mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 02:06:13 +00:00
fix down sample method
This commit is contained in:
parent
796663066f
commit
412e926941
@ -4,7 +4,7 @@ export PYTHONPATH=$PYTHONPATH:/mnt/samsung-t7/yuekai/asr/icefall_llm
|
||||
# pip install -r whisper/requirements.txt
|
||||
export CUDA_VISIBLE_DEVICES=0,1
|
||||
torchrun --nproc_per_node 2 ./whisper_llm_zh/train.py \
|
||||
--max-duration 1 \
|
||||
--max-duration 20 \
|
||||
--exp-dir ./whisper_llm_zh/exp_test \
|
||||
--speech-encoder-path-or-name tiny \
|
||||
--llm-path-or-name Qwen/Qwen1.5-0.5B-Chat \
|
||||
|
@ -1 +0,0 @@
|
||||
../../../aishell/ASR/whisper/ds_config_zero1.json
|
38
egs/speech_llm/ASR_LLM/whisper_llm_zh/ds_config_zero1.json
Normal file
38
egs/speech_llm/ASR_LLM/whisper_llm_zh/ds_config_zero1.json
Normal file
@ -0,0 +1,38 @@
|
||||
{
|
||||
"fp16": {
|
||||
"enabled": true,
|
||||
"loss_scale": 0,
|
||||
"loss_scale_window": 100,
|
||||
"initial_scale_power": 16,
|
||||
"hysteresis": 2,
|
||||
"min_loss_scale": 0.01
|
||||
},
|
||||
"zero_optimization": {
|
||||
"stage": 1,
|
||||
"allgather_partitions": true,
|
||||
"allgather_bucket_size": 2e8,
|
||||
"overlap_comm": true,
|
||||
"reduce_scatter": true,
|
||||
"reduce_bucket_size": 2e8,
|
||||
"contiguous_gradients": true
|
||||
},
|
||||
"optimizer": {
|
||||
"type": "Adam",
|
||||
"params": {
|
||||
"lr": 1e-4
|
||||
}
|
||||
},
|
||||
"scheduler": {
|
||||
"type": "WarmupLR",
|
||||
"params": {
|
||||
"warmup_min_lr": 0,
|
||||
"warmup_max_lr": 1e-4,
|
||||
"warmup_num_steps": 100
|
||||
}
|
||||
},
|
||||
"gradient_accumulation_steps": 1,
|
||||
"gradient_clipping": 5,
|
||||
"steps_per_print": 50,
|
||||
"train_micro_batch_size_per_gpu": 1,
|
||||
"wall_clock_breakdown": false
|
||||
}
|
@ -5,14 +5,25 @@ from transformers.trainer_pt_utils import LabelSmoother
|
||||
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
|
||||
|
||||
class EncoderProjector(nn.Module):
|
||||
|
||||
def __init__(self, encoder_dim, llm_dim):
|
||||
# https://github.com/X-LANCE/SLAM-LLM/blob/main/src/slam_llm/models/projector.py
|
||||
def __init__(self, encoder_dim, llm_dim, downsample_rate=4):
|
||||
super().__init__()
|
||||
self.linear1 = nn.Linear(encoder_dim, llm_dim)
|
||||
self.downsample_rate = downsample_rate
|
||||
self.linear1 = nn.Linear(encoder_dim * self.downsample_rate, llm_dim)
|
||||
self.relu = nn.ReLU()
|
||||
self.linear2 = nn.Linear(llm_dim, llm_dim)
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x):
|
||||
|
||||
batch_size, seq_len, feat_dim = x.size()
|
||||
num_frames_to_discard = seq_len % self.downsample_rate
|
||||
if num_frames_to_discard > 0:
|
||||
x = x[:, :-num_frames_to_discard, :]
|
||||
seq_len = x.size(1)
|
||||
|
||||
x = x.contiguous()
|
||||
x = x.view(batch_size, seq_len // self.downsample_rate, feat_dim * self.downsample_rate)
|
||||
|
||||
x = self.linear1(x)
|
||||
x = self.relu(x)
|
||||
x = self.linear2(x)
|
||||
@ -124,7 +135,7 @@ class SPEECH_LLM(nn.Module):
|
||||
):
|
||||
encoder_outs = self.encoder(fbank)
|
||||
# downsample encoder_outs by 4
|
||||
encoder_outs = encoder_outs[:, ::self.encoder_outputs_downsample_rate]
|
||||
# encoder_outs = encoder_outs[:, ::self.encoder_outputs_downsample_rate]
|
||||
|
||||
speech_features = self.encoder_projector(encoder_outs)
|
||||
|
||||
@ -138,8 +149,10 @@ class SPEECH_LLM(nn.Module):
|
||||
#print("speech_features", speech_features.shape)
|
||||
|
||||
