delete duplicated dropout in emformer attention and update emformer test codes.

This commit is contained in:
yaozengwei 2022-04-13 23:46:42 +08:00
parent c2808f8541
commit 4130892971
2 changed files with 220 additions and 15 deletions

View File

@ -183,9 +183,9 @@ class EmformerAttention(nn.Module):
attention_probs = nn.functional.softmax(
attention_weights_float, dim=-1
).type_as(attention_weights)
attention_probs = nn.functional.dropout(
attention_probs, p=float(self.dropout), training=self.training
)
# attention_probs = nn.functional.dropout(
# attention_probs, p=float(self.dropout), training=self.training
# )
return attention_probs
def _forward_impl(
@ -955,16 +955,15 @@ class EmformerEncoder(nn.Module):
def _gen_right_context(self, x: torch.Tensor) -> torch.Tensor:
"""Hard copy each chunk's right context and concat them."""
T = x.shape[0]
num_segs = math.ceil(
num_chunks = math.ceil(
(T - self.right_context_length) / self.chunk_length
)
right_context_blocks = []
for seg_idx in range(num_segs - 1):
for seg_idx in range(num_chunks - 1):
start = (seg_idx + 1) * self.chunk_length
end = start + self.right_context_length
right_context_blocks.append(x[start:end])
last_right_context_start_idx = T - self.right_context_length
right_context_blocks.append(x[last_right_context_start_idx:])
right_context_blocks.append(x[T - self.right_context_length :]) # noqa
return torch.cat(right_context_blocks)
def _gen_attention_mask_col_widths(

