are loaded for averaging. ",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--exp-dir",
|
|
||||||
type=str,
|
|
||||||
default="conv_lstm_transducer_stateless_ctc/exp",
|
|
||||||
help="The experiment dir",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--bpe-model",
|
|
||||||
type=str,
|
|
||||||
default="data/lang_bpe_500/bpe.model",
|
|
||||||
help="Path to the BPE model",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=Path,
|
|
||||||
default="data/lang_bpe_500",
|
|
||||||
help="The lang dir containing word table and LG graph",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--decoding-method",
|
|
||||||
type=str,
|
|
||||||
default="greedy_search",
|
|
||||||
help="""Possible values are:
|
|
||||||
- greedy_search
|
|
||||||
- beam_search
|
|
||||||
- modified_beam_search
|
|
||||||
- fast_beam_search
|
|
||||||
If you use fast_beam_search_nbest_LG, you have to specify
|
|
||||||
`--lang-dir`, which should contain `LG.pt`.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--beam-size",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
help="""An integer indicating how many candidates we will keep for each
|
|
||||||
frame. Used only when --decoding-method is beam_search or
|
|
||||||
modified_beam_search.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--beam",
|
|
||||||
type=float,
|
|
||||||
default=20.0,
|
|
||||||
help="""A floating point value to calculate the cutoff score during beam
|
|
||||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
|
||||||
`beam` in Kaldi.
|
|
||||||
Used only when --decoding-method is fast_beam_search,
|
|
||||||
fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
|
||||||
and fast_beam_search_nbest_oracle
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--ngram-lm-scale",
|
|
||||||
type=float,
|
|
||||||
default=0.01,
|
|
||||||
help="""
|
|
||||||
Used only when --decoding_method is fast_beam_search_nbest_LG.
|
|
||||||
It specifies the scale for n-gram LM scores.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-contexts",
|
|
||||||
type=int,
|
|
||||||
default=8,
|
|
||||||
help="""Used only when --decoding-method is
|
|
||||||
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
|
||||||
and fast_beam_search_nbest_oracle""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-states",
|
|
||||||
type=int,
|
|
||||||
default=64,
|
|
||||||
help="""Used only when --decoding-method is
|
|
||||||
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
|
||||||
and fast_beam_search_nbest_oracle""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--context-size",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-sym-per-frame",
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help="""Maximum number of symbols per frame.
|
|
||||||
Used only when --decoding_method is greedy_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--num-paths",
|
|
||||||
type=int,
|
|
||||||
default=200,
|
|
||||||
help="""Number of paths for nbest decoding.
|
|
||||||
Used only when the decoding method is fast_beam_search_nbest,
|
|
||||||
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--nbest-scale",
|
|
||||||
type=float,
|
|
||||||
default=0.5,
|
|
||||||
help="""Scale applied to lattice scores when computing nbest paths.
|
|
||||||
Used only when the decoding method is fast_beam_search_nbest,
|
|
||||||
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--save-masks",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="""If true, save masks generated by unmixing module.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
add_model_arguments(parser)
|
|
||||||
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def decode_one_batch(
|
|
||||||
params: AttributeDict,
|
|
||||||
model: nn.Module,
|
|
||||||
sp: spm.SentencePieceProcessor,
|
|
||||||
batch: dict,
|
|
||||||
word_table: Optional[k2.SymbolTable] = None,
|
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
|
||||||
) -> Dict[str, List[List[str]]]:
|
|
||||||
"""Decode one batch and return the result in a dict. The dict has the
|
|
||||||
following format:
|
|
||||||
|
|
||||||
- key: It indicates the setting used for decoding. For example,
|
|
||||||
if greedy_search is used, it would be "greedy_search"
|
|
||||||
If beam search with a beam size of 7 is used, it would be
|
|
||||||
"beam_7"
|
|
||||||
- value: It contains the decoding result. `len(value)` equals to
|
|
||||||
batch size. `value[i]` is the decoding result for the i-th
|
|
||||||
utterance in the given batch.
|
|
||||||
Args:
|
|
||||||
params:
|
|
||||||
It's the return value of :func:`get_params`.
|
|
||||||
model:
|
|
||||||
The neural model.
|
|
||||||
sp:
|
|
||||||
The BPE model.
|
|
||||||
batch:
|
|
||||||
It is the return value from iterating
|
|
||||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
|
||||||
for the format of the `batch`.
|
|
||||||
word_table:
|
|
||||||
The word symbol table.
|
|
||||||
decoding_graph:
|
|
||||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
|
||||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
|
||||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
|
||||||
Returns:
|
|
||||||
Return the decoding result. See above description for the format of
|
|
||||||
the returned dict.
|
|
||||||
"""
|
|
||||||
device = next(model.parameters()).device
|
|
||||||
feature = batch["inputs"]
|
|
||||||
assert feature.ndim == 3
|
|
||||||
|
|
||||||
feature = feature.to(device)
|
|
||||||
feature_lens = batch["input_lens"].to(device)
|
|
||||||
|
|
||||||
# Apply the mask encoder
|
|
||||||
B, T, F = feature.shape
|
|
||||||
processed = model.mask_encoder(feature) # B,T,F*num_channels
|
|
||||||
masks = processed.view(B, T, F, params.num_channels).unbind(dim=-1)
|
|
||||||
x_masked = [feature * m for m in masks]
|
|
||||||
|
|
||||||
# To save the masks, we split them by batch and trim each mask to the length of
|
|
||||||
# the corresponding feature. We save them in a dict, where the key is the
|
|
||||||
# cut ID and the value is the mask.
|
|
||||||
masks_dict = {}
|
|
||||||
for i in range(B):
|
|
||||||
mask = torch.cat(
|
|
||||||
[x_masked[j][i, : feature_lens[i]] for j in range(params.num_channels)],
|
|
||||||
dim=-1,
|
|
||||||
)
|
|
||||||
mask = mask.cpu().numpy()
|
|
||||||
masks_dict[batch["cuts"][i].id] = mask
|
|
||||||
|
|
||||||
# Recognition
|
|
||||||
# Stack the inputs along the batch axis
|
|
||||||
h = torch.cat(x_masked, dim=0)
|
|
||||||
h_lens = torch.cat([feature_lens for _ in range(params.num_channels)], dim=0)
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(x=h, x_lens=h_lens)
|
|
||||||
|
|
||||||
hyps = []
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
|
||||||
hyp_tokens = fast_beam_search_one_best(
|
|
||||||
model=model,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
beam=params.beam,
|
|
||||||
max_contexts=params.max_contexts,
|
|
||||||
max_states=params.max_states,
|
|
||||||
)
|
|
||||||
for hyp in sp.decode(hyp_tokens):
|
|
||||||
hyps.append(hyp.split())
|
|
||||||
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
|
||||||
hyp_tokens = greedy_search_batch(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
)
|
|
||||||
for hyp in sp.decode(hyp_tokens):
|
|
||||||
hyps.append(hyp.split())
|
|
||||||
elif params.decoding_method == "modified_beam_search":
|
|
||||||
hyp_tokens = modified_beam_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
beam=params.beam_size,
|
|
||||||
)
|
|
||||||
for hyp in sp.decode(hyp_tokens):
|
|
||||||
hyps.append(hyp.split())
|
|
||||||
else:
|
|
||||||
batch_size = encoder_out.size(0)
|
|
||||||
|
|
||||||
for i in range(batch_size):
|
|
||||||
# fmt: off
|
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
|
||||||
# fmt: on
|
|
||||||
if params.decoding_method == "greedy_search":
|
|
||||||
hyp = greedy_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
max_sym_per_frame=params.max_sym_per_frame,
|
|
||||||
)
|
|
||||||
elif params.decoding_method == "beam_search":
|
|
||||||
hyp = beam_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
beam=params.beam_size,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(
|
|
||||||
f"Unsupported decoding method: {params.decoding_method}"
|
|
||||||
)
|
|
||||||
hyps.append(sp.decode(hyp).split())
|
|
||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
|
||||||
return {"greedy_search": hyps}, masks_dict
|
|
||||||
elif "fast_beam_search" in params.decoding_method:
|
|
||||||
key = f"beam_{params.beam}_"
|
|
||||||
key += f"max_contexts_{params.max_contexts}_"
|
|
||||||
key += f"max_states_{params.max_states}"
|
|
||||||
if "nbest" in params.decoding_method:
|
|
||||||
key += f"_num_paths_{params.num_paths}_"
|
|
||||||
key += f"nbest_scale_{params.nbest_scale}"
|
|
||||||
if "LG" in params.decoding_method:
|
|
||||||
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
|
||||||
|
|
||||||
return {key: hyps}, masks_dict
|
|
||||||
else:
|
|
||||||
return {f"beam_size_{params.beam_size}": hyps}, masks_dict
|
|
||||||
|
|
||||||
|
|
||||||
def decode_dataset(
|
|
||||||
dl: torch.utils.data.DataLoader,
|
|
||||||
params: AttributeDict,
|
|
||||||
model: nn.Module,
|
|
||||||
sp: spm.SentencePieceProcessor,
|
|
||||||
word_table: Optional[k2.SymbolTable] = None,
|
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
|
||||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
|
||||||
"""Decode dataset.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
dl:
|
|
||||||
PyTorch's dataloader containing the dataset to decode.
|
|
||||||
params:
|
|
||||||
It is returned by :func:`get_params`.
|
|
||||||
model:
|
|
||||||
The neural model.
|
|
||||||
sp:
|
|
||||||
The BPE model.
|
|
||||||
word_table:
|
|
||||||
The word symbol table.
|
|
||||||
decoding_graph:
|
|
||||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
|
||||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
|
||||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
|
||||||
Returns:
|
|
||||||
Return a dict, whose key may be "greedy_search" if greedy search
|
|
||||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
|
||||||
Its value is a list of tuples. Each tuple contains two elements:
|
|
||||||
The first is the reference transcript, and the second is the
|
|
||||||
predicted result.
|
|
||||||
"""
|
|
||||||
num_cuts = 0
|
|
||||||
|
|
||||||
try:
|
|
||||||
num_batches = len(dl)
|
|
||||||
except TypeError:
|
|
||||||
num_batches = "?"
|
|
||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
|
||||||
log_interval = 50
|
|
||||||
else:
|
|
||||||
log_interval = 20
|
|
||||||
|
|
||||||
results = defaultdict(list)
|
|
||||||
masks = {}
|
|
||||||
for batch_idx, batch in enumerate(dl):
|
|
||||||
# The dataloader returns text as a list of cuts, each of which is a list of channel
|
|
||||||
# text. We flatten this to a list where all channels are together, i.e., it looks like
|
|
||||||
# [utt1_ch1, utt2_ch1, ..., uttN_ch1, utt1_ch2, ...., uttN,ch2].
|
|
||||||
texts = [val for tup in zip(*batch["text"]) for val in tup]
|
|
||||||
cut_ids = [cut.id for cut in batch["cuts"]]
|
|
||||||
|
|
||||||
# Repeat cut_ids list N times, where N is the number of channels.
|
|
||||||
cut_ids = list(chain.from_iterable(repeat(cut_ids, params.num_channels)))
|
|
||||||
|
|
||||||
hyps_dict, masks_dict = decode_one_batch(
|
|
||||||
params=params,
|
|
||||||
model=model,
|
|
||||||
sp=sp,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
word_table=word_table,
|
|
||||||
batch=batch,
|
|
||||||
)
|
|
||||||
masks.update(masks_dict)
|
|
||||||
|
|
||||||
for name, hyps in hyps_dict.items():
|
|
||||||
this_batch = []
|
|
||||||
assert len(hyps) == len(texts), f"{len(hyps)} vs {len(texts)}"
|
|
||||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
|
||||||
ref_words = ref_text.split()
|
|
||||||
this_batch.append((cut_id, ref_words, hyp_words))
|
|
||||||
|
|
||||||
results[name].extend(this_batch)
|
|
||||||
|
|
||||||
num_cuts += len(texts)
|
|
||||||
|
|
||||||
if batch_idx % log_interval == 0:
|
|
||||||
batch_str = f"{batch_idx}/{num_batches}"
|
|
||||||
|
|
||||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
|
||||||
return results, masks
|
|
||||||
|
|
||||||
|
|
||||||
def save_results(
|
|
||||||
params: AttributeDict,
|
|
||||||
test_set_name: str,
|
|
||||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
|
||||||
):
|
|
||||||
test_set_wers = dict()
|
|
||||||
for key, results in results_dict.items():
|
|
||||||
recog_path = (
|
|
||||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
results = sorted(results)
|
|
||||||
# Combine results by cut_id. This means that we combine different channels for
|
|
||||||
# ref and hyp of the same cut into list. Example:
|
|
||||||
# (cut1, ref1, hyp1), (cut1, ref2, hyp2), (cut2, ref3, hyp3) ->
|
|
||||||
# (cut1, [ref1, ref2], [hyp1, hyp2]), (cut2, [ref3], [hyp3])
|
|
||||||
# Also, each ref and hyp is currently a list of words. We join them into a string.
|
|
||||||
results_grouped = []
|
|
||||||
for cut_id, items in groupby(results, lambda x: x[0]):
|
|
||||||
items = list(items)
|
|
||||||
refs = [" ".join(item[1]) for item in items]
|
|
||||||
hyps = [" ".join(item[2]) for item in items]
|
|
||||||
results_grouped.append((cut_id, refs, hyps))
|
|
||||||
|
|
||||||
store_transcripts(filename=recog_path, texts=results_grouped)
|
|
||||||
logging.info(f"The transcripts are stored in {recog_path}")
|
|
||||||
|
|
||||||
# The following prints out WERs, per-word error statistics and aligned
|
|
||||||
# ref/hyp pairs.
|
|
||||||
errs_filename = (
|
|
||||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
with open(errs_filename, "w") as f:
|
|
||||||
wer = write_surt_error_stats(
|
|
||||||
f, f"{test_set_name}-{key}", results_grouped, enable_log=True
|
|
||||||
)
|
|
||||||
test_set_wers[key] = wer
|
|
||||||
|
|
||||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
|
||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
|
||||||
errs_info = (
|
|
||||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
with open(errs_info, "w") as f:
|
|
||||||
print("settings\tWER", file=f)
|
|
||||||
for key, val in test_set_wers:
|
|
||||||
print("{}\t{}".format(key, val), file=f)
|
|
||||||
|
|
||||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
|
||||||
note = "\tbest for {}".format(test_set_name)
|
|
||||||
for key, val in test_set_wers:
|
|
||||||
s += "{}\t{}{}\n".format(key, val, note)
|
|
||||||
note = ""
|
|
||||||
logging.info(s)
|
|
||||||
|
|
||||||
|
|
||||||
def save_masks(
|
|
||||||
params: AttributeDict,
|
|
||||||
test_set_name: str,
|
|
||||||
masks: List[torch.Tensor],
|
|
||||||
):
|
|
||||||
masks_path = params.res_dir / f"masks-{test_set_name}.txt"
|
|
||||||
torch.save(masks, masks_path)
|
|
||||||
logging.info(f"The masks are stored in {masks_path}")
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def main():
|
|
||||||
parser = get_parser()
|
|
||||||
LibrimixAsrDataModule.add_arguments(parser)
|
|
||||||
args = parser.parse_args()
|
|
||||||
args.exp_dir = Path(args.exp_dir)
|
|
||||||
|
|
||||||
params = get_params()
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
assert params.decoding_method in (
|
|
||||||
"greedy_search",
|
|
||||||
"beam_search",
|
|
||||||
"fast_beam_search",
|
|
||||||
"fast_beam_search_nbest",
|
|
||||||
"fast_beam_search_nbest_LG",
|
|
||||||
"fast_beam_search_nbest_oracle",
|
|
||||||
"modified_beam_search",
|
|
||||||
)
|
|
||||||
params.res_dir = params.exp_dir / params.decoding_method
|
|
||||||
|
|
||||||
if params.iter > 0:
|
|
||||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
|
||||||
else:
|
|
||||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
|
||||||
|
|
||||||
if "fast_beam_search" in params.decoding_method:
|
|
||||||
params.suffix += f"-beam-{params.beam}"
|
|
||||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
|
||||||
params.suffix += f"-max-states-{params.max_states}"
|
|
||||||
if "nbest" in params.decoding_method:
|
|
||||||
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
|
||||||
params.suffix += f"-num-paths-{params.num_paths}"
|
|
||||||
if "LG" in params.decoding_method:
|
|
||||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
|
||||||
elif "beam_search" in params.decoding_method:
|
|
||||||
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
|
||||||
else:
|
|
||||||
params.suffix += f"-context-{params.context_size}"
|
|
||||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
|
||||||
|
|
||||||
if params.use_averaged_model:
|
|
||||||
params.suffix += "-use-averaged-model"
|
|
||||||
|
|
||||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
|
||||||
logging.info("Decoding started")
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda", 0)
|
|
||||||
|
|
||||||
logging.info(f"Device: {device}")
|
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(params.bpe_model)
|
|
||||||
|
|
||||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
|
||||||
params.blank_id = sp.piece_to_id("<blk>")
|
|
||||||
params.unk_id = sp.piece_to_id("<unk>")
|
|
||||||
params.vocab_size = sp.get_piece_size()
|
|
||||||
|
|
||||||
logging.info(params)
|
|
||||||
|
|
||||||
logging.info("About to create model")
|
|
||||||
model = get_surt_model(params)
|
|
||||||
assert model.encoder.decode_chunk_size == params.decode_chunk_len // 2, (
|
|
||||||
model.encoder.decode_chunk_size,
|
|
||||||
params.decode_chunk_len,
|
|
||||||
)
|
|
||||||
|
|
||||||
if not params.use_averaged_model:
|
|
||||||
if params.iter > 0:
|
|
||||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
||||||
: params.avg
|
|
||||||
]
|
|
||||||
if len(filenames) == 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"No checkpoints found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
elif len(filenames) < params.avg:
|
|
||||||
raise ValueError(
|
|
||||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
logging.info(f"averaging {filenames}")
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
||||||
elif params.avg == 1:
|
|
||||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
||||||
else:
|
|
||||||
start = params.epoch - params.avg + 1
|
|
||||||
filenames = []
|
|
||||||
for i in range(start, params.epoch + 1):
|
|
||||||
if i >= 1:
|
|
||||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
||||||
logging.info(f"averaging {filenames}")
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
||||||
else:
|
|
||||||
if params.iter > 0:
|
|
||||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
||||||
: params.avg + 1
|
|
||||||
]
|
|
||||||
if len(filenames) == 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"No checkpoints found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
elif len(filenames) < params.avg + 1:
|
|
||||||
raise ValueError(
|
|
||||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
filename_start = filenames[-1]
|
|
||||||
filename_end = filenames[0]
|
|
||||||
logging.info(
|
|
||||||
"Calculating the averaged model over iteration checkpoints"
|
|
||||||
f" from {filename_start} (excluded) to {filename_end}"
|
|
||||||
)
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(
|
|
||||||
average_checkpoints_with_averaged_model(
|
|
||||||
filename_start=filename_start,
|
|
||||||
filename_end=filename_end,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
assert params.avg > 0, params.avg
|
|
||||||
start = params.epoch - params.avg
|
|
||||||
assert start >= 1, start
|
|
||||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
||||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
||||||
logging.info(
|
|
||||||
f"Calculating the averaged model over epoch range from "
|
|
||||||
f"{start} (excluded) to {params.epoch}"
|
|
||||||
)
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(
|
|
||||||
average_checkpoints_with_averaged_model(
|
|
||||||
filename_start=filename_start,
|
|
||||||
filename_end=filename_end,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
model.to(device)
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
if "fast_beam_search" in params.decoding_method:
|
|
||||||
if params.decoding_method == "fast_beam_search_nbest_LG":
|
|
||||||
lexicon = Lexicon(params.lang_dir)
|
|
||||||
word_table = lexicon.word_table
|
|
||||||
lg_filename = params.lang_dir / "LG.pt"
|
|
||||||
logging.info(f"Loading {lg_filename}")
|
|
||||||
decoding_graph = k2.Fsa.from_dict(
|
|
||||||
torch.load(lg_filename, map_location=device)
|
|
||||||
)
|
|
||||||
decoding_graph.scores *= params.ngram_lm_scale
|
|
||||||
else:
|
|
||||||
word_table = None
|
|
||||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
|
||||||
else:
