mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-04 14:44:18 +00:00
Merge branch 'k2-fsa:master' into dev_zipformer_cn
This commit is contained in:
commit
3eb55080aa
1
.flake8
1
.flake8
@ -24,6 +24,7 @@ exclude =
|
||||
**/data/**,
|
||||
icefall/shared/make_kn_lm.py,
|
||||
icefall/__init__.py
|
||||
icefall/ctc/__init__.py
|
||||
|
||||
ignore =
|
||||
# E203 white space before ":"
|
||||
|
94
.github/scripts/run-gigaspeech-zipformer-2023-10-17.sh
vendored
Executable file
94
.github/scripts/run-gigaspeech-zipformer-2023-10-17.sh
vendored
Executable file
@ -0,0 +1,94 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
cd egs/gigaspeech/ASR
|
||||
|
||||
repo_url=https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17
|
||||
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
git lfs install
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
log "Display test files"
|
||||
tree $repo/
|
||||
ls -lh $repo/test_wavs/*.wav
|
||||
|
||||
pushd $repo/exp
|
||||
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||
git lfs pull --include "data/lang_bpe_500/tokens.txt"
|
||||
git lfs pull --include "exp/jit_script.pt"
|
||||
git lfs pull --include "exp/pretrained.pt"
|
||||
ln -s pretrained.pt epoch-99.pt
|
||||
ls -lh *.pt
|
||||
popd
|
||||
|
||||
log "Export to torchscript model"
|
||||
./zipformer/export.py \
|
||||
--exp-dir $repo/exp \
|
||||
--use-averaged-model false \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
--epoch 99 \
|
||||
--avg 1 \
|
||||
--jit 1
|
||||
|
||||
ls -lh $repo/exp/*.pt
|
||||
|
||||
log "Decode with models exported by torch.jit.script()"
|
||||
|
||||
./zipformer/jit_pretrained.py \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
--nn-model-filename $repo/exp/jit_script.pt \
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
|
||||
for method in greedy_search modified_beam_search fast_beam_search; do
|
||||
log "$method"
|
||||
|
||||
./zipformer/pretrained.py \
|
||||
--method $method \
|
||||
--beam-size 4 \
|
||||
--checkpoint $repo/exp/pretrained.pt \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
done
|
||||
|
||||
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
||||
mkdir -p zipformer/exp
|
||||
ln -s $PWD/$repo/exp/pretrained.pt zipformer/exp/epoch-999.pt
|
||||
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||
|
||||
ls -lh data
|
||||
ls -lh zipformer/exp
|
||||
|
||||
log "Decoding test-clean and test-other"
|
||||
|
||||
# use a small value for decoding with CPU
|
||||
max_duration=100
|
||||
|
||||
for method in greedy_search fast_beam_search modified_beam_search; do
|
||||
log "Decoding with $method"
|
||||
|
||||
./zipformer/decode.py \
|
||||
--decoding-method $method \
|
||||
--epoch 999 \
|
||||
--avg 1 \
|
||||
--use-averaged-model 0 \
|
||||
--max-duration $max_duration \
|
||||
--exp-dir zipformer/exp
|
||||
done
|
||||
|
||||
rm zipformer/exp/*.pt
|
||||
fi
|
46
.github/scripts/run-pre-trained-conformer-ctc.sh
vendored
46
.github/scripts/run-pre-trained-conformer-ctc.sh
vendored
@ -1,46 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
cd egs/librispeech/ASR
|
||||
|
||||
repo_url=https://github.com/csukuangfj/icefall-asr-conformer-ctc-bpe-500
|
||||
git lfs install
|
||||
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
log "Display test files"
|
||||
tree $repo/
|
||||
ls -lh $repo/test_wavs/*.flac
|
||||
|
||||
log "CTC decoding"
|
||||
|
||||
./conformer_ctc/pretrained.py \
|
||||
--method ctc-decoding \
|
||||
--num-classes 500 \
|
||||
--checkpoint $repo/exp/pretrained.pt \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
$repo/test_wavs/1089-134686-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0002.flac
