mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-09 17:14:20 +00:00
Code cleanup
This commit is contained in:
parent
d6e65a0e7f
commit
3fff0c75bb
@ -84,13 +84,6 @@ class Cain(Optimizer):
|
|||||||
params (iterable): iterable of parameters to optimize or dicts defining
|
params (iterable): iterable of parameters to optimize or dicts defining
|
||||||
parameter groups
|
parameter groups
|
||||||
lr (float, optional): learning rate (default: 1e-3)
|
lr (float, optional): learning rate (default: 1e-3)
|
||||||
max_eff_lr (float, optional): maximum effective learning rate for
|
|
||||||
natural-gradient update; this limits how aggressively we accelerate
|
|
||||||
directions with small gradients. The idea is that you might want to
|
|
||||||
leave this constant as the regular learning rate decreasess; but
|
|
||||||
we can investigate alternatives here. If you set this to <= 0,
|
|
||||||
it disables the natural-gradient aspect, giving a more ADAM-like
|
|
||||||
update (in changed co-ordinates)
|
|
||||||
ng_scale (float, optional): scale on natural-gradient-like update,
|
ng_scale (float, optional): scale on natural-gradient-like update,
|
||||||
interpolating it with an Adam-type update.
|
interpolating it with an Adam-type update.
|
||||||
betas (Tuple[float, float], optional): coefficients used for computing
|
betas (Tuple[float, float], optional): coefficients used for computing
|
||||||
@ -124,7 +117,6 @@ class Cain(Optimizer):
|
|||||||
self,
|
self,
|
||||||
params,
|
params,
|
||||||
lr=1e-3,
|
lr=1e-3,
|
||||||
max_eff_lr=3e-3,
|
|
||||||
ng_pow=-0.5,
|
ng_pow=-0.5,
|
||||||
ng_eps=0.05,
|
ng_eps=0.05,
|
||||||
betas=(0.9, 0.98),
|
betas=(0.9, 0.98),
|
||||||
@ -159,7 +151,6 @@ class Cain(Optimizer):
|
|||||||
|
|
||||||
defaults = dict(
|
defaults = dict(
|
||||||
lr=lr,
|
lr=lr,
|
||||||
max_eff_lr=max_eff_lr,
|
|
||||||
ng_eps=ng_eps,
|
ng_eps=ng_eps,
|
||||||
ng_pow=ng_pow,
|
ng_pow=ng_pow,
|
||||||
betas=betas,
|
betas=betas,
|
||||||
@ -189,7 +180,6 @@ class Cain(Optimizer):
|
|||||||
for group in self.param_groups:
|
for group in self.param_groups:
|
||||||
beta1, beta2 = group["betas"]
|
beta1, beta2 = group["betas"]
|
||||||
lr = group["lr"]
|
lr = group["lr"]
|
||||||
max_eff_lr = group["max_eff_lr"]
|
|
||||||
ng_eps = group["ng_eps"]
|
ng_eps = group["ng_eps"]
|
||||||
ng_pow = group["ng_pow"]
|
ng_pow = group["ng_pow"]
|
||||||
target_rms = group["target_rms"]
|
target_rms = group["target_rms"]
|
||||||
@ -197,8 +187,6 @@ class Cain(Optimizer):
|
|||||||
eps = group["eps"]
|
eps = group["eps"]
|
||||||
rms_max = group["rms_max"]
|
rms_max = group["rms_max"]
|
||||||
|
|
||||||
assert lr <= max_eff_lr
|
|
||||||
|
|
||||||
for p in group["params"]:
|
for p in group["params"]:
|
||||||
if p.grad is None:
|
if p.grad is None:
|
||||||
continue
|
continue
|
||||||
@ -231,10 +219,6 @@ class Cain(Optimizer):
|
|||||||
# that also emulates Eve.
|
# that also emulates Eve.
|
||||||
state["scale_exp_avg_sq"] = torch.zeros((), device=p.device,
|
state["scale_exp_avg_sq"] = torch.zeros((), device=p.device,
|
||||||
dtype=p.dtype)
|
dtype=p.dtype)
|
||||||
# alpha is a scale related to the natural-gradient update,
|
|
||||||
# see self._get_grad_scale()
|
|
||||||
state["alpha"] = torch.ones((), device=p.device,
|
|
||||||
dtype=p.dtype)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -339,92 +323,6 @@ class Cain(Optimizer):
|
|||||||
return loss
|
return loss
|
||||||
|
|
||||||
|
|
||||||
def _get_grad_scale(self,
|
|
||||||
state: dict,
|
|
||||||
step: int,
|
|
||||||
exp_avg_sq: Tensor,
|
|
||||||
bias_correction2: float,
|
|
||||||
eps: float,
|
|
||||||
beta: float,
|
|
||||||
ng_scale: float):
|
|
||||||
"""
|
|
||||||
This function returns a "gradient-scale" value that we'll multiply the gradients by
|
|
||||||
before multiplying by -lr and applying momentum.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
state: state-dict for this parameter, needed for its "alpha" member
|
|
||||||
step: the current step index
|
|
||||||
exp_avg_sq: Moving-average of gradient-squared for each element of the current
|
|
||||||
parameter matrix (possibly after a co-ordinate change).