|
|
||||||
decoding_graph = None
|
|
||||||
word_table = None
|
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
|
||||||
|
|
||||||
# we need cut ids to display recognition results.
|
|
||||||
args.return_cuts = True
|
|
||||||
librimix = LibrimixAsrDataModule(args)
|
|
||||||
|
|
||||||
dev_cuts = librimix.dev_cuts(reverberated=False)
|
|
||||||
dev_dl = librimix.test_dataloaders(dev_cuts)
|
|
||||||
|
|
||||||
test_sets = ["dev"]
|
|
||||||
test_dl = [dev_dl]
|
|
||||||
|
|
||||||
for test_set, test_dl in zip(test_sets, test_dl):
|
|
||||||
results_dict, masks = decode_dataset(
|
|
||||||
dl=test_dl,
|
|
||||||
params=params,
|
|
||||||
model=model,
|
|
||||||
sp=sp,
|
|
||||||
word_table=word_table,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
)
|
|
||||||
|
|
||||||
save_results(
|
|
||||||
params=params,
|
|
||||||
test_set_name=test_set,
|
|
||||||
results_dict=results_dict,
|
|
||||||
)
|
|
||||||
|
|
||||||
if params.save_masks:
|
|
||||||
save_masks(
|
|
||||||
params=params,
|
|
||||||
test_set_name=test_set,
|
|
||||||
masks=masks,
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.info("Done!")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
@ -1,791 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
#
|
|
||||||
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
|
||||||
# Zengwei Yao)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""
|
|
||||||
Usage:
|
|
||||||
(1) greedy search
|
|
||||||
./conv_lstm_transducer_stateless_ctc/decode.py \
|
|
||||||
--epoch 28 \
|
|
||||||
--avg 15 \
|
|
||||||
--exp-dir ./conv_lstm_transducer_stateless_ctc/exp \
|
|
||||||
--max-duration 600 \
|
|
||||||
--decoding-method greedy_search
|
|
||||||
|
|
||||||
(2) beam search (not recommended)
|
|
||||||
./conv_lstm_transducer_stateless_ctc/decode.py \
|
|
||||||
--epoch 28 \
|
|
||||||
--avg 15 \
|
|
||||||
--exp-dir ./conv_lstm_transducer_stateless_ctc/exp \
|
|
||||||
--max-duration 600 \
|
|
||||||
--decoding-method beam_search \
|
|
||||||
--beam-size 4
|
|
||||||
|
|
||||||
(3) modified beam search
|
|
||||||
./conv_lstm_transducer_stateless_ctc/decode.py \
|
|
||||||
--epoch 28 \
|
|
||||||
--avg 15 \
|
|
||||||
--exp-dir ./conv_lstm_transducer_stateless_ctc/exp \
|
|
||||||
--max-duration 600 \
|
|
||||||
--decoding-method modified_beam_search \
|
|
||||||
--beam-size 4
|
|
||||||
|
|
||||||
(4) fast beam search (one best)
|
|
||||||
./conv_lstm_transducer_stateless_ctc/decode.py \
|
|
||||||
--epoch 28 \
|
|
||||||
--avg 15 \
|
|
||||||
--exp-dir ./conv_lstm_transducer_stateless_ctc/exp \
|
|
||||||
--max-duration 600 \
|
|
||||||
--decoding-method fast_beam_search \
|
|
||||||
--beam 20.0 \
|
|
||||||
--max-contexts 8 \
|
|
||||||
--max-states 64
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from collections import defaultdict
|
|
||||||
from itertools import chain, groupby, repeat
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict, List, Optional, Tuple
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from asr_datamodule import LibrimixAsrDataModule
|
|
||||||
from beam_search import (
|
|
||||||
beam_search,
|
|
||||||
fast_beam_search_one_best,
|
|
||||||
greedy_search,
|
|
||||||
greedy_search_batch,
|
|
||||||
modified_beam_search,
|
|
||||||
)
|
|
||||||
from lhotse.utils import EPSILON
|
|
||||||
from train import add_model_arguments, get_params, get_surt_model
|
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
|
||||||
average_checkpoints,
|
|
||||||
average_checkpoints_with_averaged_model,
|
|
||||||
find_checkpoints,
|
|
||||||
load_checkpoint,
|
|
||||||
)
|
|
||||||
from icefall.lexicon import Lexicon
|
|
||||||
from icefall.utils import (
|
|
||||||
AttributeDict,
|
|
||||||
setup_logger,
|
|
||||||
store_transcripts,
|
|
||||||
str2bool,
|
|
||||||
write_surt_error_stats,
|
|
||||||
)
|
|
||||||
|
|
||||||
OVERLAP_RATIOS = ["0L", "0S", "OV10", "OV20", "OV30", "OV40"]
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--epoch",
|
|
||||||
type=int,
|
|
||||||
default=30,
|
|
||||||
help="""It specifies the checkpoint to use for decoding.
|
|
||||||
Note: Epoch counts from 1.
|
|
||||||
You can specify --avg to use more checkpoints for model averaging.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--iter",
|
|
||||||
type=int,
|
|
||||||
default=0,
|
|
||||||
help="""If positive, --epoch is ignored and it
|
|
||||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
||||||
You can specify --avg to use more checkpoints for model averaging.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--avg",
|
|
||||||
type=int,
|
|
||||||
default=9,
|
|
||||||
help="Number of checkpoints to average. Automatically select "
|
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
|
||||||
"'--epoch' and '--iter'",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--use-averaged-model",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="Whether to load averaged model. Currently it only supports "
|
|
||||||
"using --epoch. If True, it would decode with the averaged model "
|
|
||||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
||||||
"Actually only the models with epoch number of `epoch-avg` and "
|
|
||||||
"`epoch` are loaded for averaging. ",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--exp-dir",
|
|
||||||
type=str,
|
|
||||||
default="conv_lstm_transducer_stateless_ctc/exp",
|
|
||||||
help="The experiment dir",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--bpe-model",
|
|
||||||
type=str,
|
|
||||||
default="data/lang_bpe_500/bpe.model",
|
|
||||||
help="Path to the BPE model",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=Path,
|
|
||||||
default="data/lang_bpe_500",
|
|
||||||
help="The lang dir containing word table and LG graph",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--decoding-method",
|
|
||||||
type=str,
|
|
||||||
default="greedy_search",
|
|
||||||
help="""Possible values are:
|
|
||||||
- greedy_search
|
|
||||||
- beam_search
|
|
||||||
- modified_beam_search
|
|
||||||
- fast_beam_search
|
|
||||||
If you use fast_beam_search_nbest_LG, you have to specify
|
|
||||||
`--lang-dir`, which should contain `LG.pt`.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--beam-size",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
help="""An integer indicating how many candidates we will keep for each
|
|
||||||
frame. Used only when --decoding-method is beam_search or
|
|
||||||
modified_beam_search.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--beam",
|
|
||||||
type=float,
|
|
||||||
default=20.0,
|
|
||||||
help="""A floating point value to calculate the cutoff score during beam
|
|
||||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
|
||||||
`beam` in Kaldi.
|
|
||||||
Used only when --decoding-method is fast_beam_search,
|
|
||||||
fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
|
||||||
and fast_beam_search_nbest_oracle
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--ngram-lm-scale",
|
|
||||||
type=float,
|
|
||||||
default=0.01,
|
|
||||||
help="""
|
|
||||||
Used only when --decoding_method is fast_beam_search_nbest_LG.
|
|
||||||
It specifies the scale for n-gram LM scores.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-contexts",
|
|
||||||
type=int,
|
|
||||||
default=8,
|
|
||||||
help="""Used only when --decoding-method is
|
|
||||||
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
|
||||||
and fast_beam_search_nbest_oracle""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-states",
|
|
||||||
type=int,
|
|
||||||
default=64,
|
|
||||||
help="""Used only when --decoding-method is
|
|
||||||
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
|
||||||
and fast_beam_search_nbest_oracle""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--context-size",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-sym-per-frame",
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help="""Maximum number of symbols per frame.
|
|
||||||
Used only when --decoding_method is greedy_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--num-paths",
|
|
||||||
type=int,
|
|
||||||
default=200,
|
|
||||||
help="""Number of paths for nbest decoding.
|
|
||||||
Used only when the decoding method is fast_beam_search_nbest,
|
|
||||||
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--nbest-scale",
|
|
||||||
type=float,
|
|
||||||
default=0.5,
|
|
||||||
help="""Scale applied to lattice scores when computing nbest paths.
|
|
||||||
Used only when the decoding method is fast_beam_search_nbest,
|
|
||||||
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--save-masks",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="""If true, save masks generated by unmixing module.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
add_model_arguments(parser)
|
|
||||||
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def decode_one_batch(
|
|
||||||
params: AttributeDict,
|
|
||||||
model: nn.Module,
|
|
||||||
sp: spm.SentencePieceProcessor,
|
|
||||||
batch: dict,
|
|
||||||
word_table: Optional[k2.SymbolTable] = None,
|
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
|
||||||
) -> Dict[str, List[List[str]]]:
|
|
||||||
"""Decode one batch and return the result in a dict. The dict has the
|
|
||||||
following format:
|
|
||||||
|
|
||||||
- key: It indicates the setting used for decoding. For example,
|
|
||||||
if greedy_search is used, it would be "greedy_search"
|
|
||||||
If beam search with a beam size of 7 is used, it would be
|
|
||||||
"beam_7"
|
|
||||||
- value: It contains the decoding result. `len(value)` equals to
|
|
||||||
batch size. `value[i]` is the decoding result for the i-th
|
|
||||||
utterance in the given batch.
|
|
||||||
Args:
|
|
||||||
params:
|
|
||||||
It's the return value of :func:`get_params`.
|
|
||||||
model:
|
|
||||||
The neural model.
|
|
||||||
sp:
|
|
||||||
The BPE model.
|
|
||||||
batch:
|
|
||||||
It is the return value from iterating
|
|
||||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
|
||||||
for the format of the `batch`.
|
|
||||||
word_table:
|
|
||||||
The word symbol table.
|
|
||||||
decoding_graph:
|
|
||||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
|
||||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
|
||||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
|
||||||
Returns:
|
|
||||||
Return the decoding result. See above description for the format of
|
|
||||||
the returned dict.
|
|
||||||
"""
|
|
||||||
device = next(model.parameters()).device
|
|
||||||
feature = batch["inputs"]
|
|
||||||
assert feature.ndim == 3
|
|
||||||
|
|
||||||
feature = feature.to(device)
|
|
||||||
feature_lens = batch["input_lens"].to(device)
|
|
||||||
|
|
||||||
# Apply the mask encoder
|
|
||||||
B, T, F = feature.shape
|
|
||||||
processed = model.mask_encoder(feature) # B,T,F*num_channels
|
|
||||||
masks = processed.view(B, T, F, params.num_channels).unbind(dim=-1)
|
|
||||||
x_masked = [feature * m for m in masks]
|
|
||||||
|
|
||||||
# Recognition
|
|
||||||
# Stack the inputs along the batch axis
|
|
||||||
h = torch.cat(x_masked, dim=0)
|
|
||||||
h_lens = torch.cat([feature_lens for _ in range(params.num_channels)], dim=0)
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(x=h, x_lens=h_lens)
|
|
||||||
|
|
||||||
def _group_channels(hyps: List[str]) -> List[List[str]]:
|
|
||||||
"""
|
|
||||||
Currently we have a batch of size M*B, where M is the number of
|
|
||||||
channels and B is the batch size. We need to group the hypotheses
|
|
||||||
into B groups, each of which contains M hypotheses.
|
|
||||||
|
|
||||||
Example:
|
|
||||||
hyps = ['a1', 'b1', 'c1', 'a2', 'b2', 'c2']
|
|
||||||
_group_channels(hyps) = [['a1', 'a2'], ['b1', 'b2'], ['c1', 'c2']]
|
|
||||||
"""
|
|
||||||
assert len(hyps) == B * params.num_channels
|
|
||||||
out_hyps = []
|
|
||||||
for i in range(B):
|
|
||||||
out_hyps.append(hyps[i::B])
|
|
||||||
return out_hyps
|
|
||||||
|
|
||||||
hyps = []
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
|
||||||
hyp_tokens = fast_beam_search_one_best(
|
|
||||||
model=model,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
beam=params.beam,
|
|
||||||
max_contexts=params.max_contexts,
|
|
||||||
max_states=params.max_states,
|
|
||||||
)
|
|
||||||
for hyp in sp.decode(hyp_tokens):
|
|
||||||
hyps.append(hyp)
|
|
||||||
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
|
||||||
hyp_tokens = greedy_search_batch(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
)
|
|
||||||
for hyp in sp.decode(hyp_tokens):
|
|
||||||
hyps.append(hyp)
|
|
||||||
elif params.decoding_method == "modified_beam_search":
|
|
||||||
hyp_tokens = modified_beam_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
beam=params.beam_size,
|
|
||||||
)
|
|
||||||
for hyp in sp.decode(hyp_tokens):
|
|
||||||
hyps.append(hyp)
|
|
||||||
else:
|
|
||||||
batch_size = encoder_out.size(0)
|
|
||||||
|
|
||||||
for i in range(batch_size):
|
|
||||||
# fmt: off
|
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
|
||||||
# fmt: on
|
|
||||||
if params.decoding_method == "greedy_search":
|
|
||||||
hyp = greedy_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
max_sym_per_frame=params.max_sym_per_frame,
|
|
||||||
)
|
|
||||||
elif params.decoding_method == "beam_search":
|
|
||||||
hyp = beam_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
beam=params.beam_size,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(
|
|
||||||
f"Unsupported decoding method: {params.decoding_method}"
|
|
||||||
)
|
|
||||||
hyps.append(sp.decode(hyp))
|
|
||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
|
||||||
return {"greedy_search": _group_channels(hyps)}
|
|
||||||
elif "fast_beam_search" in params.decoding_method:
|
|
||||||
key = f"beam_{params.beam}_"
|
|
||||||
key += f"max_contexts_{params.max_contexts}_"
|
|
||||||
key += f"max_states_{params.max_states}"
|
|
||||||
if "nbest" in params.decoding_method:
|
|
||||||
key += f"_num_paths_{params.num_paths}_"
|
|
||||||
key += f"nbest_scale_{params.nbest_scale}"
|
|
||||||
if "LG" in params.decoding_method:
|
|
||||||
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
|
||||||
|
|
||||||
return {key: _group_channels(hyps)}
|
|
||||||
else:
|
|
||||||
return {f"beam_size_{params.beam_size}": _group_channels(hyps)}
|
|
||||||
|
|
||||||
|
|
||||||
def decode_dataset(
|
|
||||||
dl: torch.utils.data.DataLoader,
|
|
||||||
params: AttributeDict,
|
|
||||||
model: nn.Module,
|
|
||||||
sp: spm.SentencePieceProcessor,
|
|
||||||
word_table: Optional[k2.SymbolTable] = None,
|
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
|
||||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
|
||||||
"""Decode dataset.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
dl:
|
|
||||||
PyTorch's dataloader containing the dataset to decode.
|
|
||||||
params:
|
|
||||||
It is returned by :func:`get_params`.
|
|
||||||
model:
|
|
||||||
The neural model.
|
|
||||||
sp:
|
|
||||||
The BPE model.
|
|
||||||
word_table:
|
|
||||||
The word symbol table.
|
|
||||||
decoding_graph:
|
|
||||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
|
||||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
|
||||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
|
||||||
Returns:
|
|
||||||
Return a dict, whose key may be "greedy_search" if greedy search
|
|
||||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
|
||||||
Its value is a list of tuples. Each tuple contains two elements:
|
|
||||||
The first is the reference transcript, and the second is the
|
|
||||||
predicted result.
|
|
||||||
"""
|
|
||||||
num_cuts = 0
|
|
||||||
|
|
||||||
try:
|
|
||||||
num_batches = len(dl)
|
|
||||||
except TypeError:
|
|
||||||
num_batches = "?"
|
|
||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
|
||||||
log_interval = 50
|
|
||||||
else:
|
|
||||||
log_interval = 20
|
|
||||||
|
|
||||||
results = defaultdict(list)
|
|
||||||
for batch_idx, batch in enumerate(dl):
|
|
||||||
cut_ids = [cut.id for cut in batch["cuts"]]
|
|
||||||
cuts_batch = batch["cuts"]
|
|
||||||
|
|
||||||
hyps_dict = decode_one_batch(
|
|
||||||
params=params,
|
|
||||||
model=model,
|
|
||||||
sp=sp,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
word_table=word_table,
|
|
||||||
batch=batch,
|
|
||||||
)
|
|
||||||
|
|
||||||
for name, hyps in hyps_dict.items():
|
|
||||||
this_batch = []
|
|
||||||
for cut_id, hyp_words in zip(cut_ids, hyps):
|
|
||||||
# Reference is a list of supervision texts sorted by start time.
|
|
||||||
ref_words = [
|
|
||||||
s.text.strip()
|
|
||||||
for s in sorted(
|
|
||||||
cuts_batch[cut_id].supervisions, key=lambda s: s.start
|
|
||||||
)
|
|
||||||
]
|
|
||||||
this_batch.append((cut_id, ref_words, hyp_words))
|
|
||||||
|
|
||||||
results[name].extend(this_batch)
|
|
||||||
|
|
||||||
num_cuts += len(cut_ids)
|
|
||||||
|
|
||||||
if batch_idx % log_interval == 0:
|
|
||||||
batch_str = f"{batch_idx}/{num_batches}"
|
|
||||||
|
|
||||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
|
||||||
return results
|
|
||||||
|
|
||||||
|
|
||||||
def save_results(
|
|
||||||
params: AttributeDict,
|
|
||||||
test_set_name: str,
|
|
||||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
|
||||||
):
|
|
||||||
test_set_wers = dict()
|
|
||||||
for key, results in results_dict.items():
|
|
||||||
recog_path = (
|
|
||||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
results = sorted(results)
|
|
||||||
store_transcripts(filename=recog_path, texts=results)
|
|
||||||
logging.info(f"The transcripts are stored in {recog_path}")
|
|
||||||
|
|
||||||
# The following prints out WERs, per-word error statistics and aligned
|
|
||||||
# ref/hyp pairs.
|
|
||||||
errs_filename = (
|
|
||||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
with open(errs_filename, "w") as f:
|
|
||||||
wer = write_surt_error_stats(
|
|
||||||
f,
|
|
||||||
f"{test_set_name}-{key}",
|
|
||||||
results,
|
|
||||||
enable_log=True,
|
|
||||||
num_channels=params.num_channels,
|
|
||||||
)
|
|
||||||
test_set_wers[key] = wer
|
|
||||||
|
|
||||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
|
||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
|
||||||
errs_info = (
|
|
||||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
with open(errs_info, "w") as f:
|
|
||||||
print("settings\tWER", file=f)
|
|
||||||
for key, val in test_set_wers:
|
|
||||||
print("{}\t{}".format(key, val), file=f)
|
|
||||||
|
|
||||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
|
||||||
note = "\tbest for {}".format(test_set_name)
|
|
||||||
for key, val in test_set_wers:
|
|
||||||
s += "{}\t{}{}\n".format(key, val, note)
|
|
||||||
note = ""
|
|
||||||
logging.info(s)
|
|
||||||
|
|
||||||
|
|
||||||
def save_masks(
|
|
||||||
params: AttributeDict,
|
|
||||||
test_set_name: str,
|
|
||||||
masks: List[torch.Tensor],
|
|
||||||
):
|
|
||||||
masks_path = params.res_dir / f"masks-{test_set_name}.txt"
|
|
||||||
torch.save(masks, masks_path)
|
|
||||||
logging.info(f"The masks are stored in {masks_path}")
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def main():
|
|
||||||
parser = get_parser()
|
|
||||||
LibrimixAsrDataModule.add_arguments(parser)
|
|
||||||
args = parser.parse_args()
|
|
||||||
args.exp_dir = Path(args.exp_dir)
|
|
||||||
|
|
||||||
params = get_params()
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
assert params.decoding_method in (
|
|
||||||
"greedy_search",
|
|
||||||
"beam_search",
|
|
||||||
"fast_beam_search",
|
|
||||||
"fast_beam_search_nbest",
|
|
||||||
"fast_beam_search_nbest_LG",
|
|
||||||
"fast_beam_search_nbest_oracle",
|
|
||||||
"modified_beam_search",
|
|
||||||
)
|
|
||||||
params.res_dir = params.exp_dir / params.decoding_method
|
|
||||||
|
|
||||||
if params.iter > 0:
|
|
||||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
|
||||||
else:
|
|
||||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
|
||||||
|
|
||||||
if "fast_beam_search" in params.decoding_method:
|
|
||||||
params.suffix += f"-beam-{params.beam}"
|
|
||||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
|
||||||
params.suffix += f"-max-states-{params.max_states}"
|
|
||||||
if "nbest" in params.decoding_method:
|
|
||||||
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
|
||||||
params.suffix += f"-num-paths-{params.num_paths}"
|
|
||||||
if "LG" in params.decoding_method:
|
|
||||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
|
||||||
elif "beam_search" in params.decoding_method:
|
|
||||||
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
|
||||||
else:
|
|
||||||
params.suffix += f"-context-{params.context_size}"
|
|
||||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
|
||||||
|
|
||||||
if params.use_averaged_model:
|
|
||||||
params.suffix += "-use-averaged-model"
|
|
||||||
|
|
||||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
|
||||||
logging.info("Decoding started")
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda", 0)
|
|
||||||
|
|
||||||
logging.info(f"Device: {device}")
|
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(params.bpe_model)
|
|
||||||
|
|
||||||
# <blk> and <unk> are defined in local/train_bpe_model.py
|
|
||||||
params.blank_id = sp.piece_to_id("<blk>")
|
|
||||||
params.unk_id = sp.piece_to_id("<unk>")
|
|
||||||
params.vocab_size = sp.get_piece_size()
|
|
||||||
|
|
||||||
logging.info(params)
|
|
||||||
|
|
||||||
logging.info("About to create model")
|
|
||||||
model = get_surt_model(params)
|
|
||||||
assert model.encoder.decode_chunk_size == params.decode_chunk_len // 2, (
|
|
||||||
model.encoder.decode_chunk_size,
|
|
||||||
params.decode_chunk_len,
|
|
||||||
)
|
|
||||||
|
|
||||||
if not params.use_averaged_model:
|
|
||||||
if params.iter > 0:
|
|
||||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
||||||
: params.avg
|
|
||||||
]
|
|
||||||
if len(filenames) == 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"No checkpoints found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
elif len(filenames) < params.avg:
|
|
||||||
raise ValueError(
|
|
||||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
logging.info(f"averaging {filenames}")
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
||||||
elif params.avg == 1:
|
|
||||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
||||||
else:
|
|
||||||
start = params.epoch - params.avg + 1
|
|
||||||
filenames = []
|
|
||||||
for i in range(start, params.epoch + 1):
|
|
||||||
if i >= 1:
|
|
||||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
||||||
logging.info(f"averaging {filenames}")
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
||||||
else:
|
|
||||||
if params.iter > 0:
|
|
||||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
||||||
: params.avg + 1
|
|
||||||
]
|
|
||||||
if len(filenames) == 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"No checkpoints found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
elif len(filenames) < params.avg + 1:
|
|
||||||
raise ValueError(
|
|
||||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
filename_start = filenames[-1]
|
|
||||||
filename_end = filenames[0]
|
|
||||||
logging.info(
|
|
||||||
"Calculating the averaged model over iteration checkpoints"
|
|
||||||
f" from {filename_start} (excluded) to {filename_end}"
|
|
||||||
)
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(
|
|
||||||
average_checkpoints_with_averaged_model(
|
|
||||||
filename_start=filename_start,
|
|
||||||
filename_end=filename_end,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
assert params.avg > 0, params.avg
|
|
||||||
start = params.epoch - params.avg
|
|
||||||
assert start >= 1, start
|
|
||||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
||||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
||||||
logging.info(
|
|
||||||
f"Calculating the averaged model over epoch range from "
|
|
||||||
f"{start} (excluded) to {params.epoch}"
|
|
||||||
)
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(
|
|
||||||
average_checkpoints_with_averaged_model(
|
|
||||||
filename_start=filename_start,
|
|
||||||
filename_end=filename_end,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
model.to(device)
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
if "fast_beam_search" in params.decoding_method:
|
|
||||||
if params.decoding_method == "fast_beam_search_nbest_LG":
|
|
||||||
lexicon = Lexicon(params.lang_dir)
|
|
||||||
word_table = lexicon.word_table
|
|
||||||
lg_filename = params.lang_dir / "LG.pt"
|
|
||||||
logging.info(f"Loading {lg_filename}")
|
|
||||||
decoding_graph = k2.Fsa.from_dict(
|
|
||||||
torch.load(lg_filename, map_location=device)
|
|
||||||
)
|
|
||||||
decoding_graph.scores *= params.ngram_lm_scale
|
|
||||||
else:
|
|
||||||
word_table = None
|
|
||||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
|
||||||
else:
