mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-15 13:02:23 +00:00
Merge branch 'k2-fsa:master' into master
This commit is contained in:
commit
4237eeabbe
@ -43,7 +43,7 @@ torch.set_num_interop_threads(1)
|
|||||||
|
|
||||||
|
|
||||||
def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80):
|
def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80):
|
||||||
src_dir = Path("data/manifests")
|
src_dir = Path("data/manifests/aidatatang_200zh")
|
||||||
output_dir = Path("data/fbank")
|
output_dir = Path("data/fbank")
|
||||||
num_jobs = min(15, os.cpu_count())
|
num_jobs = min(15, os.cpu_count())
|
||||||
|
|
||||||
|
@ -50,28 +50,19 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
log "Stage 2: Process aidatatang_200zh"
|
log "Stage 2: Prepare musan manifest"
|
||||||
if [ ! -f data/fbank/aidatatang_200zh/.fbank.done ]; then
|
# We assume that you have downloaded the musan corpus
|
||||||
mkdir -p data/fbank/aidatatang_200zh
|
# to data/musan
|
||||||
lhotse prepare aidatatang-200zh $dl_dir data/manifests/aidatatang_200zh
|
if [ ! -f data/manifests/.manifests.done ]; then
|
||||||
touch data/fbank/aidatatang_200zh/.fbank.done
|
log "It may take 6 minutes"
|
||||||
|
mkdir -p data/manifests/
|
||||||
|
lhotse prepare musan $dl_dir/musan data/manifests/
|
||||||
|
touch data/manifests/.manifests.done
|
||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
log "Stage 3: Prepare musan manifest"
|
log "Stage 3: Compute fbank for musan"
|
||||||
# We assume that you have downloaded the musan corpus
|
|
||||||
# to data/musan
|
|
||||||
if [ ! -f data/manifests/.musan_manifests.done ]; then
|
|
||||||
log "It may take 6 minutes"
|
|
||||||
mkdir -p data/manifests
|
|
||||||
lhotse prepare musan $dl_dir/musan data/manifests
|
|
||||||
touch data/manifests/.musan_manifests.done
|
|
||||||
fi
|
|
||||||
fi
|
|
||||||
|
|
||||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
||||||
log "Stage 4: Compute fbank for musan"
|
|
||||||
if [ ! -f data/fbank/.msuan.done ]; then
|
if [ ! -f data/fbank/.msuan.done ]; then
|
||||||
mkdir -p data/fbank
|
mkdir -p data/fbank
|
||||||
./local/compute_fbank_musan.py
|
./local/compute_fbank_musan.py
|
||||||
@ -79,8 +70,8 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||||
log "Stage 5: Compute fbank for aidatatang_200zh"
|
log "Stage 4: Compute fbank for aidatatang_200zh"
|
||||||
if [ ! -f data/fbank/.aidatatang_200zh.done ]; then
|
if [ ! -f data/fbank/.aidatatang_200zh.done ]; then
|
||||||
mkdir -p data/fbank
|
mkdir -p data/fbank
|
||||||
./local/compute_fbank_aidatatang_200zh.py
|
./local/compute_fbank_aidatatang_200zh.py
|
||||||
@ -88,31 +79,38 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||||
log "Stage 6: Prepare char based lang"
|
log "Stage 5: Prepare char based lang"
