mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 10:16:14 +00:00
fix down sample method
This commit is contained in:
parent
796663066f
commit
412e926941
@ -4,7 +4,7 @@ export PYTHONPATH=$PYTHONPATH:/mnt/samsung-t7/yuekai/asr/icefall_llm
|
|||||||
# pip install -r whisper/requirements.txt
|
# pip install -r whisper/requirements.txt
|
||||||
export CUDA_VISIBLE_DEVICES=0,1
|
export CUDA_VISIBLE_DEVICES=0,1
|
||||||
torchrun --nproc_per_node 2 ./whisper_llm_zh/train.py \
|
torchrun --nproc_per_node 2 ./whisper_llm_zh/train.py \
|
||||||
--max-duration 1 \
|
--max-duration 20 \
|
||||||
--exp-dir ./whisper_llm_zh/exp_test \
|
--exp-dir ./whisper_llm_zh/exp_test \
|
||||||
--speech-encoder-path-or-name tiny \
|
--speech-encoder-path-or-name tiny \
|
||||||
--llm-path-or-name Qwen/Qwen1.5-0.5B-Chat \
|
--llm-path-or-name Qwen/Qwen1.5-0.5B-Chat \
|
||||||
|
@ -1 +0,0 @@
|
|||||||
../../../aishell/ASR/whisper/ds_config_zero1.json
|
|
38
egs/speech_llm/ASR_LLM/whisper_llm_zh/ds_config_zero1.json
Normal file
38
egs/speech_llm/ASR_LLM/whisper_llm_zh/ds_config_zero1.json
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
{
|
||||||
|
"fp16": {
|
||||||
|
"enabled": true,
|
||||||
|
"loss_scale": 0,
|
||||||
|
"loss_scale_window": 100,
|
||||||
|
"initial_scale_power": 16,
|
||||||
|
"hysteresis": 2,
|
||||||
|
"min_loss_scale": 0.01
|
||||||
|
},
|
||||||
|
"zero_optimization": {
|
||||||
|
"stage": 1,
|
||||||
|
"allgather_partitions": true,
|
||||||
|
"allgather_bucket_size": 2e8,
|
||||||
|
"overlap_comm": true,
|
||||||
|
"reduce_scatter": true,
|
||||||
|
"reduce_bucket_size": 2e8,
|
||||||
|
"contiguous_gradients": true
|
||||||
|
},
|
||||||
|
"optimizer": {
|
||||||
|
"type": "Adam",
|
||||||
|
"params": {
|
||||||
|
"lr": 1e-4
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"scheduler": {
|
||||||
|
"type": "WarmupLR",
|
||||||
|
"params": {
|
||||||
|
"warmup_min_lr": 0,
|
||||||
|
"warmup_max_lr": 1e-4,
|
||||||
|
"warmup_num_steps": 100
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"gradient_accumulation_steps": 1,
|
||||||
|
"gradient_clipping": 5,
|
||||||
|
"steps_per_print": 50,
|
||||||
|
"train_micro_batch_size_per_gpu": 1,
|
||||||
|
"wall_clock_breakdown": false
|
||||||
|
}
|
@ -5,14 +5,25 @@ from transformers.trainer_pt_utils import LabelSmoother
|
|||||||
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
|
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
|
||||||
|
|
||||||
class EncoderProjector(nn.Module):
|
class EncoderProjector(nn.Module):
|
||||||
|
# https://github.com/X-LANCE/SLAM-LLM/blob/main/src/slam_llm/models/projector.py
|
||||||
def __init__(self, encoder_dim, llm_dim):
|
def __init__(self, encoder_dim, llm_dim, downsample_rate=4):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.linear1 = nn.Linear(encoder_dim, llm_dim)
|
self.downsample_rate = downsample_rate
|
||||||
|
self.linear1 = nn.Linear(encoder_dim * self.downsample_rate, llm_dim)
|
||||||
self.relu = nn.ReLU()
|
self.relu = nn.ReLU()
|
||||||
self.linear2 = nn.Linear(llm_dim, llm_dim)
|
self.linear2 = nn.Linear(llm_dim, llm_dim)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
|
|
||||||
|
batch_size, seq_len, feat_dim = x.size()
|
||||||
|
num_frames_to_discard = seq_len % self.downsample_rate
|
||||||
|
if num_frames_to_discard > 0:
|
||||||
|
x = x[:, :-num_frames_to_discard, :]
|
||||||
|
seq_len = x.size(1)
|
||||||
|
|
||||||
|
x = x.contiguous()
|
||||||
|
x = x.view(batch_size, seq_len // self.downsample_rate, feat_dim * self.downsample_rate)
|
||||||
|
|
||||||
x = self.linear1(x)
|
x = self.linear1(x)
|
||||||
x = self.relu(x)
|
x = self.relu(x)
|
||||||
x = self.linear2(x)
|
x = self.linear2(x)
|
||||||
@ -124,7 +135,7 @@ class SPEECH_LLM(nn.Module):
|
|||||||
):
|
):
|
||||||
encoder_outs = self.encoder(fbank)
|
encoder_outs = self.encoder(fbank)
|
||||||
# downsample encoder_outs by 4
|
# downsample encoder_outs by 4
|
||||||
encoder_outs = encoder_outs[:, ::self.encoder_outputs_downsample_rate]
|
# encoder_outs = encoder_outs[:, ::self.encoder_outputs_downsample_rate]
|
||||||
|
|
||||||
speech_features = self.encoder_projector(encoder_outs)
|
speech_features = self.encoder_projector(encoder_outs)
|
||||||
|
|
||||||
@ -138,8 +149,10 @@ class SPEECH_LLM(nn.Module):
|
|||||||
#print("speech_features", speech_features.shape)
|
#print("speech_features", speech_features.shape)
|
||||||
|
|
||||||
model_outputs = self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, position_ids=position_ids)
|
model_outputs = self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, position_ids=position_ids)
|
||||||
|