|
|
||||||
decoding_graph = None
|
|
||||||
word_table = None
|
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
|
||||||
|
|
||||||
# we need cut ids to display recognition results.
|
|
||||||
args.return_cuts = True
|
|
||||||
librimix = LibrimixAsrDataModule(args)
|
|
||||||
|
|
||||||
dev_cuts = librimix.libricss_cuts(split="dev", type="ihm-mix").to_eager()
|
|
||||||
dev_cuts_grouped = [dev_cuts.filter(lambda x: ol in x.id) for ol in OVERLAP_RATIOS]
|
|
||||||
test_cuts = librimix.libricss_cuts(split="test", type="ihm-mix").to_eager()
|
|
||||||
test_cuts_grouped = [
|
|
||||||
test_cuts.filter(lambda x: ol in x.id) for ol in OVERLAP_RATIOS
|
|
||||||
]
|
|
||||||
|
|
||||||
for dev_set, ol in zip(dev_cuts_grouped, OVERLAP_RATIOS):
|
|
||||||
dev_dl = librimix.test_dataloaders(dev_set)
|
|
||||||
results_dict = decode_dataset(
|
|
||||||
dl=dev_dl,
|
|
||||||
params=params,
|
|
||||||
model=model,
|
|
||||||
sp=sp,
|
|
||||||
word_table=word_table,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
)
|
|
||||||
|
|
||||||
save_results(
|
|
||||||
params=params,
|
|
||||||
test_set_name=f"dev_{ol}",
|
|
||||||
results_dict=results_dict,
|
|
||||||
)
|
|
||||||
|
|
||||||
# if params.save_masks:
|
|
||||||
# save_masks(
|
|
||||||
# params=params,
|
|
||||||
# test_set_name=f"dev_{ol}",
|
|
||||||
# masks=masks,
|
|
||||||
# )
|
|
||||||
|
|
||||||
# for test_set, ol in zip(test_cuts_grouped, OVERLAP_RATIOS):
|
|
||||||
# test_dl = librimix.test_dataloaders(test_set)
|
|
||||||
# results_dict = decode_dataset(
|
|
||||||
# dl=test_dl,
|
|
||||||
# params=params,
|
|
||||||
# model=model,
|
|
||||||
# sp=sp,
|
|
||||||
# word_table=word_table,
|
|
||||||
# decoding_graph=decoding_graph,
|
|
||||||
# )
|
|
||||||
|
|
||||||
# save_results(
|
|
||||||
# params=params,
|
|
||||||
# test_set_name=f"test_{ol}",
|
|
||||||
# results_dict=results_dict,
|
|
||||||
# )
|
|
||||||
|
|
||||||
# if params.save_masks:
|
|
||||||
# save_masks(
|
|
||||||
# params=params,
|
|
||||||
# test_set_name=f"test_{ol}",
|
|
||||||
# masks=masks,
|
|
||||||
# )
|
|
||||||
|
|
||||||
logging.info("Done!")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
@ -1,151 +0,0 @@
|
|||||||
# Copyright 2022 Xiaomi Corp. (authors: Wei Kang,
|
|
||||||
# Zengwei Yao)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import math
|
|
||||||
from typing import List, Optional, Tuple
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import torch
|
|
||||||
from beam_search import Hypothesis, HypothesisList
|
|
||||||
|
|
||||||
from icefall.utils import AttributeDict
|
|
||||||
|
|
||||||
|
|
||||||
class DecodeStream(object):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
params: AttributeDict,
|
|
||||||
cut_id: str,
|
|
||||||
initial_states: List[torch.Tensor],
|
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
|
||||||
device: torch.device = torch.device("cpu"),
|
|
||||||
) -> None:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
initial_states:
|
|
||||||
Initial decode states of the model, e.g. the return value of
|
|
||||||
`get_init_state` in conformer.py
|
|
||||||
decoding_graph:
|
|
||||||
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
|
||||||
Used only when decoding_method is fast_beam_search.
|
|
||||||
device:
|
|
||||||
The device to run this stream.
|
|
||||||
"""
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
|
||||||
assert decoding_graph is not None
|
|
||||||
assert device == decoding_graph.device
|
|
||||||
|
|
||||||
self.params = params
|
|
||||||
self.cut_id = cut_id
|
|
||||||
self.LOG_EPS = math.log(1e-10)
|
|
||||||
|
|
||||||
self.states = initial_states
|
|
||||||
|
|
||||||
# It contains a 2-D tensors representing the feature frames.
|
|
||||||
self.features: torch.Tensor = None
|
|
||||||
|
|
||||||
self.num_frames: int = 0
|
|
||||||
# how many frames have been processed. (before subsampling).
|
|
||||||
# we only modify this value in `func:get_feature_frames`.
|
|
||||||
self.num_processed_frames: int = 0
|
|
||||||
|
|
||||||
self._done: bool = False
|
|
||||||
|
|
||||||
# The transcript of current utterance.
|
|
||||||
self.ground_truth: str = ""
|
|
||||||
|
|
||||||
# The decoding result (partial or final) of current utterance.
|
|
||||||
self.hyp: List = []
|
|
||||||
|
|
||||||
# how many frames have been processed, after subsampling (i.e. a
|
|
||||||
# cumulative sum of the second return value of
|
|
||||||
# encoder.streaming_forward
|
|
||||||
self.done_frames: int = 0
|
|
||||||
|
|
||||||
# It has two steps of feature subsampling in zipformer: out_lens=((x_lens-7)//2+1)//2
|
|
||||||
# 1) feature embedding: out_lens=(x_lens-7)//2
|
|
||||||
# 2) output subsampling: out_lens=(out_lens+1)//2
|
|
||||||
self.pad_length = 7
|
|
||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
|
||||||
self.hyp = [params.blank_id] * params.context_size
|
|
||||||
elif params.decoding_method == "modified_beam_search":
|
|
||||||
self.hyps = HypothesisList()
|
|
||||||
self.hyps.add(
|
|
||||||
Hypothesis(
|
|
||||||
ys=[params.blank_id] * params.context_size,
|
|
||||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
elif params.decoding_method == "fast_beam_search":
|
|
||||||
# The rnnt_decoding_stream for fast_beam_search.
|
|
||||||
self.rnnt_decoding_stream: k2.RnntDecodingStream = k2.RnntDecodingStream(
|
|
||||||
decoding_graph
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
|
||||||
|
|
||||||
@property
|
|
||||||
def done(self) -> bool:
|
|
||||||
"""Return True if all the features are processed."""
|
|
||||||
return self._done
|
|
||||||
|
|
||||||
@property
|
|
||||||
def id(self) -> str:
|
|
||||||
return self.cut_id
|
|
||||||
|
|
||||||
def set_features(
|
|
||||||
self,
|
|
||||||
features: torch.Tensor,
|
|
||||||
tail_pad_len: int = 0,
|
|
||||||
) -> None:
|
|
||||||
"""Set features tensor of current utterance."""
|
|
||||||
assert features.dim() == 2, features.dim()
|
|
||||||
self.features = torch.nn.functional.pad(
|
|
||||||
features,
|
|
||||||
(0, 0, 0, self.pad_length + tail_pad_len),
|
|
||||||
mode="constant",
|
|
||||||
value=self.LOG_EPS,
|
|
||||||
)
|
|
||||||
self.num_frames = self.features.size(0)
|
|
||||||
|
|
||||||
def get_feature_frames(self, chunk_size: int) -> Tuple[torch.Tensor, int]:
|
|
||||||
"""Consume chunk_size frames of features"""
|
|
||||||
chunk_length = chunk_size + self.pad_length
|
|
||||||
|
|
||||||
ret_length = min(self.num_frames - self.num_processed_frames, chunk_length)
|
|
||||||
|
|
||||||
ret_features = self.features[
|
|
||||||
self.num_processed_frames : self.num_processed_frames + ret_length # noqa
|
|
||||||
]
|
|
||||||
|
|
||||||
self.num_processed_frames += chunk_size
|
|
||||||
if self.num_processed_frames >= self.num_frames:
|
|
||||||
self._done = True
|
|
||||||
|
|
||||||
return ret_features, ret_length
|
|
||||||
|
|
||||||
def decoding_result(self) -> List[int]:
|
|
||||||
"""Obtain current decoding result."""
|
|
||||||
if self.params.decoding_method == "greedy_search":
|
|
||||||
return self.hyp[self.params.context_size :] # noqa
|
|
||||||
elif self.params.decoding_method == "modified_beam_search":
|
|
||||||
best_hyp = self.hyps.get_most_probable(length_norm=True)
|
|
||||||
return best_hyp.ys[self.params.context_size :] # noqa
|
|
||||||
else:
|
|
||||||
assert self.params.decoding_method == "fast_beam_search"
|
|
||||||
return self.hyp
|
|
||||||
@ -1,102 +0,0 @@
|
|||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
|
|
||||||
|
|
||||||
class Decoder(nn.Module):
|
|
||||||
"""This class modifies the stateless decoder from the following paper:
|
|
||||||
|
|
||||||
RNN-transducer with stateless prediction network
|
|
||||||
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
|
|
||||||
|
|
||||||
It removes the recurrent connection from the decoder, i.e., the prediction
|
|
||||||
network. Different from the above paper, it adds an extra Conv1d
|
|
||||||
right after the embedding layer.
|
|
||||||
|
|
||||||
TODO: Implement https://arxiv.org/pdf/2109.07513.pdf
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
vocab_size: int,
|
|
||||||
decoder_dim: int,
|
|
||||||
blank_id: int,
|
|
||||||
context_size: int,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
vocab_size:
|
|
||||||
Number of tokens of the modeling unit including blank.
|
|
||||||
decoder_dim:
|
|
||||||
Dimension of the input embedding, and of the decoder output.
|
|
||||||
blank_id:
|
|
||||||
The ID of the blank symbol.
|
|
||||||
context_size:
|
|
||||||
Number of previous words to use to predict the next word.
|
|
||||||
1 means bigram; 2 means trigram. n means (n+1)-gram.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.embedding = nn.Embedding(
|
|
||||||
num_embeddings=vocab_size,
|
|
||||||
embedding_dim=decoder_dim,
|
|
||||||
padding_idx=blank_id,
|
|
||||||
)
|
|
||||||
self.blank_id = blank_id
|
|
||||||
|
|
||||||
assert context_size >= 1, context_size
|
|
||||||
self.context_size = context_size
|
|
||||||
self.vocab_size = vocab_size
|
|
||||||
if context_size > 1:
|
|
||||||
self.conv = nn.Conv1d(
|
|
||||||
in_channels=decoder_dim,
|
|
||||||
out_channels=decoder_dim,
|
|
||||||
kernel_size=context_size,
|
|
||||||
padding=0,
|
|
||||||
groups=decoder_dim // 4, # group size == 4
|
|
||||||
bias=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
y:
|
|
||||||
A 2-D tensor of shape (N, U).
|
|
||||||
need_pad:
|
|
||||||
True to left pad the input. Should be True during training.
|
|
||||||
False to not pad the input. Should be False during inference.
|
|
||||||
Returns:
|
|
||||||
Return a tensor of shape (N, U, decoder_dim).
|
|
||||||
"""
|
|
||||||
y = y.to(torch.int64)
|
|
||||||
# this stuff about clamp() is a temporary fix for a mismatch
|
|
||||||
# at utterance start, we use negative ids in beam_search.py
|
|
||||||
embedding_out = self.embedding(y.clamp(min=0)) * (y >= 0).unsqueeze(-1)
|
|
||||||
if self.context_size > 1:
|
|
||||||
embedding_out = embedding_out.permute(0, 2, 1)
|
|
||||||
if need_pad is True:
|
|
||||||
embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0))
|
|
||||||
else:
|
|
||||||
# During inference time, there is no need to do extra padding
|
|
||||||
# as we only need one output
|
|
||||||
assert embedding_out.size(-1) == self.context_size
|
|
||||||
embedding_out = self.conv(embedding_out)
|
|
||||||
embedding_out = embedding_out.permute(0, 2, 1)
|
|
||||||
embedding_out = F.relu(embedding_out)
|
|
||||||
return embedding_out
|
|
||||||
@ -1,304 +0,0 @@
|
|||||||
import random
|
|
||||||
from typing import Optional, Tuple
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from einops import rearrange
|
|
||||||
from scaling import ActivationBalancer, BasicNorm, DoubleSwish, ScaledLinear, ScaledLSTM
|
|
||||||
from torch.autograd import Variable
|
|
||||||
|
|
||||||
EPS = torch.finfo(torch.get_default_dtype()).eps
|
|
||||||
|
|
||||||
|
|
||||||
def _pad_segment(input, segment_size):
|
|
||||||
# Source: https://github.com/espnet/espnet/blob/master/espnet2/enh/layers/dprnn.py#L342
|
|
||||||
# input is the features: (B, N, T)
|
|
||||||
batch_size, dim, seq_len = input.shape
|
|
||||||
segment_stride = segment_size // 2
|
|
||||||
|
|
||||||
rest = segment_size - (segment_stride + seq_len % segment_size) % segment_size
|
|
||||||
if rest > 0:
|
|
||||||
pad = Variable(torch.zeros(batch_size, dim, rest)).type(input.type())
|
|
||||||
input = torch.cat([input, pad], 2)
|
|
||||||
|
|
||||||
pad_aux = Variable(torch.zeros(batch_size, dim, segment_stride)).type(input.type())
|
|
||||||
input = torch.cat([pad_aux, input, pad_aux], 2)
|
|
||||||
|
|
||||||
return input, rest
|
|
||||||
|
|
||||||
|
|
||||||
def split_feature(input, segment_size):
|
|
||||||
# Source: https://github.com/espnet/espnet/blob/master/espnet2/enh/layers/dprnn.py#L358
|
|
||||||
# split the feature into chunks of segment size
|
|
||||||
# input is the features: (B, N, T)
|
|
||||||
|
|
||||||
input, rest = _pad_segment(input, segment_size)
|
|
||||||
batch_size, dim, seq_len = input.shape
|
|
||||||
segment_stride = segment_size // 2
|
|
||||||
|
|
||||||
segments1 = (
|
|
||||||
input[:, :, :-segment_stride]
|
|
||||||
.contiguous()
|
|
||||||
.view(batch_size, dim, -1, segment_size)
|
|
||||||
)
|
|
||||||
segments2 = (
|
|
||||||
input[:, :, segment_stride:]
|
|
||||||
.contiguous()
|
|
||||||
.view(batch_size, dim, -1, segment_size)
|
|
||||||
)
|
|
||||||
segments = (
|
|
||||||
torch.cat([segments1, segments2], 3)
|
|
||||||
.view(batch_size, dim, -1, segment_size)
|
|
||||||
.transpose(2, 3)
|
|
||||||
)
|
|
||||||
|
|
||||||
return segments.contiguous(), rest
|
|
||||||
|
|
||||||
|
|
||||||
def merge_feature(input, rest):
|
|
||||||
# Source: https://github.com/espnet/espnet/blob/master/espnet2/enh/layers/dprnn.py#L385
|
|
||||||
# merge the splitted features into full utterance
|
|
||||||
# input is the features: (B, N, L, K)
|
|
||||||
|
|
||||||
batch_size, dim, segment_size, _ = input.shape
|
|
||||||
segment_stride = segment_size // 2
|
|
||||||
input = (
|
|
||||||
input.transpose(2, 3).contiguous().view(batch_size, dim, -1, segment_size * 2)
|
|
||||||
) # B, N, K, L
|
|
||||||
|
|
||||||
input1 = (
|
|
||||||
input[:, :, :, :segment_size]
|
|
||||||
.contiguous()
|
|
||||||
.view(batch_size, dim, -1)[:, :, segment_stride:]
|
|
||||||
)
|
|
||||||
input2 = (
|
|
||||||
input[:, :, :, segment_size:]
|
|
||||||
.contiguous()
|
|
||||||
.view(batch_size, dim, -1)[:, :, :-segment_stride]
|
|
||||||
)
|
|
||||||
|
|
||||||
output = input1 + input2
|
|
||||||
if rest > 0:
|
|
||||||
output = output[:, :, :-rest]
|
|
||||||
|
|
||||||
return output.contiguous() # B, N, T
|
|
||||||
|
|
||||||
|
|
||||||
class RNNEncoderLayer(nn.Module):
|
|
||||||
"""
|
|
||||||
RNNEncoderLayer is made up of lstm and feedforward networks.
|
|
||||||
Args:
|
|
||||||
input_size:
|
|
||||||
The number of expected features in the input (required).
|
|
||||||
hidden_size:
|
|
||||||
The hidden dimension of rnn layer.
|
|
||||||
dropout:
|
|
||||||
The dropout value (default=0.1).
|
|
||||||
layer_dropout:
|
|
||||||
The dropout value for model-level warmup (default=0.075).