|
||||||
lang_char_dir=data/lang_char
|
lang_char_dir=data/lang_char
|
||||||
mkdir -p $lang_char_dir
|
mkdir -p $lang_char_dir
|
||||||
|
|
||||||
# Prepare text.
|
# Prepare text.
|
||||||
grep "\"text\":" data/manifests/aidatatang_200zh/supervisions_train.json \
|
# Note: in Linux, you can install jq with the following command:
|
||||||
| sed -e 's/["text:\t ]*//g' | sed 's/,//g' \
|
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
|
||||||
| ./local/text2token.py -t "char" > $lang_char_dir/text
|
# 2. chmod +x ./jq
|
||||||
|
# 3. cp jq /usr/bin
|
||||||
|
if [ ! -f $lang_char_dir/text ]; then
|
||||||
|
gunzip -c data/manifests/aidatatang_200zh/aidatatang_supervisions_train.jsonl.gz \
|
||||||
|
|jq '.text' |sed -e 's/["text:\t ]*//g' | sed 's/"//g' \
|
||||||
|
| ./local/text2token.py -t "char" > $lang_char_dir/text
|
||||||
|
fi
|
||||||
# Prepare words.txt
|
# Prepare words.txt
|
||||||
grep "\"text\":" data/manifests/aidatatang_200zh/supervisions_train.json \
|
if [ ! -f $lang_char_dir/text_words ]; then
|
||||||
| sed -e 's/["text:\t]*//g' | sed 's/,//g' \
|
gunzip -c data/manifests/aidatatang_200zh/aidatatang_supervisions_train.jsonl.gz \
|
||||||
| ./local/text2token.py -t "char" > $lang_char_dir/text_words
|
| jq '.text' | sed -e 's/["text:\t]*//g' | sed 's/"//g' \
|
||||||
|
| ./local/text2token.py -t "char" > $lang_char_dir/text_words
|
||||||
|
fi
|
||||||
|
|
||||||
cat $lang_char_dir/text_words | sed 's/ /\n/g' | sort -u | sed '/^$/d' \
|
cat $lang_char_dir/text_words | sed 's/ /\n/g' | sort -u | sed '/^$/d' \
|
||||||
| uniq > $lang_char_dir/words_no_ids.txt
|
| uniq > $lang_char_dir/words_no_ids.txt
|
||||||
|
|
||||||
if [ ! -f $lang_char_dir/words.txt ]; then
|
if [ ! -f $lang_char_dir/words.txt ]; then
|
||||||
./local/prepare_words.py \
|
./local/prepare_words.py \
|
||||||
--input-file $lang_char_dir/words_no_ids.txt
|
--input-file $lang_char_dir/words_no_ids.txt \
|
||||||
--output-file $lang_char_dir/words.txt
|
--output-file $lang_char_dir/words.txt
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
|
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
|
||||||
./local/prepare_char.py
|
./local/prepare_char.py
|
||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
@ -522,63 +522,14 @@ def main():
|
|||||||
num_param = sum([p.numel() for p in model.parameters()])
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
# Note: Please use "pip install webdataset==0.1.103"
|
|
||||||
# for installing the webdataset.
|
|
||||||
import glob
|
|
||||||
import os
|
|
||||||
|
|
||||||
from lhotse import CutSet
|
|
||||||
from lhotse.dataset.webdataset import export_to_webdataset
|
|
||||||
|
|
||||||
# we need cut ids to display recognition results.
|
# we need cut ids to display recognition results.
|
||||||
args.return_cuts = True
|
args.return_cuts = True
|
||||||
aidatatang_200zh = Aidatatang_200zhAsrDataModule(args)
|
aidatatang_200zh = Aidatatang_200zhAsrDataModule(args)
|
||||||
|
|
||||||
dev = "dev"
|
dev_cuts = aidatatang_200zh.valid_cuts()
|
||||||
test = "test"
|
test_cuts = aidatatang_200zh.test_cuts()
|
||||||
|
dev_dl = aidatatang_200zh.valid_dataloaders(dev_cuts)
|
||||||
if not os.path.exists(f"{dev}/shared-0.tar"):
|
test_dl = aidatatang_200zh.test_dataloaders(test_cuts)
|
||||||
os.makedirs(dev)
|
|
||||||
dev_cuts = aidatatang_200zh.valid_cuts()
|
|
||||||
export_to_webdataset(
|
|
||||||
dev_cuts,
|
|
||||||
output_path=f"{dev}/shared-%d.tar",
|
|
||||||
shard_size=300,
|
|
||||||
)
|
|
||||||
|
|
||||||
if not os.path.exists(f"{test}/shared-0.tar"):
|
|
||||||
os.makedirs(test)
|
|
||||||
test_cuts = aidatatang_200zh.test_cuts()
|
|
||||||
export_to_webdataset(
|
|
||||||
test_cuts,
|
|
||||||
output_path=f"{test}/shared-%d.tar",
|
|
||||||
shard_size=300,
|
|
||||||
)
|
|
||||||
|
|
||||||
dev_shards = [
|
|
||||||
str(path)
|
|
||||||
for path in sorted(glob.glob(os.path.join(dev, "shared-*.tar")))
|
|
||||||
]
|
|
||||||
cuts_dev_webdataset = CutSet.from_webdataset(
|
|
||||||
dev_shards,
|
|
||||||
split_by_worker=True,
|
|
||||||
split_by_node=True,
|
|
||||||
shuffle_shards=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
test_shards = [
|
|
||||||
str(path)
|
|
||||||
for path in sorted(glob.glob(os.path.join(test, "shared-*.tar")))
|
|
||||||
]
|
|
||||||
cuts_test_webdataset = CutSet.from_webdataset(
|
|
||||||
test_shards,
|
|
||||||
split_by_worker=True,
|
|
||||||
split_by_node=True,
|
|
||||||
shuffle_shards=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
dev_dl = aidatatang_200zh.valid_dataloaders(cuts_dev_webdataset)
|
|
||||||
test_dl = aidatatang_200zh.test_dataloaders(cuts_test_webdataset)
|
|
||||||
|
|
||||||
test_sets = ["dev", "test"]
|
test_sets = ["dev", "test"]