View File

@ -342,12 +342,218 @@ def test_emformer_infer():
)
def test_emformer_attention_forward_infer_consistency():
from emformer import EmformerEncoder
chunk_length = 4
num_chunks = 3
U = chunk_length * num_chunks
L, R = 1, 2
D = 256
num_encoder_layers = 1
memory_sizes = [0, 3]
for M in memory_sizes:
encoder = EmformerEncoder(
chunk_length=chunk_length,
d_model=D,
dim_feedforward=1024,
num_encoder_layers=num_encoder_layers,
left_context_length=L,
right_context_length=R,
max_memory_size=M,
dropout=0.0,
)
encoder_layer = encoder.emformer_layers[0]
x = torch.randn(U + R, 1, D)
lengths = torch.tensor([U])
right_context = encoder._gen_right_context(x)
utterance = x[: x.size(0) - R]
attention_mask = encoder._gen_attention_mask(utterance)
memory = (
encoder.init_memory_op(utterance.permute(1, 2, 0)).permute(2, 0, 1)[
:-1
]
if encoder.use_memory
else torch.empty(0).to(dtype=x.dtype, device=x.device)
)
(
forward_output_right_context_utterance,
forward_output_memory,
) = encoder_layer._apply_attention_forward(
utterance,
lengths,
right_context,
memory,
attention_mask,
)
forward_output_utterance = forward_output_right_context_utterance[
right_context.size(0) : # noqa
]
state = None
for chunk_idx in range(num_chunks):
start_idx = chunk_idx * chunk_length
end_idx = start_idx + chunk_length
chunk = x[start_idx:end_idx]
chunk_right_context = x[end_idx : end_idx + R] # noqa
chunk_length = torch.tensor([chunk_length])
chunk_memory = (
encoder.init_memory_op(chunk.permute(1, 2, 0)).permute(2, 0, 1)
if encoder.use_memory
else torch.empty(0).to(dtype=x.dtype, device=x.device)
)
(
infer_output_right_context_utterance,
infer_output_memory,
state,
) = encoder_layer._apply_attention_infer(
chunk,
chunk_length,
chunk_right_context,
chunk_memory,
state,
)
infer_output_utterance = infer_output_right_context_utterance[
chunk_right_context.size(0) : # noqa
]
print(
infer_output_utterance
- forward_output_utterance[start_idx:end_idx]
)
def test_emformer_layer_forward_infer_consistency():
from emformer import EmformerEncoder
chunk_length = 4
num_chunks = 3
U = chunk_length * num_chunks
L, R = 1, 2
D = 256
num_encoder_layers = 1
memory_sizes = [0, 3]
for M in memory_sizes:
encoder = EmformerEncoder(
chunk_length=chunk_length,
d_model=D,
dim_feedforward=1024,
num_encoder_layers=num_encoder_layers,
left_context_length=L,
right_context_length=R,
max_memory_size=M,
dropout=0.0,
)
encoder_layer = encoder.emformer_layers[0]
x = torch.randn(U + R, 1, D)
lengths = torch.tensor([U])
right_context = encoder._gen_right_context(x)
utterance = x[: x.size(0) - R]
attention_mask = encoder._gen_attention_mask(utterance)
memory = (
encoder.init_memory_op(utterance.permute(1, 2, 0)).permute(2, 0, 1)[
:-1
]
if encoder.use_memory
else torch.empty(0).to(dtype=x.dtype, device=x.device)
)
(
forward_output_utterance,
forward_output_right_context,
forward_output_memory,
) = encoder_layer(
utterance,
lengths,
right_context,
memory,
attention_mask,
)
state = None
for chunk_idx in range(num_chunks):
start_idx = chunk_idx * chunk_length
end_idx = start_idx + chunk_length
chunk = x[start_idx:end_idx]
chunk_right_context = x[end_idx : end_idx + R] # noqa
chunk_length = torch.tensor([chunk_length])
chunk_memory = (
encoder.init_memory_op(chunk.permute(1, 2, 0)).permute(2, 0, 1)
if encoder.use_memory
else torch.empty(0).to(dtype=x.dtype, device=x.device)
)
(
infer_output_utterance,
infer_right_context,
infer_output_memory,
state,
) = encoder_layer.infer(
chunk,
chunk_length,
chunk_right_context,
chunk_memory,
state,
)
print(
infer_output_utterance
- forward_output_utterance[start_idx:end_idx]
)
def test_emformer_encoder_forward_infer_consistency():
from emformer import EmformerEncoder
chunk_length = 4
num_chunks = 3
U = chunk_length * num_chunks
L, R = 1, 2
D = 256
num_encoder_layers = 3
memory_sizes = [0, 3]
for M in memory_sizes:
encoder = EmformerEncoder(
chunk_length=chunk_length,
d_model=D,
dim_feedforward=1024,
num_encoder_layers=num_encoder_layers,
left_context_length=L,
right_context_length=R,
max_memory_size=M,
dropout=0.0,
)
x = torch.randn(U + R, 1, D)
lengths = torch.tensor([U + R])
forward_output, forward_output_lengths = encoder(x, lengths)
states = None
for chunk_idx in range(num_chunks):
start_idx = chunk_idx * chunk_length
end_idx = start_idx + chunk_length
chunk = x[start_idx : end_idx + R] # noqa
chunk_right_context = x[end_idx : end_idx + R] # noqa
chunk_length = torch.tensor([chunk_length])
infer_output, infer_output_lengths, states = encoder.infer(
chunk,
chunk_length,
states,
)
print(infer_output - forward_output[start_idx:end_idx])
if __name__ == "__main__":
test_emformer_attention_forward()
test_emformer_attention_infer()
test_emformer_layer_forward()
test_emformer_layer_infer()
test_emformer_encoder_forward()
test_emformer_encoder_infer()
test_emformer_forward()
test_emformer_infer()
# test_emformer_attention_forward()
# test_emformer_attention_infer()
# test_emformer_layer_forward()
# test_emformer_layer_infer()
# test_emformer_encoder_forward()
# test_emformer_encoder_infer()
# test_emformer_forward()
# test_emformer_infer()
# test_emformer_attention_forward_infer_consistency()
# test_emformer_layer_forward_infer_consistency()
test_emformer_encoder_forward_infer_consistency()