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
input_size: int,
|
|
||||||
hidden_size: int,
|
|
||||||
dropout: float = 0.1,
|
|
||||||
bidirectional: bool = False,
|
|
||||||
) -> None:
|
|
||||||
super(RNNEncoderLayer, self).__init__()
|
|
||||||
self.input_size = input_size
|
|
||||||
self.hidden_size = hidden_size
|
|
||||||
|
|
||||||
assert hidden_size >= input_size, (hidden_size, input_size)
|
|
||||||
self.lstm = ScaledLSTM(
|
|
||||||
input_size=input_size,
|
|
||||||
hidden_size=hidden_size // 2 if bidirectional else hidden_size,
|
|
||||||
proj_size=0,
|
|
||||||
num_layers=1,
|
|
||||||
dropout=0.0,
|
|
||||||
batch_first=True,
|
|
||||||
bidirectional=bidirectional,
|
|
||||||
)
|
|
||||||
self.norm_final = BasicNorm(input_size)
|
|
||||||
|
|
||||||
# try to ensure the output is close to zero-mean (or at least, zero-median). # noqa
|
|
||||||
self.balancer = ActivationBalancer(
|
|
||||||
num_channels=input_size,
|
|
||||||
channel_dim=-1,
|
|
||||||
min_positive=0.45,
|
|
||||||
max_positive=0.55,
|
|
||||||
max_abs=6.0,
|
|
||||||
)
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
src: torch.Tensor,
|
|
||||||
states: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
||||||
warmup: float = 1.0,
|
|
||||||
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
|
||||||
"""
|
|
||||||
Pass the input through the encoder layer.
|
|
||||||
Args:
|
|
||||||
src:
|
|
||||||
The sequence to the encoder layer (required).
|
|
||||||
Its shape is (S, N, E), where S is the sequence length,
|
|
||||||
N is the batch size, and E is the feature number.
|
|
||||||
states:
|
|
||||||
A tuple of 2 tensors (optional). It is for streaming inference.
|
|
||||||
states[0] is the hidden states of all layers,
|
|
||||||
with shape of (1, N, input_size);
|
|
||||||
states[1] is the cell states of all layers,
|
|
||||||
with shape of (1, N, hidden_size).
|
|
||||||
"""
|
|
||||||
src_orig = src
|
|
||||||
|
|
||||||
# alpha = 1.0 means fully use this encoder layer, 0.0 would mean
|
|
||||||
# completely bypass it.
|
|
||||||
alpha = warmup if self.training else 1.0
|
|
||||||
|
|
||||||
# lstm module
|
|
||||||
src_lstm, new_states = self.lstm(src, states)
|
|
||||||
src = self.dropout(src_lstm) + src
|
|
||||||
src = self.norm_final(self.balancer(src))
|
|
||||||
|
|
||||||
if alpha != 1.0:
|
|
||||||
src = alpha * src + (1 - alpha) * src_orig
|
|
||||||
|
|
||||||
return src
|
|
||||||
|
|
||||||
|
|
||||||
# dual-path RNN
|
|
||||||
class DPRNN(nn.Module):
|
|
||||||
"""Deep dual-path RNN.
|
|
||||||
Source: https://github.com/espnet/espnet/blob/master/espnet2/enh/layers/dprnn.py
|
|
||||||
|
|
||||||
args:
|
|
||||||
input_size: int, dimension of the input feature. The input should have shape
|
|
||||||
(batch, seq_len, input_size).
|
|
||||||
hidden_size: int, dimension of the hidden state.
|
|
||||||
output_size: int, dimension of the output size.
|
|
||||||
dropout: float, dropout ratio. Default is 0.
|
|
||||||
num_blocks: int, number of stacked RNN layers. Default is 1.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
feature_dim,
|
|
||||||
input_size,
|
|
||||||
hidden_size,
|
|
||||||
output_size,
|
|
||||||
dropout=0.1,
|
|
||||||
num_blocks=1,
|
|
||||||
segment_size=50,
|
|
||||||
chunk_width_randomization=False,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.input_size = input_size
|
|
||||||
self.output_size = output_size
|
|
||||||
self.hidden_size = hidden_size
|
|
||||||
|
|
||||||
self.segment_size = segment_size
|
|
||||||
self.chunk_width_randomization = chunk_width_randomization
|
|
||||||
|
|
||||||
self.input_embed = nn.Sequential(
|
|
||||||
ScaledLinear(feature_dim, input_size),
|
|
||||||
BasicNorm(input_size),
|
|
||||||
ActivationBalancer(
|
|
||||||
num_channels=input_size,
|
|
||||||
channel_dim=-1,
|
|
||||||
min_positive=0.45,
|
|
||||||
max_positive=0.55,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
# dual-path RNN
|
|
||||||
self.row_rnn = nn.ModuleList([])
|
|
||||||
self.col_rnn = nn.ModuleList([])
|
|
||||||
for _ in range(num_blocks):
|
|
||||||
# intra-RNN is non-causal
|
|
||||||
self.row_rnn.append(
|
|
||||||
RNNEncoderLayer(
|
|
||||||
input_size, hidden_size, dropout=dropout, bidirectional=True
|
|
||||||
)
|
|
||||||
)
|
|
||||||
self.col_rnn.append(
|
|
||||||
RNNEncoderLayer(
|
|
||||||
input_size, hidden_size, dropout=dropout, bidirectional=False
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# output layer
|
|
||||||
self.out_embed = nn.Sequential(
|
|
||||||
ScaledLinear(input_size, output_size),
|
|
||||||
BasicNorm(output_size),
|
|
||||||
ActivationBalancer(
|
|
||||||
num_channels=output_size,
|
|
||||||
channel_dim=-1,
|
|
||||||
min_positive=0.45,
|
|
||||||
max_positive=0.55,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, input):
|
|
||||||
# input shape: B, T, F
|
|
||||||
input = self.input_embed(input)
|
|
||||||
B, T, D = input.shape
|
|
||||||
|
|
||||||
if self.chunk_width_randomization and self.training:
|
|
||||||
segment_size = random.randint(self.segment_size // 2, self.segment_size)
|
|
||||||
else:
|
|
||||||
segment_size = self.segment_size
|
|
||||||
input, rest = split_feature(input.transpose(1, 2), segment_size)
|
|
||||||
# input shape: batch, N, dim1, dim2
|
|
||||||
# apply RNN on dim1 first and then dim2
|
|
||||||
# output shape: B, output_size, dim1, dim2
|
|
||||||
# input = input.to(device)
|
|
||||||
batch_size, _, dim1, dim2 = input.shape
|
|
||||||
output = input
|
|
||||||
for i in range(len(self.row_rnn)):
|
|
||||||
row_input = (
|
|
||||||
output.permute(0, 3, 2, 1)
|
|
||||||
.contiguous()
|
|
||||||
.view(batch_size * dim2, dim1, -1)
|
|
||||||
) # B*dim2, dim1, N
|
|
||||||
output = self.row_rnn[i](row_input) # B*dim2, dim1, H
|
|
||||||
output = (
|
|
||||||
output.view(batch_size, dim2, dim1, -1).permute(0, 3, 2, 1).contiguous()
|
|
||||||
) # B, N, dim1, dim2
|
|
||||||
|
|
||||||
col_input = (
|
|
||||||
output.permute(0, 2, 3, 1)
|
|
||||||
.contiguous()
|
|
||||||
.view(batch_size * dim1, dim2, -1)
|
|
||||||
) # B*dim1, dim2, N
|
|
||||||
output = self.col_rnn[i](col_input) # B*dim1, dim2, H
|
|
||||||
output = (
|
|
||||||
output.view(batch_size, dim1, dim2, -1).permute(0, 3, 1, 2).contiguous()
|
|
||||||
) # B, N, dim1, dim2
|
|
||||||
|
|
||||||
output = merge_feature(output, rest)
|
|
||||||
output = output.transpose(1, 2)
|
|
||||||
output = self.out_embed(output)
|
|
||||||
|
|
||||||
# Apply ReLU to the output
|
|
||||||
output = torch.relu(output)
|
|
||||||
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
|
|
||||||
model = DPRNN(
|
|
||||||
80,
|
|
||||||
256,
|
|
||||||
256,
|
|
||||||
160,
|
|
||||||
dropout=0.1,
|
|
||||||
num_blocks=3,
|
|
||||||
segment_size=20,
|
|
||||||
chunk_width_randomization=True,
|
|
||||||
)
|
|
||||||
input = torch.randn(2, 1002, 80)
|
|
||||||
print(model(input).shape)
|
|
||||||
@ -1,43 +0,0 @@
|
|||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from typing import Tuple
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
|
|
||||||
|
|
||||||
class EncoderInterface(nn.Module):
|
|
||||||
def forward(
|
|
||||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
A tensor of shape (batch_size, input_seq_len, num_features)
|
|
||||||
containing the input features.
|
|
||||||
x_lens:
|
|
||||||
A tensor of shape (batch_size,) containing the number of frames
|
|
||||||
in `x` before padding.
|
|
||||||
Returns:
|
|
||||||
Return a tuple containing two tensors:
|
|
||||||
- encoder_out, a tensor of (batch_size, out_seq_len, output_dim)
|
|
||||||
containing unnormalized probabilities, i.e., the output of a
|
|
||||||
linear layer.
|
|
||||||
- encoder_out_lens, a tensor of shape (batch_size,) containing
|
|
||||||
the number of frames in `encoder_out` before padding.
|
|
||||||
"""
|
|
||||||
raise NotImplementedError("Please implement it in a subclass")
|
|
||||||
@ -1,320 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
#
|
|
||||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
# This script converts several saved checkpoints
|
|
||||||
# to a single one using model averaging.
|
|
||||||
"""
|
|
||||||
|
|
||||||
Usage:
|
|
||||||
|
|
||||||
(1) Export to torchscript model using torch.jit.script()
|
|
||||||
|
|
||||||
./pruned_transducer_stateless7_streaming/export.py \
|
|
||||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
|
||||||
--bpe-model data/lang_bpe_500/bpe.model \
|
|
||||||
--epoch 30 \
|
|
||||||
--avg 9 \
|
|
||||||
--jit 1
|
|
||||||
|
|
||||||
It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later
|
|
||||||
load it by `torch.jit.load("cpu_jit.pt")`.
|
|
||||||
|
|
||||||
Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python
|
|
||||||
are on CPU. You can use `to("cuda")` to move them to a CUDA device.
|
|
||||||
|
|
||||||
Check
|
|
||||||
https://github.com/k2-fsa/sherpa
|
|
||||||
for how to use the exported models outside of icefall.
|
|
||||||
|
|
||||||
(2) Export `model.state_dict()`
|
|
||||||
|
|
||||||
./pruned_transducer_stateless7_streaming/export.py \
|
|
||||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
|
||||||
--bpe-model data/lang_bpe_500/bpe.model \
|
|
||||||
--epoch 20 \
|
|
||||||
--avg 10
|
|
||||||
|
|
||||||
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
|
|
||||||
load it by `icefall.checkpoint.load_checkpoint()`.
|
|
||||||
|
|
||||||
To use the generated file with `pruned_transducer_stateless7_streaming/decode.py`,
|
|
||||||
you can do:
|
|
||||||
|
|
||||||
cd /path/to/exp_dir
|
|
||||||
ln -s pretrained.pt epoch-9999.pt
|
|
||||||
|
|
||||||
cd /path/to/egs/librispeech/ASR
|
|
||||||
./pruned_transducer_stateless7_streaming/decode.py \
|
|
||||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
|
||||||
--epoch 9999 \
|
|
||||||
--avg 1 \
|
|
||||||
--max-duration 600 \
|
|
||||||
--decoding-method greedy_search \
|
|
||||||
--bpe-model data/lang_bpe_500/bpe.model
|
|
||||||
|
|
||||||
Check ./pretrained.py for its usage.
|
|
||||||
|
|
||||||
Note: If you don't want to train a model from scratch, we have
|
|
||||||
provided one for you. You can get it at
|
|
||||||
|
|
||||||
https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11
|
|
||||||
|
|
||||||
with the following commands:
|
|
||||||
|
|
||||||
sudo apt-get install git-lfs
|
|
||||||
git lfs install
|
|
||||||
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11
|
|
||||||
# You will find the pre-trained model in icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11/exp
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from scaling_converter import convert_scaled_to_non_scaled
|
|
||||||
from train import add_model_arguments, get_params, get_transducer_model
|
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
|
||||||
average_checkpoints,
|
|
||||||
average_checkpoints_with_averaged_model,
|
|
||||||
find_checkpoints,
|
|
||||||
load_checkpoint,
|
|
||||||
)
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--epoch",
|
|
||||||
type=int,
|
|
||||||
default=30,
|
|
||||||
help="""It specifies the checkpoint to use for decoding.
|
|
||||||
Note: Epoch counts from 1.
|
|
||||||
You can specify --avg to use more checkpoints for model averaging.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--iter",
|
|
||||||
type=int,
|
|
||||||
default=0,
|
|
||||||
help="""If positive, --epoch is ignored and it
|
|
||||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
||||||
You can specify --avg to use more checkpoints for model averaging.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--avg",
|
|
||||||
type=int,
|
|
||||||
default=9,
|
|
||||||
help="Number of checkpoints to average. Automatically select "
|
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
|
||||||
"'--epoch' and '--iter'",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--use-averaged-model",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="Whether to load averaged model. Currently it only supports "
|
|
||||||
"using --epoch. If True, it would decode with the averaged model "
|
|
||||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
||||||
"Actually only the models with epoch number of `epoch-avg` and "
|
|
||||||
"`epoch` are loaded for averaging. ",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--exp-dir",
|
|
||||||
type=str,
|
|
||||||
default="pruned_transducer_stateless7_streaming/exp",
|
|
||||||
help="""It specifies the directory where all training related
|
|
||||||
files, e.g., checkpoints, log, etc, are saved
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--bpe-model",
|
|
||||||
type=str,
|
|
||||||
default="data/lang_bpe_500/bpe.model",
|
|
||||||
help="Path to the BPE model",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--jit",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="""True to save a model after applying torch.jit.script.
|
|
||||||
It will generate a file named cpu_jit.pt
|
|
||||||
|
|
||||||
Check ./jit_pretrained.py for how to use it.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--context-size",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
||||||
)
|
|
||||||
|
|
||||||
add_model_arguments(parser)
|
|
||||||
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def main():
|
|
||||||
args = get_parser().parse_args()
|
|
||||||
args.exp_dir = Path(args.exp_dir)
|
|
||||||
|
|
||||||
params = get_params()
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda", 0)
|
|
||||||
|
|
||||||
logging.info(f"device: {device}")
|
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(params.bpe_model)
|
|
||||||
|
|
||||||
# <blk> is defined in local/train_bpe_model.py
|
|
||||||
params.blank_id = sp.piece_to_id("<blk>")
|
|
||||||
params.vocab_size = sp.get_piece_size()
|
|
||||||
|
|
||||||
logging.info(params)
|
|
||||||
|
|
||||||
logging.info("About to create model")
|
|
||||||
model = get_transducer_model(params)
|
|
||||||
|
|
||||||
model.to(device)
|
|
||||||
|
|
||||||
if not params.use_averaged_model:
|
|
||||||
if params.iter > 0:
|
|
||||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
||||||
: params.avg
|
|
||||||
]
|
|
||||||
if len(filenames) == 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"No checkpoints found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
elif len(filenames) < params.avg:
|
|
||||||
raise ValueError(
|
|
||||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
logging.info(f"averaging {filenames}")
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
||||||
elif params.avg == 1:
|
|
||||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
||||||
else:
|
|
||||||
start = params.epoch - params.avg + 1
|
|
||||||
filenames = []
|
|
||||||
for i in range(start, params.epoch + 1):
|
|
||||||
if i >= 1:
|
|
||||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
||||||
logging.info(f"averaging {filenames}")
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
||||||
else:
|
|
||||||
if params.iter > 0:
|
|
||||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
||||||
: params.avg + 1
|
|
||||||
]
|
|
||||||
if len(filenames) == 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"No checkpoints found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
elif len(filenames) < params.avg + 1:
|
|
||||||
raise ValueError(
|
|
||||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
filename_start = filenames[-1]
|
|
||||||
filename_end = filenames[0]
|
|
||||||
logging.info(
|
|
||||||
"Calculating the averaged model over iteration checkpoints"
|
|
||||||
f" from {filename_start} (excluded) to {filename_end}"
|
|
||||||
)
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(
|
|
||||||
average_checkpoints_with_averaged_model(
|
|
||||||
filename_start=filename_start,
|
|
||||||
filename_end=filename_end,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
assert params.avg > 0, params.avg
|
|
||||||
start = params.epoch - params.avg
|
|
||||||
assert start >= 1, start
|
|
||||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
||||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
||||||
logging.info(
|
|
||||||
f"Calculating the averaged model over epoch range from "
|
|
||||||
f"{start} (excluded) to {params.epoch}"
|
|
||||||
)
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(
|
|
||||||
average_checkpoints_with_averaged_model(
|
|
||||||
filename_start=filename_start,
|
|
||||||
filename_end=filename_end,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
model.to("cpu")
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
if params.jit is True:
|
|
||||||
convert_scaled_to_non_scaled(model, inplace=True)
|
|
||||||
# We won't use the forward() method of the model in C++, so just ignore
|
|
||||||
# it here.
|
|
||||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
|
||||||
# torch scriptabe.
|
|
||||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
|
||||||
logging.info("Using torch.jit.script")
|
|
||||||
model = torch.jit.script(model)
|
|
||||||
filename = params.exp_dir / "cpu_jit.pt"
|
|
||||||
model.save(str(filename))
|
|
||||||
logging.info(f"Saved to {filename}")
|
|
||||||
else:
|
|
||||||
logging.info("Not using torchscript. Export model.state_dict()")
|
|
||||||
# Save it using a format so that it can be loaded
|
|
||||||
# by :func:`load_checkpoint`
|
|
||||||
filename = params.exp_dir / "pretrained.pt"
|
|
||||||
torch.save({"model": model.state_dict()}, str(filename))
|
|
||||||
logging.info(f"Saved to {filename}")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
main()
|
|
||||||
@ -1,65 +0,0 @@
|
|||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
|
|
||||||
|
|
||||||
class Joiner(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
encoder_dim: int,
|
|
||||||
decoder_dim: int,
|
|
||||||
joiner_dim: int,
|
|
||||||
vocab_size: int,
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.encoder_proj = nn.Linear(encoder_dim, joiner_dim)
|
|
||||||
self.decoder_proj = nn.Linear(decoder_dim, joiner_dim)
|
|
||||||
self.output_linear = nn.Linear(joiner_dim, vocab_size)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
decoder_out: torch.Tensor,
|
|
||||||
project_input: bool = True,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
encoder_out:
|
|
||||||
Output from the encoder. Its shape is (N, T, s_range, C).
|
|
||||||
decoder_out:
|
|
||||||
Output from the decoder. Its shape is (N, T, s_range, C).
|
|
||||||
project_input:
|
|
||||||
If true, apply input projections encoder_proj and decoder_proj.
|
|
||||||
If this is false, it is the user's responsibility to do this
|
|
||||||
manually.
|
|
||||||
Returns:
|
|
||||||
Return a tensor of shape (N, T, s_range, C).
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == decoder_out.ndim
|
|
||||||
assert encoder_out.ndim in (2, 4)
|
|
||||||
assert encoder_out.shape[:-1] == decoder_out.shape[:-1]
|
|
||||||
|
|
||||||
if project_input:
|
|
||||||
logit = self.encoder_proj(encoder_out) + self.decoder_proj(decoder_out)
|
|
||||||
else:
|
|
||||||
logit = encoder_out + decoder_out
|
|
||||||
|
|
||||||
logit = self.output_linear(torch.tanh(logit))
|
|
||||||
|
|
||||||
return logit
|
|
||||||
@ -1,304 +0,0 @@
|
|||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from typing import List, Tuple
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from encoder_interface import EncoderInterface
|
|
||||||
|
|
||||||
from icefall.utils import add_sos
|
|
||||||
|
|
||||||
|
|
||||||
class SURT(nn.Module):
|
|
||||||
"""It implements Streaming Unmixing and Recognition Transducer (SURT).
|
|
||||||
https://arxiv.org/abs/2011.13148
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
mask_encoder: nn.Module,
|
|
||||||
encoder: EncoderInterface,
|
|
||||||
decoder: nn.Module,
|
|
||||||
joiner: nn.Module,
|
|
||||||
num_channels: int,
|
|
||||||
encoder_dim: int,
|
|
||||||
decoder_dim: int,
|
|
||||||
joiner_dim: int,
|
|
||||||
vocab_size: int,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
mask_encoder:
|
|
||||||
It is the masking network. It generates a mask for each channel of the
|
|
||||||
encoder. These masks are applied to the input features, and then passed
|
|
||||||
to the transcription network.
|
|
||||||
encoder:
|
|
||||||
It is the transcription network in the paper. Its accepts
|
|
||||||
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
|
|
||||||
It returns two tensors: `logits` of shape (N, T, encoder_dm) and
|
|
||||||
`logit_lens` of shape (N,).
|
|
||||||
decoder:
|
|
||||||
It is the prediction network in the paper. Its input shape
|
|
||||||
is (N, U) and its output shape is (N, U, decoder_dim).
|
|
||||||
It should contain one attribute: `blank_id`.
|
|
||||||
joiner:
|
|
||||||
It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim).
|
|
||||||
Its output shape is (N, T, U, vocab_size). Note that its output contains
|
|
||||||
unnormalized probs, i.e., not processed by log-softmax.
|
|
||||||
num_channels:
|
|
||||||
It is the number of channels that the input features will be split into.
|
|
||||||
In general, it should be equal to the maximum number of simultaneously
|
|
||||||
active speakers. For most real scenarios, using 2 channels is sufficient.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
assert isinstance(encoder, EncoderInterface), type(encoder)
|
|
||||||
assert hasattr(decoder, "blank_id")
|
|
||||||
|
|
||||||
self.mask_encoder = mask_encoder
|
|
||||||
self.encoder = encoder
|
|
||||||
self.decoder = decoder
|
|
||||||
self.joiner = joiner
|
|
||||||
self.num_channels = num_channels
|
|
||||||
|
|
||||||
self.simple_am_proj = nn.Linear(
|
|
||||||
encoder_dim,
|
|
||||||
vocab_size,
|
|
||||||
)
|
|
||||||
self.simple_lm_proj = nn.Linear(decoder_dim, vocab_size)
|
|
||||||
|
|
||||||
self.ctc_output = nn.Sequential(
|
|
||||||
nn.Dropout(p=0.1),
|
|
||||||
nn.Linear(encoder_dim, vocab_size),
|
|
||||||
nn.LogSoftmax(dim=-1),
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward_helper(
|
|
||||||
self,
|
|
||||||
x: torch.Tensor,
|
|
||||||
x_lens: torch.Tensor,
|
|
||||||
y: k2.RaggedTensor,
|
|
||||||
prune_range: int = 5,
|
|
||||||
am_scale: float = 0.0,
|
|
||||||
lm_scale: float = 0.0,
|
|
||||||
reduction: str = "sum",
|
|
||||||
beam_size: int = 10,
|
|
||||||
use_double_scores: bool = False,
|
|
||||||
subsampling_factor: int = 1,
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
||||||
"""
|
|
||||||
Compute transducer loss for one branch of the SURT model.