|
||||||
test_dl = [dev_dl, test_dl]
|
test_dl = [dev_dl, test_dl]
|
||||||
|
@ -81,6 +81,58 @@ We have a tutorial in [sherpa](https://github.com/k2-fsa/sherpa) about how
|
|||||||
to use the pre-trained model for non-streaming ASR. See
|
to use the pre-trained model for non-streaming ASR. See
|
||||||
<https://k2-fsa.github.io/sherpa/offline_asr/conformer/aishell.html>
|
<https://k2-fsa.github.io/sherpa/offline_asr/conformer/aishell.html>
|
||||||
|
|
||||||
|
|
||||||
|
#### Pruned transducer stateless 2
|
||||||
|
|
||||||
|
See https://github.com/k2-fsa/icefall/pull/536
|
||||||
|
|
||||||
|
[./pruned_transducer_stateless2](./pruned_transducer_stateless2)
|
||||||
|
|
||||||
|
It uses pruned RNN-T.
|
||||||
|
|
||||||
|
| | test | dev | comment |
|
||||||
|
| -------------------- | ---- | ---- | -------------------------------------- |
|
||||||
|
| greedy search | 5.20 | 4.78 | --epoch 72 --avg 14 --max-duration 200 |
|
||||||
|
| modified beam search | 5.07 | 4.63 | --epoch 72 --avg 14 --max-duration 200 |
|
||||||
|
| fast beam search | 5.13 | 4.70 | --epoch 72 --avg 14 --max-duration 200 |
|
||||||
|
|
||||||
|
Training command is:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./prepare.sh
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless2/train.py \
|
||||||
|
--world-size 2 \
|
||||||
|
--num-epochs 90 \
|
||||||
|
--start-epoch 0 \
|
||||||
|
--exp-dir pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 200 \
|
||||||
|
```
|
||||||
|
|
||||||
|
The tensorboard log is available at
|
||||||
|
https://tensorboard.dev/experiment/QI3PVzrGRrebxpbWUPwmkA/
|
||||||
|
|
||||||
|
The decoding command is:
|
||||||
|
```bash
|
||||||
|
for m in greedy_search modified_beam_search fast_beam_search ; do
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 72 \
|
||||||
|
--avg 14 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--lang-dir data/lang_char \
|
||||||
|
--max-duration 200 \
|
||||||
|
--decoding-method $m
|
||||||
|
|
||||||
|
done
|
||||||
|
```
|
||||||
|
|
||||||
|
Pretrained models, training logs, decoding logs, and decoding results
|
||||||
|
are available at
|
||||||
|
<https://huggingface.co/teapoly/icefall-aishell-pruned-transducer-stateless2-2022-08-18>
|
||||||
|
|
||||||
|
|
||||||
#### 2022-03-01
|
#### 2022-03-01
|
||||||
|
|
||||||
[./transducer_stateless_modified-2](./transducer_stateless_modified-2)
|
[./transducer_stateless_modified-2](./transducer_stateless_modified-2)
|
||||||
|
1
egs/aishell/ASR/pruned_transducer_stateless2/asr_datamodule.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless2/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../tdnn_lstm_ctc/asr_datamodule.py
|
1
egs/aishell/ASR/pruned_transducer_stateless2/beam_search.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless2/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py
|
1
egs/aishell/ASR/pruned_transducer_stateless2/conformer.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless2/conformer.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless2/conformer.py
|
573
egs/aishell/ASR/pruned_transducer_stateless2/decode.py
Executable file
573
egs/aishell/ASR/pruned_transducer_stateless2/decode.py
Executable file
@ -0,0 +1,573 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||||
|
# Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 84 \
|
||||||
|
--avg 25 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
|
||||||
|
(2) beam search (not recommended)
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 84 \
|
||||||
|
--avg 25 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(3) modified beam search
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 84 \
|
||||||
|
--avg 25 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(4) fast beam search
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 84 \
|
||||||
|
--avg 25 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--beam 4 \
|
||||||
|
--max-contexts 4 \
|
||||||
|
--max-states 8
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import AishellAsrDataModule
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless2/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_char",
|
||||||
|
help="The lang dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
token_table: k2.SymbolTable,
|
||||||
|
batch: dict,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if greedy_search is used, it would be "greedy_search"
|
||||||
|
If beam search with a beam size of 7 is used, it would be
|
||||||
|
"beam_7"
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
token_table:
|
||||||
|
It maps token ID to a string.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=feature, x_lens=feature_lens
