mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-04 22:54:18 +00:00
add webdataset for dataloading
This commit is contained in:
parent
5319429d76
commit
3fe3a0c492
@ -383,12 +383,22 @@ class WenetSpeechAsrDataModule:
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
rank=0,
|
||||
world_size=1,
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
from lhotse.dataset.iterable_dataset import IterableDatasetWrapper
|
||||
|
||||
test_iter_dataset = IterableDatasetWrapper(
|
||||
dataset=test,
|
||||
sampler=sampler,
|
||||
)
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
test_iter_dataset,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
@ -129,10 +129,22 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
default="data/lang_char",
|
||||
help="""The lang dir
|
||||
It contains language related input files such as
|
||||
"lexicon.txt"
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--token-type",
|
||||
type=str,
|
||||
default="char",
|
||||
help="""The type of token
|
||||
It must be in ["char", "pinyin", "lazy_pinyin"]
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -268,8 +280,10 @@ def decode_one_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
)
|
||||
# print(hyp_tokens)
|
||||
# print(lexicon.token_table)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens])
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
@ -277,7 +291,7 @@ def decode_one_batch(
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens])
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
@ -358,6 +372,7 @@ def decode_dataset(
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
texts = [list(str(text)) for text in texts]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
@ -371,8 +386,7 @@ def decode_dataset(
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for hyp_words, ref_text in zip(hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
this_batch.append((ref_text, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
@ -507,12 +521,59 @@ def main():
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
wenetspeech = WenetSpeechAsrDataModule(args)
|
||||
test_net_cuts = wenetspeech.test_net_cuts()
|
||||
test_meeting_cuts = wenetspeech.test_meeting_cuts()
|
||||
# Note: Please use "pip install webdataset==0.1.103"
|
||||
# for installing the webdataset.
|
||||
import glob
|
||||
import os
|
||||
|
||||
test_net_dl = wenetspeech.valid_dataloaders(test_net_cuts)
|
||||
test_meeting_dl = wenetspeech.test_dataloaders(test_meeting_cuts)
|
||||
from lhotse import CutSet
|
||||
from lhotse.dataset.webdataset import export_to_webdataset
|
||||
|
||||
wenetspeech = WenetSpeechAsrDataModule(args)
|
||||
|
||||
test_net = "test_net"
|
||||
test_meet = "test_meet"
|
||||
|
||||
if not os.path.exists(f"{test_net}/shared-0.tar"):
|
||||
test_net_cuts = wenetspeech.test_net_cuts()
|
||||
export_to_webdataset(
|
||||
test_net_cuts,
|
||||
output_path=f"{test_net}/shared-%d.tar",
|
||||
shard_size=300,
|
||||
)
|
||||
|
||||
if not os.path.exists(f"{test_meet}/shared-0.tar"):
|
||||
test_meeting_cuts = wenetspeech.test_meeting_cuts()
|
||||
export_to_webdataset(
|
||||
test_meeting_cuts,
|
||||
output_path=f"{test_meet}/shared-%d.tar",
|
||||
shard_size=300,
|
||||
)
|
||||
|
||||
test_net_shards = [
|
||||
str(path)
|
||||
for path in sorted(glob.glob(os.path.join(test_net, "shared-*.tar")))
|
||||
]
|
||||
cuts_test_net_webdataset = CutSet.from_webdataset(
|
||||
test_net_shards,
|
||||
split_by_worker=True,
|
||||
split_by_node=True,
|
||||
shuffle_shards=True,
|
||||
)
|
||||
|
||||
test_meet_shards = [
|
||||
str(path)
|
||||
for path in sorted(glob.glob(os.path.join(test_meet, "shared-*.tar")))
|
||||
]
|
||||
cuts_test_meet_webdataset = CutSet.from_webdataset(
|
||||
test_meet_shards,
|
||||
split_by_worker=True,
|
||||
split_by_node=True,
|
||||
shuffle_shards=True,
|
||||
)
|
||||
|
||||
test_net_dl = wenetspeech.test_dataloaders(cuts_test_net_webdataset)
|
||||
test_meeting_dl = wenetspeech.test_dataloaders(cuts_test_meet_webdataset)
|
||||
|
||||
test_sets = ["TEST_NET", "TEST_MEETING"]
|
||||
test_dl = [test_net_dl, test_meeting_dl]
|
||||
|
@ -45,6 +45,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
@ -84,6 +85,8 @@ LRSchedulerType = Union[
|
||||
torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
|
||||
]
|
||||
|
||||
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
@ -332,7 +335,7 @@ def get_params() -> AttributeDict:
|
||||
"batch_idx_train": 0,
|
||||
"log_interval": 50,
|
||||
"reset_interval": 200,
|
||||
"valid_interval": 2000,
|
||||
"valid_interval": 3000,
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"subsampling_factor": 4,
|
||||
@ -867,6 +870,7 @@ def run(rank, world_size, args):
|
||||
wenetspeech = WenetSpeechAsrDataModule(args)
|
||||
|
||||
train_cuts = wenetspeech.train_cuts()
|
||||
valid_cuts = wenetspeech.valid_cuts()
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
@ -890,8 +894,8 @@ def run(rank, world_size, args):
|
||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||
if params.token_type == "pinyin":
|
||||
train_cuts = train_cuts.map(text_to_words)
|
||||
# valid_cuts = valid_cuts.map(text_to_words)
|
||||
|
||||
valid_cuts = wenetspeech.valid_cuts()
|
||||
valid_dl = wenetspeech.valid_dataloaders(valid_cuts)
|
||||
|
||||
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
||||
|
Loading…
x
Reference in New Issue
Block a user