|
|
||||||
"""
|
|
||||||
encoder_out, x_lens = self.encoder(x, x_lens)
|
|
||||||
assert torch.all(x_lens > 0)
|
|
||||||
|
|
||||||
# compute ctc log-probs
|
|
||||||
ctc_output = self.ctc_output(encoder_out)
|
|
||||||
|
|
||||||
# For the decoder, i.e., the prediction network
|
|
||||||
row_splits = y.shape.row_splits(1)
|
|
||||||
y_lens = row_splits[1:] - row_splits[:-1]
|
|
||||||
|
|
||||||
blank_id = self.decoder.blank_id
|
|
||||||
sos_y = add_sos(y, sos_id=blank_id)
|
|
||||||
|
|
||||||
# sos_y_padded: [B, S + 1], start with SOS.
|
|
||||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
|
||||||
|
|
||||||
# decoder_out: [B, S + 1, decoder_dim]
|
|
||||||
decoder_out = self.decoder(sos_y_padded)
|
|
||||||
|
|
||||||
# Note: y does not start with SOS
|
|
||||||
# y_padded : [B, S]
|
|
||||||
y_padded = y.pad(mode="constant", padding_value=0)
|
|
||||||
|
|
||||||
y_padded = y_padded.to(torch.int64)
|
|
||||||
boundary = torch.zeros((x.size(0), 4), dtype=torch.int64, device=x.device)
|
|
||||||
boundary[:, 2] = y_lens
|
|
||||||
boundary[:, 3] = x_lens
|
|
||||||
|
|
||||||
lm = self.simple_lm_proj(decoder_out)
|
|
||||||
am = self.simple_am_proj(encoder_out)
|
|
||||||
|
|
||||||
with torch.cuda.amp.autocast(enabled=False):
|
|
||||||
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
|
||||||
lm=lm.float(),
|
|
||||||
am=am.float(),
|
|
||||||
symbols=y_padded,
|
|
||||||
termination_symbol=blank_id,
|
|
||||||
lm_only_scale=lm_scale,
|
|
||||||
am_only_scale=am_scale,
|
|
||||||
boundary=boundary,
|
|
||||||
reduction=reduction,
|
|
||||||
return_grad=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# ranges : [B, T, prune_range]
|
|
||||||
ranges = k2.get_rnnt_prune_ranges(
|
|
||||||
px_grad=px_grad,
|
|
||||||
py_grad=py_grad,
|
|
||||||
boundary=boundary,
|
|
||||||
s_range=prune_range,
|
|
||||||
)
|
|
||||||
|
|
||||||
# am_pruned : [B, T, prune_range, encoder_dim]
|
|
||||||
# lm_pruned : [B, T, prune_range, decoder_dim]
|
|
||||||
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
|
||||||
am=self.joiner.encoder_proj(encoder_out),
|
|
||||||
lm=self.joiner.decoder_proj(decoder_out),
|
|
||||||
ranges=ranges,
|
|
||||||
)
|
|
||||||
|
|
||||||
# logits : [B, T, prune_range, vocab_size]
|
|
||||||
|
|
||||||
# project_input=False since we applied the decoder's input projections
|
|
||||||
# prior to do_rnnt_pruning (this is an optimization for speed).
|
|
||||||
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
|
|
||||||
|
|
||||||
with torch.cuda.amp.autocast(enabled=False):
|
|
||||||
pruned_loss = k2.rnnt_loss_pruned(
|
|
||||||
logits=logits.float(),
|
|
||||||
symbols=y_padded,
|
|
||||||
ranges=ranges,
|
|
||||||
termination_symbol=blank_id,
|
|
||||||
boundary=boundary,
|
|
||||||
reduction=reduction,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Compute ctc loss
|
|
||||||
supervision_segments = torch.stack(
|
|
||||||
(
|
|
||||||
torch.arange(len(x_lens), device="cpu"),
|
|
||||||
torch.zeros_like(x_lens, device="cpu"),
|
|
||||||
torch.clone(x_lens).detach().cpu(),
|
|
||||||
),
|
|
||||||
dim=1,
|
|
||||||
).to(torch.int32)
|
|
||||||
# We need to sort supervision_segments in decreasing order of num_frames
|
|
||||||
indices = torch.argsort(supervision_segments[:, 2], descending=True)
|
|
||||||
supervision_segments = supervision_segments[indices]
|
|
||||||
|
|
||||||
# Works with a BPE model
|
|
||||||
decoding_graph = k2.ctc_graph(y, modified=False, device=x.device)
|
|
||||||
dense_fsa_vec = k2.DenseFsaVec(
|
|
||||||
ctc_output,
|
|
||||||
supervision_segments,
|
|
||||||
allow_truncate=subsampling_factor - 1,
|
|
||||||
)
|
|
||||||
ctc_loss = k2.ctc_loss(
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
dense_fsa_vec=dense_fsa_vec,
|
|
||||||
output_beam=beam_size,
|
|
||||||
reduction="none",
|
|
||||||
use_double_scores=use_double_scores,
|
|
||||||
)
|
|
||||||
|
|
||||||
return (simple_loss, pruned_loss, ctc_loss)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
x: torch.Tensor,
|
|
||||||
x_lens: torch.Tensor,
|
|
||||||
y: k2.RaggedTensor,
|
|
||||||
prune_range: int = 5,
|
|
||||||
am_scale: float = 0.0,
|
|
||||||
lm_scale: float = 0.0,
|
|
||||||
reduction: str = "sum",
|
|
||||||
beam_size: int = 10,
|
|
||||||
use_double_scores: bool = False,
|
|
||||||
subsampling_factor: int = 1,
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
A 3-D tensor of shape (N, T, C).
|
|
||||||
x_lens:
|
|
||||||
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
|
||||||
before padding.
|
|
||||||
y:
|
|
||||||
A ragged tensor of shape (N*num_channels, S). It contains the labels
|
|
||||||
of the N utterances. The labels are in the range [0, vocab_size). All
|
|
||||||
the channels are concatenated together one after another.
|
|
||||||
prune_range:
|
|
||||||
The prune range for rnnt loss, it means how many symbols(context)
|
|
||||||
we are considering for each frame to compute the loss.
|
|
||||||
am_scale:
|
|
||||||
The scale to smooth the loss with am (output of encoder network)
|
|
||||||
part
|
|
||||||
lm_scale:
|
|
||||||
The scale to smooth the loss with lm (output of predictor network)
|
|
||||||
part
|
|
||||||
reduction:
|
|
||||||
"sum" to sum the losses over all utterances in the batch.
|
|
||||||
"none" to return the loss in a 1-D tensor for each utterance
|
|
||||||
in the batch.
|
|
||||||
beam_size:
|
|
||||||
The beam size used in CTC decoding.
|
|
||||||
use_double_scores:
|
|
||||||
If True, use double precision for CTC decoding.
|
|
||||||
subsampling_factor:
|
|
||||||
The subsampling factor of the model. It is used to compute the
|
|
||||||
supervision segments for CTC loss.
|
|
||||||
Returns:
|
|
||||||
Return the transducer loss.
|
|
||||||
|
|
||||||
Note:
|
|
||||||
Regarding am_scale & lm_scale, it will make the loss-function one of
|
|
||||||
the form:
|
|
||||||
lm_scale * lm_probs + am_scale * am_probs +
|
|
||||||
(1-lm_scale-am_scale) * combined_probs
|
|
||||||
"""
|
|
||||||
assert x.ndim == 3, x.shape
|
|
||||||
assert x_lens.ndim == 1, x_lens.shape
|
|
||||||
assert y.num_axes == 2, y.num_axes
|
|
||||||
|
|
||||||
assert x.size(0) == x_lens.size(0), (x.size(), x_lens.size())
|
|
||||||
|
|
||||||
# Apply the mask encoder
|
|
||||||
B, T, F = x.shape
|
|
||||||
processed = self.mask_encoder(x) # B,T,F*num_channels
|
|
||||||
masks = processed.view(B, T, F, self.num_channels).unbind(dim=-1)
|
|
||||||
x_masked = [x * m for m in masks]
|
|
||||||
|
|
||||||
# Recognition
|
|
||||||
# Stack the inputs along the batch axis
|
|
||||||
h = torch.cat(x_masked, dim=0)
|
|
||||||
h_lens = torch.cat([x_lens for _ in range(self.num_channels)], dim=0)
|
|
||||||
|
|
||||||
simple_loss, pruned_loss, ctc_loss = self.forward_helper(
|
|
||||||
h,
|
|
||||||
h_lens,
|
|
||||||
y,
|
|
||||||
prune_range,
|
|
||||||
am_scale,
|
|
||||||
lm_scale,
|
|
||||||
reduction=reduction,
|
|
||||||
beam_size=beam_size,
|
|
||||||
use_double_scores=use_double_scores,
|
|
||||||
subsampling_factor=subsampling_factor,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Chunks the outputs into 2 parts along batch axis and then stack them along a new axis.
|
|
||||||
simple_loss = torch.stack(
|
|
||||||
torch.chunk(simple_loss, self.num_channels, dim=0), dim=0
|
|
||||||
)
|
|
||||||
pruned_loss = torch.stack(
|
|
||||||
torch.chunk(pruned_loss, self.num_channels, dim=0), dim=0
|
|
||||||
)
|
|
||||||
ctc_loss = torch.stack(torch.chunk(ctc_loss, self.num_channels, dim=0), dim=0)
|
|
||||||
|
|
||||||
return (simple_loss, pruned_loss, ctc_loss)
|
|
||||||
File diff suppressed because it is too large
Load Diff
@ -1,355 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""
|
|
||||||
This script loads a checkpoint and uses it to decode waves.
|
|
||||||
You can generate the checkpoint with the following command:
|
|
||||||
|
|
||||||
./pruned_transducer_stateless7_streaming/export.py \
|
|
||||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
|
||||||
--bpe-model data/lang_bpe_500/bpe.model \
|
|
||||||
--epoch 20 \
|
|
||||||
--avg 10
|
|
||||||
|
|
||||||
Usage of this script:
|
|
||||||
|
|
||||||
(1) greedy search
|
|
||||||
./pruned_transducer_stateless7_streaming/pretrained.py \
|
|
||||||
--checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \
|
|
||||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
|
||||||
--method greedy_search \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
|
|
||||||
(2) beam search
|
|
||||||
./pruned_transducer_stateless7_streaming/pretrained.py \
|
|
||||||
--checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \
|
|
||||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
|
||||||
--method beam_search \
|
|
||||||
--beam-size 4 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
|
|
||||||
(3) modified beam search
|
|
||||||
./pruned_transducer_stateless7_streaming/pretrained.py \
|
|
||||||
--checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \
|
|
||||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
|
||||||
--method modified_beam_search \
|
|
||||||
--beam-size 4 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
|
|
||||||
(4) fast beam search
|
|
||||||
./pruned_transducer_stateless7_streaming/pretrained.py \
|
|
||||||
--checkpoint ./pruned_transducer_stateless7_streaming/exp/pretrained.pt \
|
|
||||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
|
||||||
--method fast_beam_search \
|
|
||||||
--beam-size 4 \
|
|
||||||
/path/to/foo.wav \
|
|
||||||
/path/to/bar.wav
|
|
||||||
|
|
||||||
You can also use `./pruned_transducer_stateless7_streaming/exp/epoch-xx.pt`.
|
|
||||||
|
|
||||||
Note: ./pruned_transducer_stateless7_streaming/exp/pretrained.pt is generated by
|
|
||||||
./pruned_transducer_stateless7_streaming/export.py
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
import math
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import kaldifeat
|
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
|
||||||
import torchaudio
|
|
||||||
from beam_search import (
|
|
||||||
beam_search,
|
|
||||||
fast_beam_search_one_best,
|
|
||||||
greedy_search,
|
|
||||||
greedy_search_batch,
|
|
||||||
modified_beam_search,
|
|
||||||
)
|
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
|
||||||
from train import add_model_arguments, get_params, get_transducer_model
|
|
||||||
|
|
||||||
from icefall.utils import str2bool
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--checkpoint",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="Path to the checkpoint. "
|
|
||||||
"The checkpoint is assumed to be saved by "
|
|
||||||
"icefall.checkpoint.save_checkpoint().",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--bpe-model",
|
|
||||||
type=str,
|
|
||||||
help="""Path to bpe.model.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--method",
|
|
||||||
type=str,
|
|
||||||
default="greedy_search",
|
|
||||||
help="""Possible values are:
|
|
||||||
- greedy_search
|
|
||||||
- beam_search
|
|
||||||
- modified_beam_search
|
|
||||||
- fast_beam_search
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"sound_files",
|
|
||||||
type=str,
|
|
||||||
nargs="+",
|
|
||||||
help="The input sound file(s) to transcribe. "
|
|
||||||
"Supported formats are those supported by torchaudio.load(). "
|
|
||||||
"For example, wav and flac are supported. "
|
|
||||||
"The sample rate has to be 16kHz.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--sample-rate",
|
|
||||||
type=int,
|
|
||||||
default=16000,
|
|
||||||
help="The sample rate of the input sound file",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--beam-size",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
help="""An integer indicating how many candidates we will keep for each
|
|
||||||
frame. Used only when --method is beam_search or
|
|
||||||
modified_beam_search.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--beam",
|
|
||||||
type=float,
|
|
||||||
default=4,
|
|
||||||
help="""A floating point value to calculate the cutoff score during beam
|
|
||||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
|
||||||
`beam` in Kaldi.
|
|
||||||
Used only when --method is fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-contexts",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
help="""Used only when --method is fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-states",
|
|
||||||
type=int,
|
|
||||||
default=8,
|
|
||||||
help="""Used only when --method is fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--context-size",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-sym-per-frame",
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help="""Maximum number of symbols per frame. Used only when
|
|
||||||
--method is greedy_search.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
add_model_arguments(parser)
|
|
||||||
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def read_sound_files(
|
|
||||||
filenames: List[str], expected_sample_rate: float
|
|
||||||
) -> List[torch.Tensor]:
|
|
||||||
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
|
||||||
Args:
|
|
||||||
filenames:
|
|
||||||
A list of sound filenames.
|
|
||||||
expected_sample_rate:
|
|
||||||
The expected sample rate of the sound files.
|
|
||||||
Returns:
|
|
||||||
Return a list of 1-D float32 torch tensors.
|
|
||||||
"""
|
|
||||||
ans = []
|
|
||||||
for f in filenames:
|
|
||||||
wave, sample_rate = torchaudio.load(f)
|
|
||||||
assert (
|
|
||||||
sample_rate == expected_sample_rate
|
|
||||||
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
|
||||||
# We use only the first channel
|
|
||||||
ans.append(wave[0])
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def main():
|
|
||||||
parser = get_parser()
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
params = get_params()
|
|
||||||
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(params.bpe_model)
|
|
||||||
|
|
||||||
# <blk> is defined in local/train_bpe_model.py
|
|
||||||
params.blank_id = sp.piece_to_id("<blk>")
|
|
||||||
params.unk_id = sp.piece_to_id("<unk>")
|
|
||||||
params.vocab_size = sp.get_piece_size()
|
|
||||||
|
|
||||||
logging.info(f"{params}")
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda", 0)
|
|
||||||
|
|
||||||
logging.info(f"device: {device}")
|
|
||||||
|
|
||||||
logging.info("Creating model")
|
|
||||||
model = get_transducer_model(params)
|
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
|
||||||
|
|
||||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
|
||||||
model.load_state_dict(checkpoint["model"], strict=False)
|
|
||||||
model.to(device)
|
|
||||||
model.eval()
|
|
||||||
model.device = device
|
|
||||||
|
|
||||||
logging.info("Constructing Fbank computer")
|
|
||||||
opts = kaldifeat.FbankOptions()
|
|
||||||
opts.device = device
|
|
||||||
opts.frame_opts.dither = 0
|
|
||||||
opts.frame_opts.snip_edges = False
|
|
||||||
opts.frame_opts.samp_freq = params.sample_rate
|
|
||||||
opts.mel_opts.num_bins = params.feature_dim
|
|
||||||
|
|
||||||
fbank = kaldifeat.Fbank(opts)
|
|
||||||
|
|
||||||
logging.info(f"Reading sound files: {params.sound_files}")
|
|
||||||
waves = read_sound_files(
|
|
||||||
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
|
||||||
)
|
|
||||||
waves = [w.to(device) for w in waves]
|
|
||||||
|
|
||||||
logging.info("Decoding started")
|
|
||||||
features = fbank(waves)
|
|
||||||
feature_lengths = [f.size(0) for f in features]
|
|
||||||
|
|
||||||
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
|
||||||
|
|
||||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths)
|
|
||||||
|
|
||||||
num_waves = encoder_out.size(0)
|
|
||||||
hyps = []
|
|
||||||
msg = f"Using {params.method}"
|
|
||||||
if params.method == "beam_search":
|
|
||||||
msg += f" with beam size {params.beam_size}"
|
|
||||||
logging.info(msg)
|
|
||||||
|
|
||||||
if params.method == "fast_beam_search":
|
|
||||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
|
||||||
hyp_tokens = fast_beam_search_one_best(
|
|
||||||
model=model,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
beam=params.beam,
|
|
||||||
max_contexts=params.max_contexts,
|
|
||||||
max_states=params.max_states,
|
|
||||||
)
|
|
||||||
for hyp in sp.decode(hyp_tokens):
|
|
||||||
hyps.append(hyp.split())
|
|
||||||
elif params.method == "modified_beam_search":
|
|
||||||
hyp_tokens = modified_beam_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
beam=params.beam_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
for hyp in sp.decode(hyp_tokens):
|
|
||||||
hyps.append(hyp.split())
|
|
||||||
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
|
||||||
hyp_tokens = greedy_search_batch(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
)
|
|
||||||
for hyp in sp.decode(hyp_tokens):
|
|
||||||
hyps.append(hyp.split())
|
|
||||||
else:
|
|
||||||
for i in range(num_waves):
|
|
||||||
# fmt: off
|
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
|
||||||
# fmt: on
|
|
||||||
if params.method == "greedy_search":
|
|
||||||
hyp = greedy_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
max_sym_per_frame=params.max_sym_per_frame,
|
|
||||||
)
|
|
||||||
elif params.method == "beam_search":
|
|
||||||
hyp = beam_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
beam=params.beam_size,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unsupported method: {params.method}")
|
|
||||||
|
|
||||||
hyps.append(sp.decode(hyp).split())
|
|
||||||
|
|
||||||
s = "\n"
|
|
||||||
for filename, hyp in zip(params.sound_files, hyps):
|
|
||||||
words = " ".join(hyp)
|
|
||||||
s += f"{filename}:\n{words}\n\n"
|
|
||||||
logging.info(s)
|
|
||||||
|
|
||||||
logging.info("Decoding Done")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
main()
|
|
||||||
File diff suppressed because it is too large
Load Diff
@ -1,114 +0,0 @@
|
|||||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
"""
|
|
||||||
This file replaces various modules in a model.
|
|
||||||
Specifically, ActivationBalancer is replaced with an identity operator;
|
|
||||||
Whiten is also replaced with an identity operator;
|
|
||||||
BasicNorm is replaced by a module with `exp` removed.
|
|
||||||
"""
|
|
||||||
|
|
||||||
import copy
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from scaling import ActivationBalancer, BasicNorm, Whiten
|
|
||||||
|
|
||||||
|
|
||||||
class NonScaledNorm(nn.Module):
|
|
||||||
"""See BasicNorm for doc"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
num_channels: int,
|
|
||||||
eps_exp: float,
|
|
||||||
channel_dim: int = -1, # CAUTION: see documentation.