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
elif (
|
||||||
|
params.decoding_method == "greedy_search"
|
||||||
|
and params.max_sym_per_frame == 1
|
||||||
|
):
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
hyp_tokens = []
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyp_tokens.append(hyp)
|
||||||
|
|
||||||
|
hyps = [[token_table[t] for t in tokens] for tokens in hyp_tokens]
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
return {"greedy_search": hyps}
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
return {
|
||||||
|
(
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
): hyps
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
token_table: k2.SymbolTable,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
token_table:
|
||||||
|
It maps a token ID to a string.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
log_interval = 50
|
||||||
|
else:
|
||||||
|
log_interval = 20
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
token_table=token_table,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((cut_id, ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[name].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||||
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
# we compute CER for aishell dataset.
|
||||||
|
results_char = []
|
||||||
|
for res in results:
|
||||||
|
results_char.append(
|
||||||
|
(res[0], list("".join(res[1])), list("".join(res[2])))
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results_char, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir
|
||||||
|
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
AishellAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
args.lang_dir = Path(args.lang_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"fast_beam_search",
|
||||||
|
"modified_beam_search",
|
||||||
|
)
|
||||||
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += (
|
||||||
|
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
params.blank_id = 0
|
||||||
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints(filenames, device=device), strict=False
|
||||||
|
)
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints(filenames, device=device), strict=False
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
aishell = AishellAsrDataModule(args)
|
||||||
|
test_cuts = aishell.test_cuts()
|
||||||
|
dev_cuts = aishell.valid_cuts()
|
||||||
|
test_dl = aishell.test_dataloaders(test_cuts)
|
||||||
|
dev_dl = aishell.test_dataloaders(dev_cuts)
|
||||||
|
|
||||||
|
test_sets = ["test", "dev"]
|
||||||
|
test_dls = [test_dl, dev_dl]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dls):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
token_table=lexicon.token_table,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/aishell/ASR/pruned_transducer_stateless2/decoder.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless2/decoder.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless2/decoder.py
|
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless2/encoder_interface.py
|
217
egs/aishell/ASR/pruned_transducer_stateless2/export.py
Executable file
217
egs/aishell/ASR/pruned_transducer_stateless2/export.py
Executable file
@ -0,0 +1,217 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script converts several saved checkpoints
|
||||||
|
# to a single one using model averaging.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
./pruned_transducer_stateless2/export.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--jit 0 \
|
||||||
|
--epoch 29 \
|
||||||
|
--avg 5
|
||||||
|
|
||||||
|
It will generate a file exp_dir/pretrained-epoch-29-avg-5.pt
|
||||||
|
|
||||||
|
To use the generated file with `pruned_transducer_stateless2/decode.py`,
|
||||||
|
you can do::
|
||||||
|
|
||||||
|
cd /path/to/exp_dir
|
||||||
|
ln -s pretrained-epoch-29-avg-5.pt epoch-9999.pt
|
||||||
|
|
||||||
|
cd /path/to/egs/aishell/ASR
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--max-duration 100 \
|
||||||
|
--lang-dir data/lang_char
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=29,
|
||||||
|
help="""It specifies the checkpoint to use for averaging.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("pruned_transducer_stateless2/exp"),
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--jit",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True to save a model after applying torch.jit.script.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/lang_char"),
|
||||||
|
help="The lang dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
|
||||||
|
params.blank_id = 0
|
||||||
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
|
||||||
|
model.to("cpu")
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.jit:
|
||||||
|
# We won't use the forward() method of the model in C++, so just ignore
|
||||||
|
# it here.
|
||||||
|
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||||
|
# torch scriptabe.
|
||||||
|
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||||
|
logging.info("Using torch.jit.script")
|
||||||
|
model = torch.jit.script(model)
|
||||||
|
filename = (
|
||||||
|
params.exp_dir / f"cpu_jit-epoch-{params.epoch}-avg-{params.avg}.pt"
|
||||||
|
)
|
||||||
|
model.save(str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
else:
|
||||||
|
logging.info("Not using torch.jit.script")
|
||||||
|
# Save it using a format so that it can be loaded
|
||||||
|
# by :func:`load_checkpoint`
|
||||||
|
filename = (
|
||||||
|
params.exp_dir
|
||||||
|
/ f"pretrained-epoch-{params.epoch}-avg-{params.avg}.pt"
|
||||||
|
)
|
||||||
|
torch.save({"model": model.state_dict()}, str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
1
egs/aishell/ASR/pruned_transducer_stateless2/joiner.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless2/joiner.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless2/joiner.py
|
1
egs/aishell/ASR/pruned_transducer_stateless2/model.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless2/model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless2/model.py
|
1
egs/aishell/ASR/pruned_transducer_stateless2/optim.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless2/optim.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless2/optim.py
|
337
egs/aishell/ASR/pruned_transducer_stateless2/pretrained.py
Executable file
337
egs/aishell/ASR/pruned_transducer_stateless2/pretrained.py
Executable file
@ -0,0 +1,337 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
(1) greedy search
|
||||||
|
./pruned_transducer_stateless2/pretrained.py \
|
||||||
|
--checkpoint /path/to/pretrained.pt \
|
||||||
|
--lang-dir /path/to/lang_char \
|
||||||
|
--method greedy_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(2) beam search
|
||||||
|
./pruned_transducer_stateless2/pretrained.py \
|
||||||
|
--checkpoint /path/to/pretrained.pt \
|
||||||
|
--lang-dir /path/to/lang_char \
|
||||||
|
--method beam_search \
|
||||||
|
--beam-size 4 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(3) modified beam search
|
||||||
|
./pruned_transducer_stateless2/pretrained.py \
|
||||||
|
--checkpoint /path/to/pretrained.pt \
|
||||||
|
--lang-dir /path/to/lang_char \
|
||||||
|
--method modified_beam_search \
|
||||||
|
--beam-size 4 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(4) fast beam search
|
||||||
|
./pruned_transducer_stateless2/pretrained.py \
|
||||||
|
--checkpoint /path/to/pretrained.pt \
|
||||||
|
--lang-dir /path/to/lang_char \
|
||||||
|
--method fast_beam_search \
|
||||||
|
--beam-size 4 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import kaldifeat
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--checkpoint",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the checkpoint. "
|
||||||
|
"The checkpoint is assumed to be saved by "
|
||||||
|
"icefall.checkpoint.save_checkpoint().",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/lang_char"),
|
||||||
|
help="The lang dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Maximum number of symbols per frame. "
|
||||||
|
"Use only when --method is greedy_search",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert sample_rate == expected_sample_rate, (
|
||||||
|
f"expected sample rate: {expected_sample_rate}. "
|
||||||
|
f"Given: {sample_rate}"
|
||||||
|
)
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
|
||||||
|
params.blank_id = 0
|
||||||
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
|
model.load_state_dict(checkpoint["model"], strict=False)
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = params.sample_rate
|
||||||
|
opts.mel_opts.num_bins = params.feature_dim
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {params.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
feature_lens = [f.size(0) for f in features]
|
||||||
|
feature_lens = torch.tensor(feature_lens, device=device)
|
||||||
|
|
||||||
|
features = pad_sequence(
|
||||||
|
features, batch_first=True, padding_value=math.log(1e-10)