|
|
||||||
bias_correction2: A value that will be normally 1.0, but will be less than 1.0
|
|
||||||
near the start of training or just after we re-estimated the co-ordinate
|
|
||||||
changes; we can divide exp_avg_sq by this to get an expected gradient-squared.
|
|
||||||
eps: Epsilon value that prevents division by zero; dimensionally, this is
|
|
||||||
a gradient magnitude (not squared-gradient magnitude).
|
|
||||||
beta: A value <= 1.0, e.g. 0.1; it equals lr / max_eff_lr, and represents
|
|
||||||
the inverse of the "maximum acceleration" we allow the natural gradient to
|
|
||||||
give, versus regular ADAM. Think of 1/beta as the maximum normalized
|
|
||||||
gradient root-mean-square value we allow.
|
|
||||||
|
|
||||||
We'll explain what this function does by comparing (i) basic ADAM-like updat,e
|
|
||||||
(ii) basic natural-gradient update, (iii) our update which combines properties
|
|
||||||
of both.
|
|
||||||
|
|
||||||
The basic ADAM-like version of this would be:
|
|
||||||
denom = (exp_avg_sq.sqrt()).add_(eps),
|
|
||||||
and ans=1/denom; so after we divide the gradients by this, they will have unit expected
|
|
||||||
squared value.
|
|
||||||
|
|
||||||
The natural-gradient version of this would be:
|
|
||||||
denom = (exp_avg_sq).add_(eps * eps)
|
|
||||||
base_denom = (exp_avg_sq.sqrt()).add_(eps),
|
|
||||||
denom = denom * (base_denom / denom).mean()
|
|
||||||
what this does is: compute 'denom' with no sqrt(), and then scale it in such
|
|
||||||
a way that ([root-mean-square gradient magnitude] / denom).mean() == 1.0, so
|
|
||||||
the overall learning speed is about the same as the baseline.
|
|
||||||
|
|
||||||
We will be returning:
|
|
||||||
|
|
||||||
denom = alpha * (exp_avg_sq) + beta * exp_avg_sq.sqrt() + eps
|
|
||||||
|
|
||||||
and are aiming for alpha to satisfy the following condition:
|
|
||||||
|
|
||||||
((exp_avg_sq.sqrt() + eps) / denom).mean() == 1.0 (eqn:1)
|
|
||||||
|
|
||||||
... (eqn:1) means that the overall learning rate / "rate of progress"
|
|
||||||
is about the same as if denom was just (exp_avg_sq.sqrt() + eps). Also,
|
|
||||||
the beta term in "denom" ensures that:
|
|
||||||
(1/denom) <= 1/beta * (1/adam_denom)
|
|
||||||
which ensures that the speed of update for any given element will never
|
|
||||||
be greater than the normal ADAM-type update by more than 1/beta.
|
|
||||||
|
|
||||||
The way we update alpha is as follows. We always have the previous iteration's
|
|
||||||
alpha, call this alpha_prev. We compute:
|
|
||||||
denom_prev = (alpha_prev * exp_avg_sq) + beta * exp_avg_sq.sqrt() + eps
|
|
||||||
and:
|
|
||||||
mean_prev = (exp_avg_sq.sqrt() + eps) / denom).mean()
|
|
||||||
.. now, mean_prev varies *at most* like 1/alpha, meaning its maximum sensitivity
|
|
||||||
to alpha is an inverse relationship. So we we update alpha as:
|
|
||||||
alpha_cur = alpha_prev * mean_prev
|
|
||||||
(the idea is that this will eventually converge; and meanwhile, we'll just have
|
|
||||||
a slightly inaccurate alpha). If `step` is large, we'll assume alpha has converged
|
|
||||||
and always return the denominator with the old alpha.
|
|
||||||
|
|
||||||
In the end, we interpolate the natural gradient update with the regular ADAM-like
|
|
||||||
one, as in: grad_scale = ng_scale/denom + (1-ng_scale)/adam_denom
|
|
||||||
"""
|
|
||||||
|
|
||||||
num_steps = 10 if step < 3 else 2 if step < 100 else 1
|
|
||||||
|
|
||||||
for _ in range(num_steps):
|
|
||||||
# our update for alpha is iterative since there isn't a closed-form solution.
|
|
||||||
alpha = state["alpha"]
|
|
||||||
adam_denom = exp_avg_sq.sqrt()
|
|
||||||
adam_denom_eps = adam_denom + eps
|
|
||||||
denom = alpha * exp_avg_sq + beta * adam_denom + eps
|
|
||||||
mean_speed = ((adam_denom_eps) / denom).mean()
|
|
||||||
alpha.fill_(alpha * mean_speed)
|
|
||||||
return ng_scale / denom + (1-ng_scale) / adam_denom_eps
|
|
||||||
|
|
||||||
|
|
||||||
def _change_coordinates(self,
|
def _change_coordinates(self,
|
||||||
|
Loading…
x
Reference in New Issue
Block a user