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.num_channels = num_channels
|
|
||||||
self.channel_dim = channel_dim
|
|
||||||
self.eps_exp = eps_exp
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
||||||
if not torch.jit.is_tracing():
|
|
||||||
assert x.shape[self.channel_dim] == self.num_channels
|
|
||||||
scales = (
|
|
||||||
torch.mean(x * x, dim=self.channel_dim, keepdim=True) + self.eps_exp
|
|
||||||
).pow(-0.5)
|
|
||||||
return x * scales
|
|
||||||
|
|
||||||
|
|
||||||
def convert_basic_norm(basic_norm: BasicNorm) -> NonScaledNorm:
|
|
||||||
assert isinstance(basic_norm, BasicNorm), type(BasicNorm)
|
|
||||||
norm = NonScaledNorm(
|
|
||||||
num_channels=basic_norm.num_channels,
|
|
||||||
eps_exp=basic_norm.eps.data.exp().item(),
|
|
||||||
channel_dim=basic_norm.channel_dim,
|
|
||||||
)
|
|
||||||
return norm
|
|
||||||
|
|
||||||
|
|
||||||
# Copied from https://pytorch.org/docs/1.9.0/_modules/torch/nn/modules/module.html#Module.get_submodule # noqa
|
|
||||||
# get_submodule was added to nn.Module at v1.9.0
|
|
||||||
def get_submodule(model, target):
|
|
||||||
if target == "":
|
|
||||||
return model
|
|
||||||
atoms: List[str] = target.split(".")
|
|
||||||
mod: torch.nn.Module = model
|
|
||||||
for item in atoms:
|
|
||||||
if not hasattr(mod, item):
|
|
||||||
raise AttributeError(
|
|
||||||
mod._get_name() + " has no " "attribute `" + item + "`"
|
|
||||||
)
|
|
||||||
mod = getattr(mod, item)
|
|
||||||
if not isinstance(mod, torch.nn.Module):
|
|
||||||
raise AttributeError("`" + item + "` is not " "an nn.Module")
|
|
||||||
return mod
|
|
||||||
|
|
||||||
|
|
||||||
def convert_scaled_to_non_scaled(
|
|
||||||
model: nn.Module,
|
|
||||||
inplace: bool = False,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
The model to be converted.
|
|
||||||
inplace:
|
|
||||||
If True, the input model is modified inplace.
|
|
||||||
If False, the input model is copied and we modify the copied version.
|
|
||||||
Return:
|
|
||||||
Return a model without scaled layers.
|
|
||||||
"""
|
|
||||||
if not inplace:
|
|
||||||
model = copy.deepcopy(model)
|
|
||||||
|
|
||||||
d = {}
|
|
||||||
for name, m in model.named_modules():
|
|
||||||
if isinstance(m, BasicNorm):
|
|
||||||
d[name] = convert_basic_norm(m)
|
|
||||||
elif isinstance(m, (ActivationBalancer, Whiten)):
|
|
||||||
d[name] = nn.Identity()
|
|
||||||
|
|
||||||
for k, v in d.items():
|
|
||||||
if "." in k:
|
|
||||||
parent, child = k.rsplit(".", maxsplit=1)
|
|
||||||
setattr(get_submodule(model, parent), child, v)
|
|
||||||
else:
|
|
||||||
setattr(model, k, v)
|
|
||||||
|
|
||||||
return model
|
|
||||||
@ -1,282 +0,0 @@
|
|||||||
# Copyright 2022 Xiaomi Corp. (authors: Wei Kang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import warnings
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from beam_search import Hypothesis, HypothesisList, get_hyps_shape
|
|
||||||
from decode_stream import DecodeStream
|
|
||||||
|
|
||||||
from icefall.decode import one_best_decoding
|
|
||||||
from icefall.utils import get_texts
|
|
||||||
|
|
||||||
|
|
||||||
def greedy_search(
|
|
||||||
model: nn.Module,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
streams: List[DecodeStream],
|
|
||||||
) -> None:
|
|
||||||
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
The transducer model.
|
|
||||||
encoder_out:
|
|
||||||
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
|
||||||
streams:
|
|
||||||
A list of Stream objects.
|
|
||||||
"""
|
|
||||||
assert len(streams) == encoder_out.size(0)
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
device = model.device
|
|
||||||
T = encoder_out.size(1)
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[stream.hyp[-context_size:] for stream in streams],
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
)
|
|
||||||
# decoder_out is of shape (N, 1, decoder_out_dim)
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
|
|
||||||
for t in range(T):
|
|
||||||
# current_encoder_out's shape: (batch_size, 1, encoder_out_dim)
|
|
||||||
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
|
|
||||||
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out.unsqueeze(2),
|
|
||||||
decoder_out.unsqueeze(1),
|
|
||||||
project_input=False,
|
|
||||||
)
|
|
||||||
# logits'shape (batch_size, vocab_size)
|
|
||||||
logits = logits.squeeze(1).squeeze(1)
|
|
||||||
|
|
||||||
assert logits.ndim == 2, logits.shape
|
|
||||||
y = logits.argmax(dim=1).tolist()
|
|
||||||
emitted = False
|
|
||||||
for i, v in enumerate(y):
|
|
||||||
if v != blank_id:
|
|
||||||
streams[i].hyp.append(v)
|
|
||||||
emitted = True
|
|
||||||
if emitted:
|
|
||||||
# update decoder output
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[stream.hyp[-context_size:] for stream in streams],
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
)
|
|
||||||
decoder_out = model.decoder(
|
|
||||||
decoder_input,
|
|
||||||
need_pad=False,
|
|
||||||
)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
|
|
||||||
|
|
||||||
def modified_beam_search(
|
|
||||||
model: nn.Module,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
streams: List[DecodeStream],
|
|
||||||
num_active_paths: int = 4,
|
|
||||||
) -> None:
|
|
||||||
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
The RNN-T model.
|
|
||||||
encoder_out:
|
|
||||||
A 3-D tensor of shape (N, T, encoder_out_dim) containing the output of
|
|
||||||
the encoder model.
|
|
||||||
streams:
|
|
||||||
A list of stream objects.
|
|
||||||
num_active_paths:
|
|
||||||
Number of active paths during the beam search.
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3, encoder_out.shape
|
|
||||||
assert len(streams) == encoder_out.size(0)
|
|
||||||
|
|
||||||
blank_id = model.decoder.blank_id
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
device = next(model.parameters()).device
|
|
||||||
batch_size = len(streams)
|
|
||||||
T = encoder_out.size(1)
|
|
||||||
|
|
||||||
B = [stream.hyps for stream in streams]
|
|
||||||
|
|
||||||
for t in range(T):
|
|
||||||
current_encoder_out = encoder_out[:, t].unsqueeze(1).unsqueeze(1)
|
|
||||||
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
|
||||||
|
|
||||||
hyps_shape = get_hyps_shape(B).to(device)
|
|
||||||
|
|
||||||
A = [list(b) for b in B]
|
|
||||||
B = [HypothesisList() for _ in range(batch_size)]
|
|
||||||
|
|
||||||
ys_log_probs = torch.stack(
|
|
||||||
[hyp.log_prob.reshape(1) for hyps in A for hyp in hyps], dim=0
|
|
||||||
) # (num_hyps, 1)
|
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
|
||||||
device=device,
|
|
||||||
dtype=torch.int64,
|
|
||||||
) # (num_hyps, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
# decoder_out is of shape (num_hyps, 1, 1, decoder_output_dim)
|
|
||||||
|
|
||||||
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
|
||||||
# as index, so we use `to(torch.int64)` below.
|
|
||||||
current_encoder_out = torch.index_select(
|
|
||||||
current_encoder_out,
|
|
||||||
dim=0,
|
|
||||||
index=hyps_shape.row_ids(1).to(torch.int64),
|
|
||||||
) # (num_hyps, encoder_out_dim)
|
|
||||||
|
|
||||||
logits = model.joiner(current_encoder_out, decoder_out, project_input=False)
|
|
||||||
# logits is of shape (num_hyps, 1, 1, vocab_size)
|
|
||||||
|
|
||||||
logits = logits.squeeze(1).squeeze(1)
|
|
||||||
|
|
||||||
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
|
||||||
|
|
||||||
log_probs.add_(ys_log_probs)
|
|
||||||
|
|
||||||
vocab_size = log_probs.size(-1)
|
|
||||||
|
|
||||||
log_probs = log_probs.reshape(-1)
|
|
||||||
|
|
||||||
row_splits = hyps_shape.row_splits(1) * vocab_size
|
|
||||||
log_probs_shape = k2.ragged.create_ragged_shape2(
|
|
||||||
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
|
||||||
)
|
|
||||||
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
|
|
||||||
|
|
||||||
for i in range(batch_size):
|
|
||||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(num_active_paths)
|
|
||||||
|
|
||||||
with warnings.catch_warnings():
|
|
||||||
warnings.simplefilter("ignore")
|
|
||||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
|
||||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
|
||||||
|
|
||||||
for k in range(len(topk_hyp_indexes)):
|
|
||||||
hyp_idx = topk_hyp_indexes[k]
|
|
||||||
hyp = A[i][hyp_idx]
|
|
||||||
|
|
||||||
new_ys = hyp.ys[:]
|
|
||||||
new_token = topk_token_indexes[k]
|
|
||||||
if new_token != blank_id:
|
|
||||||
new_ys.append(new_token)
|
|
||||||
|
|
||||||
new_log_prob = topk_log_probs[k]
|
|
||||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
|
||||||
B[i].add(new_hyp)
|
|
||||||
|
|
||||||
for i in range(batch_size):
|
|
||||||
streams[i].hyps = B[i]
|
|
||||||
|
|
||||||
|
|
||||||
def fast_beam_search_one_best(
|
|
||||||
model: nn.Module,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
processed_lens: torch.Tensor,
|
|
||||||
streams: List[DecodeStream],
|
|
||||||
beam: float,
|
|
||||||
max_states: int,
|
|
||||||
max_contexts: int,
|
|
||||||
) -> None:
|
|
||||||
"""It limits the maximum number of symbols per frame to 1.
|
|
||||||
|
|
||||||
A lattice is first generated by Fsa-based beam search, then we get the
|
|
||||||
recognition by applying shortest path on the lattice.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model:
|
|
||||||
An instance of `Transducer`.
|
|
||||||
encoder_out:
|
|
||||||
A tensor of shape (N, T, C) from the encoder.
|
|
||||||
processed_lens:
|
|
||||||
A tensor of shape (N,) containing the number of processed frames
|
|
||||||
in `encoder_out` before padding.
|
|
||||||
streams:
|
|
||||||
A list of stream objects.
|
|
||||||
beam:
|
|
||||||
Beam value, similar to the beam used in Kaldi..
|
|
||||||
max_states:
|
|
||||||
Max states per stream per frame.
|
|
||||||
max_contexts:
|
|
||||||
Max contexts pre stream per frame.
|
|
||||||
"""
|
|
||||||
assert encoder_out.ndim == 3
|
|
||||||
B, T, C = encoder_out.shape
|
|
||||||
assert B == len(streams)
|
|
||||||
|
|
||||||
context_size = model.decoder.context_size
|
|
||||||
vocab_size = model.decoder.vocab_size
|
|
||||||
|
|
||||||
config = k2.RnntDecodingConfig(
|
|
||||||
vocab_size=vocab_size,
|
|
||||||
decoder_history_len=context_size,
|
|
||||||
beam=beam,
|
|
||||||
max_contexts=max_contexts,
|
|
||||||
max_states=max_states,
|
|
||||||
)
|
|
||||||
individual_streams = []
|
|
||||||
for i in range(B):
|
|
||||||
individual_streams.append(streams[i].rnnt_decoding_stream)
|
|
||||||
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
|
|
||||||
|
|
||||||
for t in range(T):
|
|
||||||
# shape is a RaggedShape of shape (B, context)
|
|
||||||
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
|
||||||
shape, contexts = decoding_streams.get_contexts()
|
|
||||||
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
|
||||||
contexts = contexts.to(torch.int64)
|
|
||||||
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
|
||||||
decoder_out = model.decoder(contexts, need_pad=False)
|
|
||||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
|
||||||
# current_encoder_out is of shape
|
|
||||||
# (shape.NumElements(), 1, joiner_dim)
|
|
||||||
# fmt: off
|
|
||||||
current_encoder_out = torch.index_select(
|
|
||||||
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
|
|
||||||
)
|
|
||||||
# fmt: on
|
|
||||||
logits = model.joiner(
|
|
||||||
current_encoder_out.unsqueeze(2),
|
|
||||||
decoder_out.unsqueeze(1),
|
|
||||||
project_input=False,
|
|
||||||
)
|
|
||||||
logits = logits.squeeze(1).squeeze(1)
|
|
||||||
log_probs = logits.log_softmax(dim=-1)
|
|
||||||
decoding_streams.advance(log_probs)
|
|
||||||
|
|
||||||
decoding_streams.terminate_and_flush_to_streams()
|
|
||||||
|
|
||||||
lattice = decoding_streams.format_output(processed_lens.tolist())
|
|
||||||
best_path = one_best_decoding(lattice)
|
|
||||||
hyp_tokens = get_texts(best_path)
|
|
||||||
|
|
||||||
for i in range(B):
|
|
||||||
streams[i].hyp = hyp_tokens[i]
|
|
||||||
@ -1,615 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2022 Xiaomi Corporation (Authors: Wei Kang, Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
"""
|
|
||||||
Usage:
|
|
||||||
./pruned_transducer_stateless7_streaming/streaming_decode.py \
|
|
||||||
--epoch 28 \
|
|
||||||
--avg 15 \
|
|
||||||
--decode-chunk-len 32 \
|
|
||||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
|
||||||
--decoding_method greedy_search \
|
|
||||||
--num-decode-streams 2000
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
import math
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict, List, Optional, Tuple
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import numpy as np
|
|
||||||
import sentencepiece as spm
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from asr_datamodule import LibriSpeechAsrDataModule
|
|
||||||
from decode_stream import DecodeStream
|
|
||||||
from kaldifeat import Fbank, FbankOptions
|
|
||||||
from lhotse import CutSet
|
|
||||||
from streaming_beam_search import (
|
|
||||||
fast_beam_search_one_best,
|
|
||||||
greedy_search,
|
|
||||||
modified_beam_search,
|
|
||||||
)
|
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
|
||||||
from train import add_model_arguments, get_params, get_transducer_model
|
|
||||||
from zipformer import stack_states, unstack_states
|
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
|
||||||
average_checkpoints,
|
|
||||||
average_checkpoints_with_averaged_model,
|
|
||||||
find_checkpoints,
|
|
||||||
load_checkpoint,
|
|
||||||
)
|
|
||||||
from icefall.utils import (
|
|
||||||
AttributeDict,
|
|
||||||
setup_logger,
|
|
||||||
store_transcripts,
|
|
||||||
str2bool,
|
|
||||||
write_error_stats,
|
|
||||||
)
|
|
||||||
|
|
||||||
LOG_EPS = math.log(1e-10)
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--epoch",
|
|
||||||
type=int,
|
|
||||||
default=28,
|
|
||||||
help="""It specifies the checkpoint to use for decoding.
|
|
||||||
Note: Epoch counts from 0.
|
|
||||||
You can specify --avg to use more checkpoints for model averaging.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--iter",
|
|
||||||
type=int,
|
|
||||||
default=0,
|
|
||||||
help="""If positive, --epoch is ignored and it
|
|
||||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
||||||
You can specify --avg to use more checkpoints for model averaging.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--avg",
|
|
||||||
type=int,
|
|
||||||
default=15,
|
|
||||||
help="Number of checkpoints to average. Automatically select "
|
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
|
||||||
"'--epoch' and '--iter'",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--use-averaged-model",
|
|
||||||
type=str2bool,
|
|
||||||
default=True,
|
|
||||||
help="Whether to load averaged model. Currently it only supports "
|
|
||||||
"using --epoch. If True, it would decode with the averaged model "
|
|
||||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
||||||
"Actually only the models with epoch number of `epoch-avg` and "
|
|
||||||
"`epoch` are loaded for averaging. ",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--exp-dir",
|
|
||||||
type=str,
|
|
||||||
default="pruned_transducer_stateless2/exp",
|
|
||||||
help="The experiment dir",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--bpe-model",
|
|
||||||
type=str,
|
|
||||||
default="data/lang_bpe_500/bpe.model",
|
|
||||||
help="Path to the BPE model",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--decoding-method",
|
|
||||||
type=str,
|
|
||||||
default="greedy_search",
|
|
||||||
help="""Supported decoding methods are:
|
|
||||||
greedy_search
|
|
||||||
modified_beam_search
|
|
||||||
fast_beam_search
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--num_active_paths",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
help="""An interger indicating how many candidates we will keep for each
|
|
||||||
frame. Used only when --decoding-method is modified_beam_search.""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--beam",
|
|
||||||
type=float,
|
|
||||||
default=4,
|
|
||||||
help="""A floating point value to calculate the cutoff score during beam
|
|
||||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
|
||||||
`beam` in Kaldi.
|
|
||||||
Used only when --decoding-method is fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-contexts",
|
|
||||||
type=int,
|
|
||||||
default=4,
|
|
||||||
help="""Used only when --decoding-method is
|
|
||||||
fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-states",
|
|
||||||
type=int,
|
|
||||||
default=32,
|
|
||||||
help="""Used only when --decoding-method is
|
|
||||||
fast_beam_search""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--context-size",
|
|
||||||
type=int,
|
|
||||||
default=2,
|
|
||||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--num-decode-streams",
|
|
||||||
type=int,
|
|
||||||
default=2000,
|
|
||||||
help="The number of streams that can be decoded parallel.",
|
|
||||||
)
|
|
||||||
|
|
||||||
add_model_arguments(parser)
|
|
||||||
|
|
||||||
return parser
|
|
||||||
|
|
||||||
|
|
||||||
def decode_one_chunk(
|
|
||||||
params: AttributeDict,
|
|
||||||
model: nn.Module,
|
|
||||||
decode_streams: List[DecodeStream],
|
|
||||||
) -> List[int]:
|
|
||||||
"""Decode one chunk frames of features for each decode_streams and
|
|
||||||
return the indexes of finished streams in a List.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
params:
|
|
||||||
It's the return value of :func:`get_params`.
|
|
||||||
model:
|
|
||||||
The neural model.
|
|
||||||
decode_streams:
|
|
||||||
A List of DecodeStream, each belonging to a utterance.
|
|
||||||
Returns:
|
|
||||||
Return a List containing which DecodeStreams are finished.
|
|
||||||
"""
|
|
||||||
device = model.device
|
|
||||||
|
|
||||||
features = []
|
|
||||||
feature_lens = []
|
|
||||||
states = []
|
|
||||||
processed_lens = []
|
|
||||||
|
|
||||||
for stream in decode_streams:
|
|
||||||
feat, feat_len = stream.get_feature_frames(params.decode_chunk_len)
|
|
||||||
features.append(feat)
|
|
||||||
feature_lens.append(feat_len)
|
|
||||||
states.append(stream.states)
|
|
||||||
processed_lens.append(stream.done_frames)
|
|
||||||
|
|
||||||
feature_lens = torch.tensor(feature_lens, device=device)
|
|
||||||
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
|
||||||
|
|
||||||
# We subsample features with ((x_len - 7) // 2 + 1) // 2 and the max downsampling
|
|
||||||
# factor in encoders is 8.
|
|
||||||
# After feature embedding (x_len - 7) // 2, we have (23 - 7) // 2 = 8.
|
|
||||||
tail_length = 23
|
|
||||||
if features.size(1) < tail_length:
|
|
||||||
pad_length = tail_length - features.size(1)
|
|
||||||
feature_lens += pad_length
|
|
||||||
features = torch.nn.functional.pad(
|
|
||||||
features,
|
|
||||||
(0, 0, 0, pad_length),
|
|
||||||
mode="constant",
|
|
||||||
value=LOG_EPS,
|
|
||||||
)
|
|
||||||
|
|
||||||
states = stack_states(states)
|
|
||||||
processed_lens = torch.tensor(processed_lens, device=device)
|
|
||||||
|
|
||||||
encoder_out, encoder_out_lens, new_states = model.encoder.streaming_forward(
|
|
||||||
x=features,
|
|
||||||
x_lens=feature_lens,
|
|
||||||
states=states,
|
|
||||||
)
|
|
||||||
|
|
||||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
|
||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
|
||||||
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
|
||||||
elif params.decoding_method == "fast_beam_search":
|
|
||||||
processed_lens = processed_lens + encoder_out_lens
|
|
||||||
fast_beam_search_one_best(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
processed_lens=processed_lens,
|
|
||||||
streams=decode_streams,
|
|
||||||
beam=params.beam,
|
|
||||||
max_states=params.max_states,
|
|
||||||
max_contexts=params.max_contexts,
|
|
||||||
)
|
|
||||||
elif params.decoding_method == "modified_beam_search":
|
|
||||||
modified_beam_search(
|
|
||||||
model=model,
|
|
||||||
streams=decode_streams,
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
num_active_paths=params.num_active_paths,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
|
||||||
|
|
||||||
states = unstack_states(new_states)
|
|
||||||
|
|
||||||
finished_streams = []
|
|
||||||
for i in range(len(decode_streams)):
|
|
||||||
decode_streams[i].states = states[i]
|
|
||||||
decode_streams[i].done_frames += encoder_out_lens[i]
|
|
||||||
if decode_streams[i].done:
|
|
||||||
finished_streams.append(i)
|
|
||||||
|
|
||||||
return finished_streams
|
|
||||||
|
|
||||||
|
|
||||||
def decode_dataset(
|
|
||||||
cuts: CutSet,
|
|
||||||
params: AttributeDict,
|
|
||||||
model: nn.Module,
|
|
||||||
sp: spm.SentencePieceProcessor,
|
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
|
||||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
|
||||||
"""Decode dataset.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
cuts:
|
|
||||||
Lhotse Cutset containing the dataset to decode.
|
|
||||||
params:
|
|
||||||
It is returned by :func:`get_params`.
|
|
||||||
model:
|
|
||||||
The neural model.
|
|
||||||
sp:
|
|
||||||
The BPE model.
|
|
||||||
decoding_graph:
|
|
||||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
|
||||||
only when --decoding_method is fast_beam_search.
|
|
||||||
Returns:
|
|
||||||
Return a dict, whose key may be "greedy_search" if greedy search
|
|
||||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
|
||||||
Its value is a list of tuples. Each tuple contains two elements:
|
|
||||||
The first is the reference transcript, and the second is the
|
|
||||||
predicted result.
|
|
||||||
"""
|
|
||||||
device = model.device
|
|
||||||
|
|
||||||
opts = FbankOptions()
|
|
||||||
opts.device = device
|
|
||||||
opts.frame_opts.dither = 0
|
|
||||||
opts.frame_opts.snip_edges = False
|
|
||||||
opts.frame_opts.samp_freq = 16000
|
|
||||||
opts.mel_opts.num_bins = 80
|
|
||||||
|
|
||||||
log_interval = 50
|
|
||||||
|
|
||||||
decode_results = []
|
|
||||||
# Contain decode streams currently running.
|
|
||||||
decode_streams = []
|
|
||||||
for num, cut in enumerate(cuts):
|
|
||||||
# each utterance has a DecodeStream.
|
|
||||||
initial_states = model.encoder.get_init_state(device=device)
|
|
||||||
decode_stream = DecodeStream(
|
|
||||||
params=params,
|
|
||||||
cut_id=cut.id,
|
|
||||||
initial_states=initial_states,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
|
|
||||||
audio: np.ndarray = cut.load_audio()
|
|
||||||
# audio.shape: (1, num_samples)
|
|
||||||
assert len(audio.shape) == 2
|
|
||||||
assert audio.shape[0] == 1, "Should be single channel"
|
|
||||||
assert audio.dtype == np.float32, audio.dtype
|
|
||||||
|
|
||||||
# The trained model is using normalized samples
|
|
||||||
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
|
||||||
|
|
||||||
samples = torch.from_numpy(audio).squeeze(0)
|
|
||||||
|
|
||||||
fbank = Fbank(opts)
|
|
||||||
feature = fbank(samples.to(device))
|
|
||||||
decode_stream.set_features(feature, tail_pad_len=params.decode_chunk_len)
|
|
||||||
decode_stream.ground_truth = cut.supervisions[0].text
|
|
||||||
|
|
||||||
decode_streams.append(decode_stream)
|
|
||||||
|
|
||||||
while len(decode_streams) >= params.num_decode_streams:
|
|
||||||
finished_streams = decode_one_chunk(
|
|
||||||
params=params, model=model, decode_streams=decode_streams
|
|
||||||
)
|
|
||||||
for i in sorted(finished_streams, reverse=True):
|
|
||||||
decode_results.append(
|
|
||||||
(
|
|
||||||
decode_streams[i].id,
|
|
||||||
decode_streams[i].ground_truth.split(),
|
|
||||||
sp.decode(decode_streams[i].decoding_result()).split(),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
del decode_streams[i]
|
|
||||||
|
|
||||||
if num % log_interval == 0:
|
|
||||||
logging.info(f"Cuts processed until now is {num}.")