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=features, x_lens=feature_lens
|
||||||
|
)
|
||||||
|
|
||||||
|
num_waves = encoder_out.size(0)
|
||||||
|
hyp_list = []
|
||||||
|
logging.info(f"Using {params.method}")
|
||||||
|
|
||||||
|
if params.method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
hyp_list = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_list = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
elif params.method == "modified_beam_search":
|
||||||
|
hyp_list = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
for i in range(num_waves):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.method}"
|
||||||
|
)
|
||||||
|
hyp_list.append(hyp)
|
||||||
|
|
||||||
|
hyps = []
|
||||||
|
for hyp in hyp_list:
|
||||||
|
hyps.append([lexicon.token_table[i] for i in hyp])
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
words = " ".join(hyp)
|
||||||
|
s += f"{filename}:\n{words}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
1
egs/aishell/ASR/pruned_transducer_stateless2/scaling.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless2/scaling.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/pruned_transducer_stateless2/scaling.py
|
1057
egs/aishell/ASR/pruned_transducer_stateless2/train.py
Executable file
1057
egs/aishell/ASR/pruned_transducer_stateless2/train.py
Executable file
File diff suppressed because it is too large
Load Diff
@ -81,9 +81,9 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ] && [ ! "$use_extracted_codebook" ==
|
|||||||
# or
|
# or
|
||||||
# pip install multi_quantization
|
# pip install multi_quantization
|
||||||
|
|
||||||
has_quantization=$(python3 -c "import importlib; print(importlib.util.find_spec('quantization') is not None)")
|
has_quantization=$(python3 -c "import importlib; print(importlib.util.find_spec('multi_quantization') is not None)")
|
||||||
if [ $has_quantization == 'False' ]; then
|
if [ $has_quantization == 'False' ]; then
|
||||||
log "Please install quantization before running following stages"
|
log "Please install multi_quantization before running following stages"
|
||||||
exit 1
|
exit 1
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
@ -505,9 +505,6 @@ def load_checkpoint_if_available(
|
|||||||
if "cur_epoch" in saved_params:
|
if "cur_epoch" in saved_params:
|
||||||
params["start_epoch"] = saved_params["cur_epoch"]
|
params["start_epoch"] = saved_params["cur_epoch"]
|
||||||
|
|
||||||
if "cur_batch_idx" in saved_params:
|
|
||||||
params["cur_batch_idx"] = saved_params["cur_batch_idx"]
|
|
||||||
|
|
||||||
return saved_params
|
return saved_params
|
||||||
|
|
||||||
|
|
||||||
@ -615,8 +612,6 @@ def compute_loss(
|
|||||||
warmup=warmup,
|
warmup=warmup,
|
||||||
reduction="none",
|
reduction="none",
|
||||||
)
|
)
|
||||||
simple_loss[0] = float("inf")
|
|
||||||
pruned_loss[1] = float("nan")
|
|
||||||
simple_loss_is_finite = torch.isfinite(simple_loss)
|
simple_loss_is_finite = torch.isfinite(simple_loss)
|
||||||
pruned_loss_is_finite = torch.isfinite(pruned_loss)
|
pruned_loss_is_finite = torch.isfinite(pruned_loss)
|
||||||
is_finite = simple_loss_is_finite & pruned_loss_is_finite
|
is_finite = simple_loss_is_finite & pruned_loss_is_finite
|
||||||
@ -769,13 +764,7 @@ def train_one_epoch(
|
|||||||
|
|
||||||
tot_loss = MetricsTracker()
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
cur_batch_idx = params.get("cur_batch_idx", 0)
|
|
||||||
|
|
||||||
for batch_idx, batch in enumerate(train_dl):
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
if batch_idx < cur_batch_idx:
|
|
||||||
continue
|
|
||||||
cur_batch_idx = batch_idx
|
|
||||||
|
|
||||||
params.batch_idx_train += 1
|
params.batch_idx_train += 1
|
||||||
batch_size = len(batch["supervisions"]["text"])
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
@ -821,7 +810,6 @@ def train_one_epoch(
|
|||||||
params.batch_idx_train > 0
|
params.batch_idx_train > 0
|
||||||
and params.batch_idx_train % params.save_every_n == 0
|
and params.batch_idx_train % params.save_every_n == 0
|
||||||
):
|
):
|
||||||
params.cur_batch_idx = batch_idx
|
|
||||||
save_checkpoint_with_global_batch_idx(
|