model_outputs = self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, position_ids=position_ids)
|
||||
|
||||
return model_outputs
|
||||
with torch.no_grad():
|
||||
preds = torch.argmax(model_outputs.logits, -1)
|
||||
acc = compute_accuracy(preds.detach()[:, :-1], labels.detach()[:, 1:], ignore_label=IGNORE_TOKEN_ID)
|
||||
return model_outputs, acc
|
||||
|
||||
|
||||
def decode(self,
|
||||
@ -151,7 +164,7 @@ class SPEECH_LLM(nn.Module):
|
||||
|
||||
encoder_outs = self.encoder(fbank)
|
||||
# downsample encoder_outs by 4
|
||||
encoder_outs = encoder_outs[:, ::self.encoder_outputs_downsample_rate]
|
||||
# encoder_outs = encoder_outs[:, ::self.encoder_outputs_downsample_rate]
|
||||
|
||||
speech_features = self.encoder_projector(encoder_outs)
|
||||
speech_features = speech_features.to(torch.float16)
|
||||
@ -177,4 +190,24 @@ class SPEECH_LLM(nn.Module):
|
||||
# generated_ids = [
|
||||
# output_ids[len(input_ids):] for input_ids, output_ids in zip(input_ids, generated_ids)
|
||||
# ]
|
||||
return generated_ids
|
||||
return generated_ids
|
||||
|
||||
|
||||
def compute_accuracy(pad_outputs, pad_targets, ignore_label):
|
||||
"""Calculate accuracy.
|
||||
|
||||
Args:
|
||||
pad_outputs (LongTensor): Prediction tensors (B, Lmax).
|
||||
pad_targets (LongTensor): Target label tensors (B, Lmax).
|
||||
ignore_label (int): Ignore label id.
|
||||
|
||||
Returns:
|
||||
float: Accuracy value (0.0 - 1.0).
|
||||
|
||||
"""
|
||||
mask = pad_targets != ignore_label
|
||||
numerator = torch.sum(
|
||||
pad_outputs.masked_select(mask) == pad_targets.masked_select(mask)
|
||||
)
|
||||
denominator = torch.sum(mask)
|
||||
return numerator.float() / denominator.float() #(FIX:MZY):return torch.Tensor type
|
@ -420,7 +420,11 @@ def compute_loss(
|
||||
# first get the indices of the tokens
|
||||
mask_indices = torch.where(input_ids == tokenizer.convert_tokens_to_ids(DEFAULT_SPEECH_TOKEN))
|
||||
# then mask all tokens before the first token e.g. 151646 (speech), 151645, 198, 151644
|
||||
target_ids[mask_indices[0], :mask_indices[1]+4] = IGNORE_TOKEN_ID
|
||||
# target_ids[mask_indices[0], :mask_indices[1]+3] = IGNORE_TOKEN_ID
|
||||
for i in range(mask_indices[0].size(0)):
|
||||
row = mask_indices[0][i]
|
||||
col = mask_indices[1][i]
|
||||
target_ids[row, :col+4] = IGNORE_TOKEN_ID
|
||||
|
||||
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
||||
|
||||
@ -496,13 +500,13 @@ def compute_loss(
|
||||
input_ids = input_ids.type(torch.LongTensor)
|
||||
|
||||
with torch.set_grad_enabled(is_training):
|
||||
model_outpus = model(
|
||||
model_outputs, acc = model(
|
||||
fbank=feature,
|
||||
input_ids=input_ids.to(device),
|
||||
attention_mask=attention_mask.to(device),
|
||||
labels=target_ids.to(device),
|
||||
)
|
||||
loss = model_outpus.loss
|
||||
loss = model_outputs.loss
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
info = MetricsTracker()
|
||||
@ -513,6 +517,7 @@ def compute_loss(
|
||||
|
||||
# Note: We use reduction=sum while computing the loss.
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
info["acc"] = acc
|
||||
|
||||
return loss, info
|
||||
|
||||
@ -731,7 +736,8 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.use_flash_attn:
|
||||
attn_implementation = "flash_attention_2"
|
||||
torch_dtype=torch.bfloat16
|
||||
# torch_dtype=torch.bfloat16
|
||||
torch_dtype=torch.float16
|
||||
|
||||
else:
|
||||
attn_implementation = "eager"
|
||||
|
Loading…
x
Reference in New Issue
Block a user