mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
Update ctc-decoding on pretrained.py and conformer_ctc.rst
This commit is contained in:
parent
f3fd2792ae
commit
40db9985ec
@ -551,7 +551,7 @@ The command to run CTC decoding is:
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \
|
||||
--lang-dir ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe \
|
||||
--bpe-model ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/bpe.model \
|
||||
--method ctc-decoding \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||
@ -595,7 +595,8 @@ The command to run HLG decoding is:
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \
|
||||
--lang-dir ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe \
|
||||
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
|
||||
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||
@ -637,7 +638,8 @@ The command to run HLG decoding + LM rescoring is:
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \
|
||||
--lang-dir ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe \
|
||||
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
|
||||
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
|
||||
--method whole-lattice-rescoring \
|
||||
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
|
||||
--ngram-lm-scale 0.8 \
|
||||
@ -684,7 +686,8 @@ The command to run HLG decoding + LM rescoring + attention decoder rescoring is:
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \
|
||||
--lang-dir ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe \
|
||||
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
|
||||
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
|
||||
--method attention-decoder \
|
||||
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
|
||||
--ngram-lm-scale 1.3 \
|
||||
|
@ -20,6 +20,7 @@
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import k2
|
||||
@ -36,7 +37,6 @@ from icefall.decode import (
|
||||
rescore_with_attention_decoder,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import AttributeDict, get_texts
|
||||
|
||||
|
||||
@ -55,10 +55,21 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
"--words-file",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to lang dir.",
|
||||
help="Path to words.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--HLG",
|
||||
type=str,
|
||||
help="Path to HLG.pt.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
help="Path to bpe.model.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -287,17 +298,19 @@ def main():
|
||||
|
||||
if params.method == "ctc-decoding":
|
||||
logging.info("Use CTC decoding")
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
if not os.path.exists(params.bpe_model):
|
||||
raise ValueError("The path to bpe.model is required!")
|
||||
|
||||
bpe_model = spm.SentencePieceProcessor()
|
||||
bpe_model.load(params.bpe_model)
|
||||
max_token_id = bpe_model.get_piece_size() - 1
|
||||
|
||||
H = k2.ctc_topo(
|
||||
max_token=max_token_id,
|
||||
modified=False,
|
||||
device=device,
|
||||
)
|
||||
|
||||
bpe_model = spm.SentencePieceProcessor()
|
||||
bpe_model.load(params.lang_dir + "/bpe.model")
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
decoding_graph=H,
|
||||
@ -320,10 +333,13 @@ def main():
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
]:
|
||||
logging.info(f"Loading HLG from {params.lang_dir}/HLG.pt")
|
||||
HLG = k2.Fsa.from_dict(
|
||||
torch.load(params.lang_dir + "/HLG.pt", map_location="cpu")
|
||||
)
|
||||
if not os.path.exists(params.HLG):
|
||||
raise ValueError("The path to HLG.pt is required!")
|
||||
if not os.path.exists(params.words_file):
|
||||
raise ValueError("The path to words.txt is required!")
|
||||
|
||||
logging.info(f"Loading HLG from {params.HLG}")
|
||||
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||
HLG = HLG.to(device)
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
# For whole-lattice-rescoring and attention-decoder
|
||||
@ -386,9 +402,7 @@ def main():
|
||||
best_path = next(iter(best_path_dict.values()))
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
word_sym_table = k2.SymbolTable.from_file(
|
||||
params.lang_dir + "/words.txt"
|
||||
)
|
||||
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.method}")
|
||||
|
Loading…
x
Reference in New Issue
Block a user