First attempt to add WEB interface for emformer model.

This commit is contained in:
Fangjun Kuang 2022-05-06 18:21:08 +08:00
parent 52f19df07d
commit 3fd4f1d13f
6 changed files with 273 additions and 9 deletions

View File

@ -17,6 +17,7 @@ exclude =
.git,
**/data/**,
icefall/shared/make_kn_lm.py,
egs/librispeech/ASR/transducer_emformer/train.py,
icefall/__init__.py
ignore =

View File

@ -2,35 +2,50 @@
<html lang="en">
<head>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<meta charset="utf-8"></meta>
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"></meta>
<!-- Bootstrap CSS -->
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/css/bootstrap.min.css"
integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous"/>
crossorigin="anonymous">
</link>
<title>Hello next-gen Kaldi</title>
</head>
<body>
<body onload="initWebSocket()">
<h1>Hello next-gen Kaldi</h1>
<div class="mb-3">
<label for="file" class="form-label">Select file</label>
<input class="form-control" type="file" id="file" accept=".wav" onchange="onFileChange()" disabled="true"></input>
</div>
<div class="mb-3">
<label for="results" class="form-label">Recognition results</label>
<textarea class="form-control" id="results" rows="3"></textarea>
</div>
<!-- Optional JavaScript -->
<!-- jQuery first, then Popper.js, then Bootstrap JS -->
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
crossorigin="anonymous"/>
crossorigin="anonymous">
</script>
<script src="https://cdn.jsdelivr.net/npm/popper.js@1.14.7/dist/umd/popper.min.js"
integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"
crossorigin="anonymous"/>
crossorigin="anonymous">
</script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/js/bootstrap.min.js"
integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
crossorigin="anonymous"/>
crossorigin="anonymous">
</script>
<script src="./main.js"> </script>
</body>
</html>

View File

@ -0,0 +1,60 @@
/**
References
https://developer.mozilla.org/en-US/docs/Web/API/FileList
https://developer.mozilla.org/en-US/docs/Web/API/FileReader
https://javascript.info/arraybuffer-binary-arrays
https://developer.mozilla.org/zh-CN/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket/send
*/
var socket;
function initWebSocket() {
socket = new WebSocket("ws://localhost:6008/");
// Connection opened
socket.addEventListener(
'open',
function(event) { document.getElementById('file').disabled = false; });
// Connection closed
socket.addEventListener('close', function(event) {
document.getElementById('file').disabled = true;
initWebSocket();
});
// Listen for messages
socket.addEventListener('message', function(event) {
document.getElementById('results').innerHTML = event.data;
console.log('Received message: ', event.data);
});
}
function onFileChange() {
var files = document.getElementById("file").files;
if (files.length == 0) {
console.log('No file selected');
return;
}
console.log('files: ' + files);
const file = files[0];
console.log(file);
console.log('file.name ' + file.name);
console.log('file.type ' + file.type);
console.log('file.size ' + file.size);
let reader = new FileReader();
reader.onload = function() {
let view = new Int16Array(reader.result);
console.log('bytes: ' + view.byteLength);
// we assume the input file is a wav file.
// TODO: add some checks here.
let body = view.subarray(44);
socket.send(body);
socket.send(JSON.stringify({'eof' : 1}));
};
reader.readAsArrayBuffer(file);
}

View File

@ -0,0 +1,182 @@
#!/usr/bin/env python3
import asyncio
import logging
from pathlib import Path
import sentencepiece as spm
import torch
import websockets
from streaming_decode import StreamList, get_parser, process_features
from train import get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import setup_logger
g_params = None
g_model = None
g_sp = None
def build_stream_list():
batch_size = 1 # will change it later
stream_list = StreamList(
batch_size=batch_size,
context_size=g_params.context_size,
decoding_method=g_params.decoding_method,
)
return stream_list
async def echo(websocket):
logging.info(f"connected: {websocket.remote_address}")
stream_list = build_stream_list()
# number of frames before subsampling
segment_length = g_model.encoder.segment_length
right_context_length = g_model.encoder.right_context_length
# We add 3 here since the subsampling method is using
# ((len - 1) // 2 - 1) // 2)
chunk_length = (segment_length + 3) + right_context_length
async for message in websocket:
if isinstance(message, bytes):
samples = torch.frombuffer(message, dtype=torch.int16)
samples = samples.to(torch.float32) / 32768
stream_list.accept_waveform(
audio_samples=[samples],
sampling_rate=g_params.sampling_rate,
)
while True:
features, active_streams = stream_list.build_batch(
chunk_length=chunk_length,
segment_length=segment_length,
)
if features is not None:
process_features(
model=g_model,
features=features,
streams=active_streams,
params=g_params,
sp=g_sp,
)
results = []
for stream in stream_list.streams:
text = g_sp.decode(stream.decoding_result())
results.append(text)
await websocket.send(results[0])
else:
break
elif isinstance(message, str):
stream_list[0].input_finished()
while True:
features, active_streams = stream_list.build_batch(
chunk_length=chunk_length,
segment_length=segment_length,
)
if features is not None:
process_features(
model=g_model,
features=features,
streams=active_streams,
params=g_params,
sp=g_sp,
)
else:
break
results = []
for stream in stream_list.streams:
text = g_sp.decode(stream.decoding_result())
results.append(text)
await websocket.send(results[0])
await websocket.close()
logging.info(f"Closed: {websocket.remote_address}")
async def loop():
logging.info("started")
async with websockets.serve(echo, "", 6008):
await asyncio.Future() # run forever
def main():
parser = get_parser()
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
# Note: params.decoding_method is currently not used.
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
setup_logger(f"{params.res_dir}/log-streaming-decode")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
params.device = device
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if params.avg_last_n > 0:
filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n]
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
model.to(device)
model.eval()
model.device = device
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
global g_params, g_model, g_sp
g_params = params
g_model = model
g_sp = sp
asyncio.run(loop())
if __name__ == "__main__":
torch.manual_seed(20220506)
main()

View File

@ -233,6 +233,9 @@ class StreamList(object):
for _ in range(batch_size)
]
def __getitem__(self, i) -> FeatureExtractionStream:
return self.streams[i]
@property
def done(self) -> bool:
"""Return True if all streams have reached end of utterance.
@ -667,8 +670,9 @@ def main():
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
params.device = device

View File

@ -378,6 +378,7 @@ def get_decoder_model(params: AttributeDict) -> nn.Module:
vocab_size=params.vocab_size,
embedding_dim=params.embedding_dim,
blank_id=params.blank_id,
unk_id=params.unk_id,
context_size=params.context_size,
)
return decoder
@ -811,8 +812,9 @@ def run(rank, world_size, args):
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
logging.info(params)