|
|
||||||
|
|
||||||
# decode final chunks of last sequences
|
|
||||||
while len(decode_streams):
|
|
||||||
finished_streams = decode_one_chunk(
|
|
||||||
params=params, model=model, decode_streams=decode_streams
|
|
||||||
)
|
|
||||||
for i in sorted(finished_streams, reverse=True):
|
|
||||||
decode_results.append(
|
|
||||||
(
|
|
||||||
decode_streams[i].id,
|
|
||||||
decode_streams[i].ground_truth.split(),
|
|
||||||
sp.decode(decode_streams[i].decoding_result()).split(),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
del decode_streams[i]
|
|
||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
|
||||||
key = "greedy_search"
|
|
||||||
elif params.decoding_method == "fast_beam_search":
|
|
||||||
key = (
|
|
||||||
f"beam_{params.beam}_"
|
|
||||||
f"max_contexts_{params.max_contexts}_"
|
|
||||||
f"max_states_{params.max_states}"
|
|
||||||
)
|
|
||||||
elif params.decoding_method == "modified_beam_search":
|
|
||||||
key = f"num_active_paths_{params.num_active_paths}"
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
|
||||||
return {key: decode_results}
|
|
||||||
|
|
||||||
|
|
||||||
def save_results(
|
|
||||||
params: AttributeDict,
|
|
||||||
test_set_name: str,
|
|
||||||
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
|
||||||
):
|
|
||||||
test_set_wers = dict()
|
|
||||||
for key, results in results_dict.items():
|
|
||||||
recog_path = (
|
|
||||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
results = sorted(results)
|
|
||||||
store_transcripts(filename=recog_path, texts=results)
|
|
||||||
logging.info(f"The transcripts are stored in {recog_path}")
|
|
||||||
|
|
||||||
# The following prints out WERs, per-word error statistics and aligned
|
|
||||||
# ref/hyp pairs.
|
|
||||||
errs_filename = (
|
|
||||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
with open(errs_filename, "w") as f:
|
|
||||||
wer = write_error_stats(
|
|
||||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
|
||||||
)
|
|
||||||
test_set_wers[key] = wer
|
|
||||||
|
|
||||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
|
||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
|
||||||
errs_info = (
|
|
||||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
with open(errs_info, "w") as f:
|
|
||||||
print("settings\tWER", file=f)
|
|
||||||
for key, val in test_set_wers:
|
|
||||||
print("{}\t{}".format(key, val), file=f)
|
|
||||||
|
|
||||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
|
||||||
note = "\tbest for {}".format(test_set_name)
|
|
||||||
for key, val in test_set_wers:
|
|
||||||
s += "{}\t{}{}\n".format(key, val, note)
|
|
||||||
note = ""
|
|
||||||
logging.info(s)
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def main():
|
|
||||||
parser = get_parser()
|
|
||||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
|
||||||
args = parser.parse_args()
|
|
||||||
args.exp_dir = Path(args.exp_dir)
|
|
||||||
|
|
||||||
params = get_params()
|
|
||||||
params.update(vars(args))
|
|
||||||
|
|
||||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
|
||||||
|
|
||||||
if params.iter > 0:
|
|
||||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
|
||||||
else:
|
|
||||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
|
||||||
|
|
||||||
# for streaming
|
|
||||||
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_len}"
|
|
||||||
|
|
||||||
# for fast_beam_search
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
|
||||||
params.suffix += f"-beam-{params.beam}"
|
|
||||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
|
||||||
params.suffix += f"-max-states-{params.max_states}"
|
|
||||||
|
|
||||||
if params.use_averaged_model:
|
|
||||||
params.suffix += "-use-averaged-model"
|
|
||||||
|
|
||||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
|
||||||
logging.info("Decoding started")
|
|
||||||
|
|
||||||
device = torch.device("cpu")
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda", 0)
|
|
||||||
|
|
||||||
logging.info(f"Device: {device}")
|
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(params.bpe_model)
|
|
||||||
|
|
||||||
# <blk> and <unk> is defined in local/train_bpe_model.py
|
|
||||||
params.blank_id = sp.piece_to_id("<blk>")
|
|
||||||
params.unk_id = sp.piece_to_id("<unk>")
|
|
||||||
params.vocab_size = sp.get_piece_size()
|
|
||||||
|
|
||||||
logging.info(params)
|
|
||||||
|
|
||||||
logging.info("About to create model")
|
|
||||||
model = get_transducer_model(params)
|
|
||||||
|
|
||||||
if not params.use_averaged_model:
|
|
||||||
if params.iter > 0:
|
|
||||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
||||||
: params.avg
|
|
||||||
]
|
|
||||||
if len(filenames) == 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"No checkpoints found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
elif len(filenames) < params.avg:
|
|
||||||
raise ValueError(
|
|
||||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
logging.info(f"averaging {filenames}")
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
||||||
elif params.avg == 1:
|
|
||||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
||||||
else:
|
|
||||||
start = params.epoch - params.avg + 1
|
|
||||||
filenames = []
|
|
||||||
for i in range(start, params.epoch + 1):
|
|
||||||
if start >= 0:
|
|
||||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
||||||
logging.info(f"averaging {filenames}")
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
||||||
else:
|
|
||||||
if params.iter > 0:
|
|
||||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
||||||
: params.avg + 1
|
|
||||||
]
|
|
||||||
if len(filenames) == 0:
|
|
||||||
raise ValueError(
|
|
||||||
f"No checkpoints found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
elif len(filenames) < params.avg + 1:
|
|
||||||
raise ValueError(
|
|
||||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
||||||
f" --iter {params.iter}, --avg {params.avg}"
|
|
||||||
)
|
|
||||||
filename_start = filenames[-1]
|
|
||||||
filename_end = filenames[0]
|
|
||||||
logging.info(
|
|
||||||
"Calculating the averaged model over iteration checkpoints"
|
|
||||||
f" from {filename_start} (excluded) to {filename_end}"
|
|
||||||
)
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(
|
|
||||||
average_checkpoints_with_averaged_model(
|
|
||||||
filename_start=filename_start,
|
|
||||||
filename_end=filename_end,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
assert params.avg > 0, params.avg
|
|
||||||
start = params.epoch - params.avg
|
|
||||||
assert start >= 1, start
|
|
||||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
||||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
||||||
logging.info(
|
|
||||||
f"Calculating the averaged model over epoch range from "
|
|
||||||
f"{start} (excluded) to {params.epoch}"
|
|
||||||
)
|
|
||||||
model.to(device)
|
|
||||||
model.load_state_dict(
|
|
||||||
average_checkpoints_with_averaged_model(
|
|
||||||
filename_start=filename_start,
|
|
||||||
filename_end=filename_end,
|
|
||||||
device=device,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
model.to(device)
|
|
||||||
model.eval()
|
|
||||||
model.device = device
|
|
||||||
|
|
||||||
decoding_graph = None
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
|
||||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
|
||||||
|
|
||||||
librispeech = LibriSpeechAsrDataModule(args)
|
|
||||||
|
|
||||||
test_clean_cuts = librispeech.test_clean_cuts()
|
|
||||||
test_other_cuts = librispeech.test_other_cuts()
|
|
||||||
|
|
||||||
test_sets = ["test-clean", "test-other"]
|
|
||||||
test_cuts = [test_clean_cuts, test_other_cuts]
|
|
||||||
|
|
||||||
for test_set, test_cut in zip(test_sets, test_cuts):
|
|
||||||
results_dict = decode_dataset(
|
|
||||||
cuts=test_cut,
|
|
||||||
params=params,
|
|
||||||
model=model,
|
|
||||||
sp=sp,
|
|
||||||
decoding_graph=decoding_graph,
|
|
||||||
)
|
|
||||||
|
|
||||||
save_results(
|
|
||||||
params=params,
|
|
||||||
test_set_name=test_set,
|
|
||||||
results_dict=results_dict,
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.info("Done!")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
@ -1,150 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
To run this file, do:
|
|
||||||
|
|
||||||
cd icefall/egs/librispeech/ASR
|
|
||||||
python ./pruned_transducer_stateless7_streaming/test_model.py
|
|
||||||
"""
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from scaling_converter import convert_scaled_to_non_scaled
|
|
||||||
from train import get_params, get_transducer_model
|
|
||||||
|
|
||||||
|
|
||||||
def test_model():
|
|
||||||
params = get_params()
|
|
||||||
params.vocab_size = 500
|
|
||||||
params.blank_id = 0
|
|
||||||
params.context_size = 2
|
|
||||||
params.num_encoder_layers = "2,4,3,2,4"
|
|
||||||
params.feedforward_dims = "1024,1024,2048,2048,1024"
|
|
||||||
params.nhead = "8,8,8,8,8"
|
|
||||||
params.encoder_dims = "384,384,384,384,384"
|
|
||||||
params.attention_dims = "192,192,192,192,192"
|
|
||||||
params.encoder_unmasked_dims = "256,256,256,256,256"
|
|
||||||
params.zipformer_downsampling_factors = "1,2,4,8,2"
|
|
||||||
params.cnn_module_kernels = "31,31,31,31,31"
|
|
||||||
params.decoder_dim = 512
|
|
||||||
params.joiner_dim = 512
|
|
||||||
params.num_left_chunks = 4
|
|
||||||
params.short_chunk_size = 50
|
|
||||||
params.decode_chunk_len = 32
|
|
||||||
model = get_transducer_model(params)
|
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
|
||||||
print(f"Number of model parameters: {num_param}")
|
|
||||||
|
|
||||||
# Test jit script
|
|
||||||
convert_scaled_to_non_scaled(model, inplace=True)
|
|
||||||
# We won't use the forward() method of the model in C++, so just ignore
|
|
||||||
# it here.
|
|
||||||
# Otherwise, one of its arguments is a ragged tensor and is not
|
|
||||||
# torch scriptabe.
|
|
||||||
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
|
||||||
print("Using torch.jit.script")
|
|
||||||
model = torch.jit.script(model)
|
|
||||||
|
|
||||||
|
|
||||||
def test_model_jit_trace():
|
|
||||||
params = get_params()
|
|
||||||
params.vocab_size = 500
|
|
||||||
params.blank_id = 0
|
|
||||||
params.context_size = 2
|
|
||||||
params.num_encoder_layers = "2,4,3,2,4"
|
|
||||||
params.feedforward_dims = "1024,1024,2048,2048,1024"
|
|
||||||
params.nhead = "8,8,8,8,8"
|
|
||||||
params.encoder_dims = "384,384,384,384,384"
|
|
||||||
params.attention_dims = "192,192,192,192,192"
|
|
||||||
params.encoder_unmasked_dims = "256,256,256,256,256"
|
|
||||||
params.zipformer_downsampling_factors = "1,2,4,8,2"
|
|
||||||
params.cnn_module_kernels = "31,31,31,31,31"
|
|
||||||
params.decoder_dim = 512
|
|
||||||
params.joiner_dim = 512
|
|
||||||
params.num_left_chunks = 4
|
|
||||||
params.short_chunk_size = 50
|
|
||||||
params.decode_chunk_len = 32
|
|
||||||
model = get_transducer_model(params)
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
|
||||||
print(f"Number of model parameters: {num_param}")
|
|
||||||
|
|
||||||
convert_scaled_to_non_scaled(model, inplace=True)
|
|
||||||
|
|
||||||
# Test encoder
|
|
||||||
def _test_encoder():
|
|
||||||
encoder = model.encoder
|
|
||||||
assert encoder.decode_chunk_size == params.decode_chunk_len // 2, (
|
|
||||||
encoder.decode_chunk_size,
|
|
||||||
params.decode_chunk_len,
|
|
||||||
)
|
|
||||||
T = params.decode_chunk_len + 7
|
|
||||||
|
|
||||||
x = torch.zeros(1, T, 80, dtype=torch.float32)
|
|
||||||
x_lens = torch.full((1,), T, dtype=torch.int32)
|
|
||||||
states = encoder.get_init_state(device=x.device)
|
|
||||||
encoder.__class__.forward = encoder.__class__.streaming_forward
|
|
||||||
traced_encoder = torch.jit.trace(encoder, (x, x_lens, states))
|
|
||||||
|
|
||||||
states1 = encoder.get_init_state(device=x.device)
|
|
||||||
states2 = traced_encoder.get_init_state(device=x.device)
|
|
||||||
for i in range(5):
|
|
||||||
x = torch.randn(1, T, 80, dtype=torch.float32)
|
|
||||||
x_lens = torch.full((1,), T, dtype=torch.int32)
|
|
||||||
y1, _, states1 = encoder.streaming_forward(x, x_lens, states1)
|
|
||||||
y2, _, states2 = traced_encoder(x, x_lens, states2)
|
|
||||||
assert torch.allclose(y1, y2, atol=1e-6), (i, (y1 - y2).abs().mean())
|
|
||||||
|
|
||||||
# Test decoder
|
|
||||||
def _test_decoder():
|
|
||||||
decoder = model.decoder
|
|
||||||
y = torch.zeros(10, decoder.context_size, dtype=torch.int64)
|
|
||||||
need_pad = torch.tensor([False])
|
|
||||||
|
|
||||||
traced_decoder = torch.jit.trace(decoder, (y, need_pad))
|
|
||||||
d1 = decoder(y, need_pad)
|
|
||||||
d2 = traced_decoder(y, need_pad)
|
|
||||||
assert torch.equal(d1, d2), (d1 - d2).abs().mean()
|
|
||||||
|
|
||||||
# Test joiner
|
|
||||||
def _test_joiner():
|
|
||||||
joiner = model.joiner
|
|
||||||
encoder_out_dim = joiner.encoder_proj.weight.shape[1]
|
|
||||||
decoder_out_dim = joiner.decoder_proj.weight.shape[1]
|
|
||||||
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
|
|
||||||
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
|
|
||||||
|
|
||||||
traced_joiner = torch.jit.trace(joiner, (encoder_out, decoder_out))
|
|
||||||
j1 = joiner(encoder_out, decoder_out)
|
|
||||||
j2 = traced_joiner(encoder_out, decoder_out)
|
|
||||||
assert torch.equal(j1, j2), (j1 - j2).abs().mean()
|
|
||||||
|
|
||||||
_test_encoder()
|
|
||||||
_test_decoder()
|
|
||||||
_test_joiner()
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
test_model()
|
|
||||||
test_model_jit_trace()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -25,6 +25,7 @@ The generated fbank features are saved in data/fbank.
|
|||||||
import logging
|
import logging
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
import pyloudnorm as pyln
|
||||||
import torch
|
import torch
|
||||||
import torch.multiprocessing
|
import torch.multiprocessing
|
||||||
from lhotse import LilcomChunkyWriter, load_manifest_lazy
|
from lhotse import LilcomChunkyWriter, load_manifest_lazy
|
||||||
@ -69,6 +70,11 @@ def compute_fbank_libricss():
|
|||||||
dev_cuts = cuts.filter(lambda c: "session0" in c.id)
|
dev_cuts = cuts.filter(lambda c: "session0" in c.id)
|
||||||
test_cuts = cuts.filter(lambda c: "session0" not in c.id)
|
test_cuts = cuts.filter(lambda c: "session0" not in c.id)
|
||||||
|
|
||||||
|
# If SDM cuts, apply loudness normalization
|
||||||
|
if name == "sdm":
|
||||||
|
dev_cuts = dev_cuts.normalize_loudness(target=-23.0)
|
||||||
|
test_cuts = test_cuts.normalize_loudness(target=-23.0)
|
||||||
|
|
||||||
logging.info(f"Extracting fbank features for {name} dev cuts")
|
logging.info(f"Extracting fbank features for {name} dev cuts")
|
||||||
_ = dev_cuts.compute_and_store_features_batch(
|
_ = dev_cuts.compute_and_store_features_batch(
|
||||||
extractor=extractor,
|
extractor=extractor,
|
||||||
|
|||||||
@ -1,115 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2022 Johns Hopkins University (authors: Desh Raj)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
This file computes fbank features of the synthetically mixed LibriSpeech
|
|
||||||
train and dev sets.
|
|
||||||
It looks for manifests in the directory data/manifests.
|
|
||||||
|
|
||||||
The generated fbank features are saved in data/fbank.
|
|
||||||
"""
|
|
||||||
import logging
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.multiprocessing
|
|
||||||
from lhotse import LilcomChunkyWriter
|
|
||||||
from lhotse.features.kaldifeat import (
|
|
||||||
KaldifeatFbank,
|
|
||||||
KaldifeatFbankConfig,
|
|
||||||
KaldifeatFrameOptions,
|
|
||||||
KaldifeatMelOptions,
|
|
||||||
)
|
|
||||||
from lhotse.recipes.utils import read_manifests_if_cached
|
|
||||||
|
|
||||||
# Torch's multithreaded behavior needs to be disabled or
|
|
||||||
# it wastes a lot of CPU and slow things down.
|
|
||||||
# Do this outside of main() in case it needs to take effect
|
|
||||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
||||||
torch.set_num_threads(1)
|
|
||||||
torch.set_num_interop_threads(1)
|
|
||||||
torch.multiprocessing.set_sharing_strategy("file_system")
|
|
||||||
|
|
||||||
|
|
||||||
def compute_fbank_librimix():
|
|
||||||
src_dir = Path("data/manifests")
|
|
||||||
output_dir = Path("data/fbank")
|
|
||||||
|
|
||||||
sampling_rate = 16000
|
|
||||||
num_mel_bins = 80
|
|
||||||
|
|
||||||
extractor = KaldifeatFbank(
|
|
||||||
KaldifeatFbankConfig(
|
|
||||||
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
|
|
||||||
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
|
|
||||||
device="cuda",
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.info("Reading manifests")
|
|
||||||
manifests = read_manifests_if_cached(
|
|
||||||
dataset_parts=["train_norvb_v1", "dev_norvb_v1"],
|
|
||||||
types=["cuts"],
|
|
||||||
output_dir=src_dir,
|
|
||||||
prefix="libri-mix",
|
|
||||||
suffix="jsonl.gz",
|
|
||||||
lazy=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
train_cuts = manifests["train_norvb_v1"]["cuts"]
|
|
||||||
dev_cuts = manifests["dev_norvb_v1"]["cuts"]
|
|
||||||
# train_2spk_cuts = manifests["train_2spk_norvb"]["cuts"]
|
|
||||||
|
|
||||||
logging.info("Extracting fbank features for training cuts")
|
|
||||||
_ = train_cuts.compute_and_store_features_batch(
|
|
||||||
extractor=extractor,
|
|
||||||
storage_path=output_dir / "librimix_feats_train_norvb_v1",
|
|
||||||
manifest_path=src_dir / "cuts_train_norvb_v1.jsonl.gz",
|
|
||||||
batch_duration=5000,
|
|
||||||
num_workers=4,
|
|
||||||
storage_type=LilcomChunkyWriter,
|
|
||||||
overwrite=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
logging.info("Extracting fbank features for dev cuts")
|
|
||||||
_ = dev_cuts.compute_and_store_features_batch(
|
|
||||||
extractor=extractor,
|
|
||||||
storage_path=output_dir / "librimix_feats_dev_norvb_v1",
|
|
||||||
manifest_path=src_dir / "cuts_dev_norvb_v1.jsonl.gz",
|
|
||||||
batch_duration=5000,
|
|
||||||
num_workers=4,
|
|
||||||
storage_type=LilcomChunkyWriter,
|
|
||||||
overwrite=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# logging.info("Extracting fbank features for 2-spk train cuts")
|
|
||||||
# _ = train_2spk_cuts.compute_and_store_features_batch(
|
|
||||||
# extractor=extractor,
|
|
||||||
# storage_path=output_dir / "librimix_feats_train_2spk_norvb",
|
|
||||||
# manifest_path=src_dir / "cuts_train_2spk_norvb.jsonl.gz",
|
|
||||||
# batch_duration=5000,
|
|
||||||
# num_workers=4,
|
|
||||||
# storage_type=LilcomChunkyWriter,
|
|
||||||
# overwrite=True,
|
|
||||||
# )
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
compute_fbank_librimix()
|
|
||||||
@ -25,7 +25,6 @@ The generated fbank features are saved in data/fbank.