with torch.no_grad():
|
||||||
return model_outputs
|
preds = torch.argmax(model_outputs.logits, -1)
|
||||||
|
acc = compute_accuracy(preds.detach()[:, :-1], labels.detach()[:, 1:], ignore_label=IGNORE_TOKEN_ID)
|
||||||
|
return model_outputs, acc
|
||||||
|
|
||||||
|
|
||||||
def decode(self,
|
def decode(self,
|
||||||
@ -151,7 +164,7 @@ class SPEECH_LLM(nn.Module):
|
|||||||
|
|
||||||
encoder_outs = self.encoder(fbank)
|
encoder_outs = self.encoder(fbank)
|
||||||
# downsample encoder_outs by 4
|
# downsample encoder_outs by 4
|
||||||
encoder_outs = encoder_outs[:, ::self.encoder_outputs_downsample_rate]
|
# encoder_outs = encoder_outs[:, ::self.encoder_outputs_downsample_rate]
|
||||||
|
|
||||||
speech_features = self.encoder_projector(encoder_outs)
|
speech_features = self.encoder_projector(encoder_outs)
|
||||||
speech_features = speech_features.to(torch.float16)
|
speech_features = speech_features.to(torch.float16)
|
||||||
@ -177,4 +190,24 @@ class SPEECH_LLM(nn.Module):
|
|||||||
# generated_ids = [
|
# generated_ids = [
|
||||||
# output_ids[len(input_ids):] for input_ids, output_ids in zip(input_ids, generated_ids)
|
# output_ids[len(input_ids):] for input_ids, output_ids in zip(input_ids, generated_ids)
|
||||||
# ]
|
# ]
|
||||||
return generated_ids
|
return generated_ids
|
||||||
|
|
||||||
|
|
||||||
|
def compute_accuracy(pad_outputs, pad_targets, ignore_label):
|
||||||
|
"""Calculate accuracy.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
pad_outputs (LongTensor): Prediction tensors (B, Lmax).
|
||||||
|
pad_targets (LongTensor): Target label tensors (B, Lmax).
|
||||||
|
ignore_label (int): Ignore label id.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
float: Accuracy value (0.0 - 1.0).
|
||||||
|
|
||||||
|
"""
|
||||||
|
mask = pad_targets != ignore_label
|
||||||
|
numerator = torch.sum(
|
||||||
|
pad_outputs.masked_select(mask) == pad_targets.masked_select(mask)
|
||||||
|
)
|
||||||
|
denominator = torch.sum(mask)
|
||||||
|
return numerator.float() / denominator.float() #(FIX:MZY):return torch.Tensor type
|
@ -420,7 +420,11 @@ def compute_loss(
|
|||||||
# first get the indices of the tokens
|
# first get the indices of the tokens
|
||||||
mask_indices = torch.where(input_ids == tokenizer.convert_tokens_to_ids(DEFAULT_SPEECH_TOKEN))
|
mask_indices = torch.where(input_ids == tokenizer.convert_tokens_to_ids(DEFAULT_SPEECH_TOKEN))
|
||||||
# then mask all tokens before the first token e.g. 151646 (speech), 151645, 198, 151644
|
# then mask all tokens before the first token e.g. 151646 (speech), 151645, 198, 151644
|
||||||
target_ids[mask_indices[0], :mask_indices[1]+4] = IGNORE_TOKEN_ID
|
# target_ids[mask_indices[0], :mask_indices[1]+3] = IGNORE_TOKEN_ID
|
||||||
|
for i in range(mask_indices[0].size(0)):
|
||||||
|
row = mask_indices[0][i]
|
||||||
|
col = mask_indices[1][i]
|
||||||
|
target_ids[row, :col+4] = IGNORE_TOKEN_ID
|
||||||
|
|
||||||
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
||||||
|
|
||||||
@ -496,13 +500,13 @@ def compute_loss(
|
|||||||
input_ids = input_ids.type(torch.LongTensor)
|
input_ids = input_ids.type(torch.LongTensor)
|
||||||
|
|
||||||
with torch.set_grad_enabled(is_training):
|
with torch.set_grad_enabled(is_training):
|
||||||
model_outpus = model(
|
model_outputs, acc = model(
|
||||||
fbank=feature,
|
fbank=feature,
|
||||||
input_ids=input_ids.to(device),
|
input_ids=input_ids.to(device),
|
||||||
attention_mask=attention_mask.to(device),
|
attention_mask=attention_mask.to(device),
|
||||||
labels=target_ids.to(device),
|
labels=target_ids.to(device),
|
||||||
)
|
)
|
||||||
loss = model_outpus.loss
|
loss = model_outputs.loss
|
||||||
assert loss.requires_grad == is_training
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
info = MetricsTracker()
|
info = MetricsTracker()
|
||||||
@ -513,6 +517,7 @@ def compute_loss(
|
|||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
# Note: We use reduction=sum while computing the loss.
|
||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
|
info["acc"] = acc
|
||||||
|
|
||||||
return loss, info
|
return loss, info
|
||||||
|
|
||||||
@ -731,7 +736,8 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
if params.use_flash_attn:
|
if params.use_flash_attn:
|
||||||
attn_implementation = "flash_attention_2"
|
attn_implementation = "flash_attention_2"
|
||||||
torch_dtype=torch.bfloat16
|
# torch_dtype=torch.bfloat16
|
||||||
|
torch_dtype=torch.float16
|
||||||
|
|
||||||
else:
|
else:
|
||||||
attn_implementation = "eager"
|
attn_implementation = "eager"
|
||||||
|
Loading…
x
Reference in New Issue
Block a user