save_checkpoint_with_global_batch_idx(
|
||||||
out_dir=params.exp_dir,
|
out_dir=params.exp_dir,
|
||||||
global_batch_idx=params.batch_idx_train,
|
global_batch_idx=params.batch_idx_train,
|
||||||
@ -834,7 +822,6 @@ def train_one_epoch(
|
|||||||
scaler=scaler,
|
scaler=scaler,
|
||||||
rank=rank,
|
rank=rank,
|
||||||
)
|
)
|
||||||
del params.cur_batch_idx
|
|
||||||
remove_checkpoints(
|
remove_checkpoints(
|
||||||
out_dir=params.exp_dir,
|
out_dir=params.exp_dir,
|
||||||
topk=params.keep_last_k,
|
topk=params.keep_last_k,
|
||||||
|
@ -164,6 +164,10 @@ class Eve(Optimizer):
|
|||||||
p.mul_(1 - (weight_decay * is_above_target_rms))
|
p.mul_(1 - (weight_decay * is_above_target_rms))
|
||||||
p.addcdiv_(exp_avg, denom, value=-step_size)
|
p.addcdiv_(exp_avg, denom, value=-step_size)
|
||||||
|
|
||||||
|
# Constrain the range of scalar weights
|
||||||
|
if p.numel() == 1:
|
||||||
|
p.clamp_(min=-10, max=2)
|
||||||
|
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
@ -652,13 +652,13 @@ def main():
|
|||||||
|
|
||||||
# Also export encoder/decoder/joiner separately
|
# Also export encoder/decoder/joiner separately
|
||||||
encoder_filename = params.exp_dir / "encoder_jit_script.pt"
|
encoder_filename = params.exp_dir / "encoder_jit_script.pt"
|
||||||
export_encoder_model_jit_trace(model.encoder, encoder_filename)
|
export_encoder_model_jit_script(model.encoder, encoder_filename)
|
||||||
|
|
||||||
decoder_filename = params.exp_dir / "decoder_jit_script.pt"
|
decoder_filename = params.exp_dir / "decoder_jit_script.pt"
|
||||||
export_decoder_model_jit_trace(model.decoder, decoder_filename)
|
export_decoder_model_jit_script(model.decoder, decoder_filename)
|
||||||
|
|
||||||
joiner_filename = params.exp_dir / "joiner_jit_script.pt"
|
joiner_filename = params.exp_dir / "joiner_jit_script.pt"
|
||||||
export_joiner_model_jit_trace(model.joiner, joiner_filename)
|
export_joiner_model_jit_script(model.joiner, joiner_filename)
|
||||||
|
|
||||||
elif params.jit_trace is True:
|
elif params.jit_trace is True:
|
||||||
convert_scaled_to_non_scaled(model, inplace=True)
|
convert_scaled_to_non_scaled(model, inplace=True)
|
||||||
|
@ -81,18 +81,17 @@ def decode_dataset(
|
|||||||
|
|
||||||
results = defaultdict(list)
|
results = defaultdict(list)
|
||||||
for batch_idx, batch in enumerate(dl):
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
# hyps is a list, every element is decode result of a sentence.
|
||||||
hyps = hubert_model.ctc_greedy_search(batch)
|
hyps = hubert_model.ctc_greedy_search(batch)
|
||||||
|
|
||||||
texts = batch["supervisions"]["text"]
|
texts = batch["supervisions"]["text"]
|
||||||
assert len(hyps) == len(texts)
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
this_batch = []
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
for hyp_text, ref_text in zip(hyps, texts):
|
for cut_id, hyp_text, ref_text in zip(cut_ids, hyps, texts):
|
||||||
ref_words = ref_text.split()
|
ref_words = ref_text.split()
|
||||||
hyp_words = hyp_text.split()
|
hyp_words = hyp_text.split()
|
||||||
this_batch.append((ref_words, hyp_words))
|
this_batch.append((cut_id, ref_words, hyp_words))
|
||||||
|
|
||||||
results["ctc_greedy_search"].extend(this_batch)
|
results["ctc_greedy_search"].extend(this_batch)
|
||||||
|
|
||||||
num_cuts += len(texts)
|
num_cuts += len(texts)
|
||||||
|
@ -28,7 +28,7 @@ from typing import List, Tuple
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
import quantization
|
import multi_quantization as quantization
|
||||||
|
|
||||||
from asr_datamodule import LibriSpeechAsrDataModule
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
from hubert_xlarge import HubertXlargeFineTuned
|
from hubert_xlarge import HubertXlargeFineTuned
|
||||||
|
@ -130,6 +130,8 @@ class TensorDiagnostic(object):
|
|||||||
x = x[0]
|
x = x[0]
|
||||||
if not isinstance(x, Tensor):
|
if not isinstance(x, Tensor):
|
||||||
return
|
return
|
||||||
|
if x.numel() == 0: # for empty tensor
|
||||||
|
return
|
||||||
x = x.detach().clone()
|
x = x.detach().clone()
|
||||||
if x.ndim == 0:
|
if x.ndim == 0:
|
||||||
x = x.unsqueeze(0)
|
x = x.unsqueeze(0)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user