|
|||||||
|
|
||||||
import logging
|
import logging
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from lhotse import CutSet, LilcomChunkyWriter
|
from lhotse import CutSet, LilcomChunkyWriter
|
||||||
@ -43,17 +42,17 @@ from lhotse.recipes.utils import read_manifests_if_cached
|
|||||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
torch.set_num_threads(1)
|
torch.set_num_threads(1)
|
||||||
torch.set_num_interop_threads(1)
|
torch.set_num_interop_threads(1)
|
||||||
|
torch.multiprocessing.set_sharing_strategy("file_system")
|
||||||
|
|
||||||
|
|
||||||
def compute_fbank_librispeech(bpe_model: Optional[str] = None):
|
def compute_fbank_librispeech():
|
||||||
src_dir = Path("data/manifests")
|
src_dir = Path("data/manifests")
|
||||||
output_dir = Path("data/fbank")
|
output_dir = Path("data/fbank")
|
||||||
num_mel_bins = 80
|
num_mel_bins = 80
|
||||||
|
|
||||||
dataset_parts = (
|
dataset_parts = (
|
||||||
# "dev-clean",
|
"train-clean-100",
|
||||||
# "train-clean-100",
|
"train-clean-360",
|
||||||
# "train-clean-360",
|
|
||||||
"train-other-500",
|
"train-other-500",
|
||||||
)
|
)
|
||||||
prefix = "librispeech"
|
prefix = "librispeech"
|
||||||
@ -92,8 +91,7 @@ def compute_fbank_librispeech(bpe_model: Optional[str] = None):
|
|||||||
supervisions=m["supervisions"],
|
supervisions=m["supervisions"],
|
||||||
)
|
)
|
||||||
|
|
||||||
if "train" in partition:
|
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||||
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
|
||||||
|
|
||||||
cut_set = cut_set.compute_and_store_features_batch(
|
cut_set = cut_set.compute_and_store_features_batch(
|
||||||
extractor=extractor,
|
extractor=extractor,
|
||||||
|
|||||||
188
egs/libricss/SURT/local/compute_fbank_lsmix.py
Executable file
188
egs/libricss/SURT/local/compute_fbank_lsmix.py
Executable file
@ -0,0 +1,188 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Johns Hopkins University (authors: Desh Raj)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the synthetically mixed LibriSpeech
|
||||||
|
train and dev sets.
|
||||||
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
import logging
|
||||||
|
import random
|
||||||
|
import warnings
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.multiprocessing
|
||||||
|
from lhotse import LilcomChunkyWriter, load_manifest
|
||||||
|
from lhotse.cut import MixedCut, MixTrack, MultiCut
|
||||||
|
from lhotse.features.kaldifeat import (
|
||||||
|
KaldifeatFbank,
|
||||||
|
KaldifeatFbankConfig,
|
||||||
|
KaldifeatFrameOptions,
|
||||||
|
KaldifeatMelOptions,
|
||||||
|
)
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
from lhotse.utils import fix_random_seed, uuid4
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
torch.multiprocessing.set_sharing_strategy("file_system")
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_lsmix():
|
||||||
|
src_dir = Path("data/manifests")
|
||||||
|
output_dir = Path("data/fbank")
|
||||||
|
|
||||||
|
sampling_rate = 16000
|
||||||
|
num_mel_bins = 80
|
||||||
|
|
||||||
|
extractor = KaldifeatFbank(
|
||||||
|
KaldifeatFbankConfig(
|
||||||
|
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
|
||||||
|
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
|
||||||
|
device="cuda",
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Reading manifests")
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=["train_clean_full", "train_clean_ov40"],
|
||||||
|
types=["cuts"],
|
||||||
|
output_dir=src_dir,
|
||||||
|
prefix="lsmix",
|
||||||
|
suffix="jsonl.gz",
|
||||||
|
lazy=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
cs = {}
|
||||||
|
cs["clean_full"] = manifests["train_clean_full"]["cuts"]
|
||||||
|
cs["clean_ov40"] = manifests["train_clean_ov40"]["cuts"]
|
||||||
|
|
||||||
|
# only uses RIRs and noises from REVERB challenge
|
||||||
|
real_rirs = load_manifest(src_dir / "real-rir_recordings_all.jsonl.gz").filter(
|
||||||
|
lambda r: "RVB2014" in r.id
|
||||||
|
)
|
||||||
|
noises = load_manifest(src_dir / "iso-noise_recordings_all.jsonl.gz").filter(
|
||||||
|
lambda r: "RVB2014" in r.id
|
||||||
|
)
|
||||||
|
|
||||||
|
# Apply perturbation to the training cuts
|
||||||
|
logging.info("Applying perturbation to the training cuts")
|
||||||
|
cs["rvb_full"] = cs["clean_full"].map(
|
||||||
|
lambda c: augment(
|
||||||
|
c, perturb_snr=True, rirs=real_rirs, noises=noises, perturb_loudness=True
|
||||||
|
)
|
||||||
|
)
|
||||||
|
cs["rvb_ov40"] = cs["clean_ov40"].map(
|
||||||
|
lambda c: augment(
|
||||||
|
c, perturb_snr=True, rirs=real_rirs, noises=noises, perturb_loudness=True
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
for type_affix in ["full", "ov40"]:
|
||||||
|
for rvb_affix in ["clean", "rvb"]:
|
||||||
|
logging.info(
|
||||||
|
f"Extracting fbank features for {type_affix} {rvb_affix} training cuts"
|
||||||
|
)
|
||||||
|
cuts = cs[f"{rvb_affix}_{type_affix}"]
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
_ = cuts.compute_and_store_features_batch(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=output_dir
|
||||||
|
/ f"lsmix_feats_train_{rvb_affix}_{type_affix}",
|
||||||
|
manifest_path=src_dir
|
||||||
|
/ f"cuts_train_{rvb_affix}_{type_affix}.jsonl.gz",
|
||||||
|
batch_duration=5000,
|
||||||
|
num_workers=4,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
overwrite=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def augment(cut, perturb_snr=False, rirs=None, noises=None, perturb_loudness=False):
|
||||||
|
"""
|
||||||
|
Given a mixed cut, this function optionally applies the following augmentations:
|
||||||
|
- Perturbing the SNRs of the tracks (in range [-5, 5] dB)
|
||||||
|
- Reverberation using a randomly selected RIR
|
||||||
|
- Adding noise
|
||||||
|
- Perturbing the loudness (in range [-20, -25] dB)
|
||||||
|
"""
|
||||||
|
out_cut = cut.drop_features()
|
||||||
|
|
||||||
|
# Perturb the SNRs (optional)
|
||||||
|
if perturb_snr:
|
||||||
|
snrs = [random.uniform(-5, 5) for _ in range(len(cut.tracks))]
|
||||||
|
for i, (track, snr) in enumerate(zip(out_cut.tracks, snrs)):
|
||||||
|
if i == 0:
|
||||||
|
# Skip the first track since it is the reference
|
||||||
|
continue
|
||||||
|
track.snr = snr
|
||||||
|
|
||||||
|
# Reverberate the cut (optional)
|
||||||
|
if rirs is not None:
|
||||||
|
# Select an RIR at random
|
||||||
|
rir = random.choice(rirs)
|
||||||
|
# Select a channel at random
|
||||||
|
rir_channel = random.choice(list(range(rir.num_channels)))
|
||||||
|
# Reverberate the cut
|
||||||
|
out_cut = out_cut.reverb_rir(rir_recording=rir, rir_channels=[rir_channel])
|
||||||
|
|
||||||
|
# Add noise (optional)
|
||||||
|
if noises is not None:
|
||||||
|
# Select a noise recording at random
|
||||||
|
noise = random.choice(noises).to_cut()
|
||||||
|
if isinstance(noise, MultiCut):
|
||||||
|
noise = noise.to_mono()[0]
|
||||||
|
# Select an SNR at random
|
||||||
|
snr = random.uniform(10, 30)
|
||||||
|
# Repeat the noise to match the duration of the cut
|
||||||
|
noise = repeat_cut(noise, out_cut.duration)
|
||||||
|
out_cut = MixedCut(
|
||||||
|
id=out_cut.id,
|
||||||
|
tracks=[
|
||||||
|
MixTrack(cut=out_cut, type="MixedCut"),
|
||||||
|
MixTrack(cut=noise, type="DataCut", snr=snr),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
# Perturb the loudness (optional)
|
||||||
|
if perturb_loudness:
|
||||||
|
target_loudness = random.uniform(-20, -25)
|
||||||
|
out_cut = out_cut.normalize_loudness(target_loudness, mix_first=True)
|
||||||
|
return out_cut
|
||||||
|
|
||||||
|
|
||||||
|
def repeat_cut(cut, duration):
|
||||||
|
while cut.duration < duration:
|
||||||
|
cut = cut.mix(cut, offset_other_by=cut.duration)
|
||||||
|
return cut.truncate(duration=duration)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
fix_random_seed(42)
|
||||||
|
compute_fbank_lsmix()
|
||||||
@ -4,7 +4,6 @@ set -eou pipefail
|
|||||||
|
|
||||||
stage=-1
|
stage=-1
|
||||||
stop_stage=100
|
stop_stage=100
|
||||||
use_gss=true # Use GSS-based enhancement with MDM setting
|
|
||||||
|
|
||||||
# We assume dl_dir (download dir) contains the following
|
# We assume dl_dir (download dir) contains the following
|
||||||
# directories and files. If not, they will be downloaded
|
# directories and files. If not, they will be downloaded
|
||||||
@ -24,8 +23,10 @@ use_gss=true # Use GSS-based enhancement with MDM setting
|
|||||||
# - noise
|
# - noise
|
||||||
# - speech
|
# - speech
|
||||||
#
|
#
|
||||||
|
# - $dl_dir/rirs_noises
|
||||||
|
# This directory contains the RIRS_NOISES corpus downloaded from https://openslr.org/28/.
|
||||||
|
#
|
||||||
dl_dir=$PWD/download
|
dl_dir=$PWD/download
|
||||||
cmd="queue-freegpu.pl --config conf/gpu.conf --gpu 1 --mem 4G"
|
|
||||||
|
|
||||||
. shared/parse_options.sh || exit 1
|
. shared/parse_options.sh || exit 1
|
||||||
|
|
||||||
@ -71,6 +72,15 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|||||||
if [ ! -d $dl_dir/musan ]; then
|
if [ ! -d $dl_dir/musan ]; then
|
||||||
lhotse download musan $dl_dir
|
lhotse download musan $dl_dir
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
# If you have pre-downloaded it to /path/to/rirs_noises,
|
||||||
|
# you can create a symlink
|
||||||
|
#
|
||||||
|
# ln -sfv /path/to/rirs_noises $dl_dir/
|
||||||
|
#
|
||||||
|
if [ ! -d $dl_dir/rirs_noises ]; then
|
||||||
|
lhotse download rirs_noises $dl_dir
|
||||||
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
@ -94,123 +104,101 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
log "Stage 3: Prepare musan manifest"
|
log "Stage 3: Prepare musan manifest and RIRs"
|
||||||
# We assume that you have downloaded the musan corpus
|
# We assume that you have downloaded the musan corpus
|
||||||
# to $dl_dir/musan
|
# to $dl_dir/musan
|
||||||
mkdir -p data/manifests
|
mkdir -p data/manifests
|
||||||
lhotse prepare musan $dl_dir/musan data/manifests
|
lhotse prepare musan $dl_dir/musan data/manifests
|
||||||
|
|
||||||
|
# We assume that you have downloaded the RIRS_NOISES corpus
|
||||||
|
# to $dl_dir/rirs_noises
|
||||||
|
lhotse prepare rir-noise -p real_rir -p iso_noise $dl_dir/rirs_noises data/manifests
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||||
log "Stage 4: Extract features for LibriSpeech, trim to alignments, and shuffle the cuts"
|
log "Stage 4: Extract features for LibriSpeech, trim to alignments, and shuffle the cuts"
|
||||||
$cmd exp/extract_libri_fbank.log python local/compute_fbank_librispeech.py
|
python local/compute_fbank_librispeech.py
|
||||||
lhotse combine data/manifests/librispeech_cuts_train* - |\
|
lhotse combine data/manifests/librispeech_cuts_train* - |\
|
||||||
lhotse cut trim-to-alignments --type word --max-pause 0.2 - - |\
|
lhotse cut trim-to-alignments --type word --max-pause 0.2 - - |\
|
||||||
shuf | gzip -c > data/manifests/librispeech_cuts_train_trimmed.jsonl.gz
|
shuf | gzip -c > data/manifests/librispeech_cuts_train_trimmed.jsonl.gz
|
||||||
lhotse cut trim-to-alignments --type word --max-pause 0.2 data/manifests/librispeech_cuts_dev-clean.jsonl.gz - |\
|
|
||||||
shuf | gzip -c > data/manifests/librispeech_cuts_dev_trimmed.jsonl.gz
|
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||||
log "Stage 5: Create simulated mixtures from LibriSpeech (train and dev). This may take a while."
|
log "Stage 5: Create simulated mixtures from LibriSpeech (train and dev). This may take a while."
|
||||||
# We create a 2-speaker set which will be used during the model warmup phase, and a
|
# We create a high overlap set which will be used during the model warmup phase, and a
|
||||||
# full training set (2,3,4 speakers) that will be used for the subsequent training.
|
# full training set that will be used for the subsequent training.
|
||||||
# We create anechoic and reverberant versions of both sets. For the full set, we compute
|
|
||||||
# silence and overlap distributions based on LibriCSS sessions (no 0L).
|
|
||||||
|
|
||||||
sim_cmd="queue.pl --mem 16G -l 'num_proc=4,h_rt=600:00:00'"
|
|
||||||
|
|
||||||
gunzip -c data/manifests/libricss-sdm_supervisions_all.jsonl.gz |\
|
gunzip -c data/manifests/libricss-sdm_supervisions_all.jsonl.gz |\
|
||||||
grep -v "0L" | grep -v "OV10" |\
|
grep -v "0L" | grep -v "OV10" |\
|
||||||
gzip -c > data/manifests/libricss-sdm_supervisions_all_v1.jsonl.gz
|
gzip -c > data/manifests/libricss-sdm_supervisions_all_v1.jsonl.gz
|
||||||
|
|
||||||
# 2-speaker anechoic
|
gunzip -c data/manifests/libricss-sdm_supervisions_all.jsonl.gz |\
|
||||||
# log "Generating 2-speaker anechoic training set"
|
grep "OV40" |\
|
||||||
# $sim_cmd exp/sim_train_2spk.log lhotse workflows simulate-meetings \
|
gzip -c > data/manifests/libricss-sdm_supervisions_ov40.jsonl.gz
|
||||||
# --method conversational \
|
|
||||||
# --prob-diff-spk-overlap 1.0 \
|
|
||||||
# --num-meetings 50000 \
|
|
||||||
# --num-speakers-per-meeting 2 \
|
|
||||||
# --max-duration-per-speaker 20.0 \
|
|
||||||
# --max-utterances-per-speaker 1 \
|
|
||||||
# --seed 1234 \
|
|
||||||
# --num-jobs 4 \
|
|
||||||
# data/manifests/librispeech_cuts_train_trimmed.jsonl.gz \
|
|
||||||
# data/manifests/libri-mix_cuts_train_2spk_norvb.jsonl.gz
|
|
||||||
|
|
||||||
# 2-speaker reverberant
|
# Warmup mixtures (100k) based on high overlap (OV40)
|
||||||
# log "Generating 2-speaker reverberant training set"
|
log "Generating 100k anechoic train mixtures for warmup"
|
||||||
# lhotse workflows simulate-meetings \
|
lhotse workflows simulate-meetings \
|
||||||
# --method conversational \
|
--method conversational \
|
||||||
# --prob-diff-spk-overlap 1.0 \
|
--fit-to-supervisions data/manifests/libricss-sdm_supervisions_ov40.jsonl.gz \
|
||||||
# --num-meetings 50000 \
|
--num-meetings 100000 \
|
||||||
# --num-speakers-per-meeting 2 \
|
--num-speakers-per-meeting 2,3 \
|
||||||
# --max-duration-per-speaker 20.0 \
|
--max-duration-per-speaker 15.0 \
|
||||||
# --max-utterances-per-speaker 1 \
|
--max-utterances-per-speaker 3 \
|
||||||
# --seed 1234 \
|
--seed 1234 \
|
||||||
# --reverberate \
|
--num-jobs 4 \
|
||||||
# --num-jobs 4 \
|
data/manifests/librispeech_cuts_train_trimmed.jsonl.gz \
|
||||||
# data/manifests/librispeech_cuts_train_trimmed.jsonl.gz \
|
data/manifests/lsmix_cuts_train_clean_ov40.jsonl.gz
|
||||||
# data/manifests/libri-mix_cuts_train_2spk_rvb.jsonl.gz
|
|
||||||
|
|
||||||
# Full training set (2,3 speakers) anechoic
|
# Full training set (2,3 speakers) anechoic
|
||||||
for part in dev train; do
|
log "Generating anechoic ${part} set (full)"
|
||||||
if [ $part == "dev" ]; then
|
lhotse workflows simulate-meetings \
|
||||||
num_jobs=1
|
--method conversational \
|
||||||
else
|
--fit-to-supervisions data/manifests/libricss-sdm_supervisions_all_v1.jsonl.gz \
|
||||||
num_jobs=4
|
--num-repeats 1 \
|
||||||
fi
|
--num-speakers-per-meeting 2,3 \
|
||||||
log "Generating anechoic ${part} set (full)"
|
--max-duration-per-speaker 15.0 \
|
||||||
$sim_cmd exp/sim_${part}.log lhotse workflows simulate-meetings \
|
--max-utterances-per-speaker 3 \
|
||||||
--method conversational \
|
--seed 1234 \
|
||||||
--fit-to-supervisions data/manifests/libricss-sdm_supervisions_all_v1.jsonl.gz \
|
--num-jobs 4 \
|
||||||
--num-repeats 1 \
|
data/manifests/librispeech_cuts_train_trimmed.jsonl.gz \
|
||||||
--num-speakers-per-meeting 2,3 \
|
data/manifests/lsmix_cuts_train_clean_full.jsonl.gz
|
||||||
--max-duration-per-speaker 15.0 \
|
|
||||||
--max-utterances-per-speaker 3 \
|
|
||||||
--seed 1234 \
|
|
||||||
--num-jobs ${num_jobs} \
|
|
||||||
data/manifests/librispeech_cuts_${part}_trimmed.jsonl.gz \
|
|
||||||
data/manifests/libri-mix_cuts_${part}_norvb_v1.jsonl.gz
|
|
||||||
done
|
|
||||||
|
|
||||||
# Full training set (2,3,4 speakers) reverberant
|
|
||||||
# for part in dev train; do
|
|
||||||
# log "Generating reverberant ${part} set (full)" ``
|
|
||||||
# lhotse workflows simulate-meetings \
|
|
||||||
# --method conversational \
|
|
||||||
# --num-repeats 1 \
|
|
||||||
# --num-speakers-per-meeting 2,3,4 \
|
|
||||||
# --max-duration-per-speaker 20.0 \
|
|
||||||
# --max-utterances-per-speaker 5 \
|
|
||||||
# --seed 1234 \
|
|
||||||
# --reverberate \
|
|
||||||
# data/manifests/librispeech_cuts_${part}_trimmed.jsonl.gz \
|
|
||||||
# data/manifests/libri-mix_cuts_${part}_rvb.jsonl.gz
|
|
||||||
# done
|
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||||
log "Stage 6: Compute fbank features for musan"
|
log "Stage 6: Compute fbank features for musan"
|
||||||
mkdir -p data/fbank
|
mkdir -p data/fbank
|
||||||
$cmd exp/feats_musan.log python local/compute_fbank_musan.py
|
python local/compute_fbank_musan.py
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||||
log "Stage 7: Compute fbank features for simulated Libri-mix"
|
log "Stage 7: Compute fbank features for simulated Libri-mix"
|
||||||
mkdir -p data/fbank
|
mkdir -p data/fbank
|
||||||
$cmd exp/feats_librimix_norvb_v1.log python local/compute_fbank_librimix.py
|
python local/compute_fbank_lsmix.py
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||||
log "Stage 8: Compute fbank features for LibriCSS"
|
log "Stage 8: Add source feats to mixtures (useful for auxiliary tasks)"
|
||||||
mkdir -p data/fbank
|
python local/add_source_feats.py
|
||||||
$cmd exp/feats_libricss.log python local/compute_fbank_libricss.py
|
|
||||||
|
log "Combining lsmix-clean and lsmix-rvb"
|
||||||
|
for type in full ov40; do
|
||||||
|
cat <(gunzip -c data/manifests/cuts_train_clean_${type}_sources.jsonl.gz) \
|
||||||
|
<(gunzip -c data/manifests/cuts_train_rvb_${type}_sources.jsonl.gz) |\
|
||||||
|
shuf | gzip -c > data/manifests/cuts_train_${type}_sources.jsonl.gz
|
||||||
|
done
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||||
log "Stage 9: Download LibriSpeech BPE model from HuggingFace."
|
log "Stage 9: Compute fbank features for LibriCSS"
|
||||||
mkdir -p data/lang_bpe_500 && pushd data/lang_bpe_500
|
mkdir -p data/fbank
|
||||||
|
python local/compute_fbank_libricss.py
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
||||||
|
log "Stage 10: Download LibriSpeech BPE model from HuggingFace."
|
||||||
|
mkdir -p data/lang_bpe_500
|
||||||
|
pushd data/lang_bpe_500
|
||||||
wget https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/resolve/main/data/lang_bpe_500/bpe.model
|
wget https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/resolve/main/data/lang_bpe_500/bpe.model
|
||||||
popd
|
popd
|
||||||
fi
|
fi
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user