|
||||
|
||||
log "HLG decoding"
|
||||
|
||||
./conformer_ctc/pretrained.py \
|
||||
--method 1best \
|
||||
--num-classes 500 \
|
||||
--checkpoint $repo/exp/pretrained.pt \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||
$repo/test_wavs/1089-134686-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0001.flac \
|
||||
$repo/test_wavs/1221-135766-0002.flac
|
240
.github/scripts/run-pre-trained-ctc.sh
vendored
Executable file
240
.github/scripts/run-pre-trained-ctc.sh
vendored
Executable file
@ -0,0 +1,240 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
pushd egs/librispeech/ASR
|
||||
|
||||
repo_url=https://huggingface.co/csukuangfj/sherpa-onnx-zipformer-ctc-en-2023-10-02
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
git lfs install
|
||||
git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
log "Display test files"
|
||||
tree $repo/
|
||||
ls -lh $repo/test_wavs/*.wav
|
||||
|
||||
log "CTC greedy search"
|
||||
|
||||
./zipformer/onnx_pretrained_ctc.py \
|
||||
--nn-model $repo/model.onnx \
|
||||
--tokens $repo/tokens.txt \
|
||||
$repo/test_wavs/0.wav \
|
||||
$repo/test_wavs/1.wav \
|
||||
$repo/test_wavs/2.wav
|
||||
|
||||
log "CTC H decoding"
|
||||
|
||||
./zipformer/onnx_pretrained_ctc_H.py \
|
||||
--nn-model $repo/model.onnx \
|
||||
--tokens $repo/tokens.txt \
|
||||
--H $repo/H.fst \
|
||||
$repo/test_wavs/0.wav \
|
||||
$repo/test_wavs/1.wav \
|
||||
$repo/test_wavs/2.wav
|
||||
|
||||
log "CTC HL decoding"
|
||||
|
||||
./zipformer/onnx_pretrained_ctc_HL.py \
|
||||
--nn-model $repo/model.onnx \
|
||||
--words $repo/words.txt \
|
||||
--HL $repo/HL.fst \
|
||||
$repo/test_wavs/0.wav \
|
||||
$repo/test_wavs/1.wav \
|
||||
$repo/test_wavs/2.wav
|
||||
|
||||
log "CTC HLG decoding"
|
||||
|
||||
./zipformer/onnx_pretrained_ctc_HLG.py \
|
||||
--nn-model $repo/model.onnx \
|
||||
--words $repo/words.txt \
|
||||
--HLG $repo/HLG.fst \
|
||||
$repo/test_wavs/0.wav \
|
||||
$repo/test_wavs/1.wav \
|
||||
$repo/test_wavs/2.wav
|
||||
|
||||
rm -rf $repo
|
||||
|
||||
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
pushd $repo
|
||||
|
||||
git lfs pull --include "exp/pretrained.pt"
|
||||
git lfs pull --include "data/lang_bpe_500/HLG.pt"
|
||||
git lfs pull --include "data/lang_bpe_500/L.pt"
|
||||
git lfs pull --include "data/lang_bpe_500/L_disambig.pt"
|
||||
git lfs pull --include "data/lang_bpe_500/Linv.pt"
|
||||
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||
git lfs pull --include "data/lang_bpe_500/lexicon.txt"
|
||||
git lfs pull --include "data/lang_bpe_500/lexicon_disambig.txt"
|
||||
git lfs pull --include "data/lang_bpe_500/tokens.txt"
|
||||
git lfs pull --include "data/lang_bpe_500/words.txt"
|
||||
git lfs pull --include "data/lm/G_3_gram.fst.txt"
|
||||
|
||||
popd
|
||||
|
||||
log "Display test files"
|
||||
tree $repo/
|
||||
ls -lh $repo/test_wavs/*.wav
|
||||
|
||||
log "CTC decoding"
|
||||
|
||||
./conformer_ctc/pretrained.py \
|
||||
--method ctc-decoding \
|
||||
--num-classes 500 \
|
||||
--checkpoint $repo/exp/pretrained.pt \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
|
||||
log "HLG decoding"
|
||||
|
||||
./conformer_ctc/pretrained.py \
|
||||
--method 1best \
|
||||
--num-classes 500 \
|
||||
--checkpoint $repo/exp/pretrained.pt \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
|
||||
log "CTC decoding on CPU with kaldi decoders using OpenFst"
|
||||
|
||||
log "Exporting model with torchscript"
|
||||
|
||||
pushd $repo/exp
|
||||
ln -s pretrained.pt epoch-99.pt
|
||||
popd
|
||||
|
||||
./conformer_ctc/export.py \
|
||||
--epoch 99 \
|
||||
--avg 1 \
|
||||
--exp-dir $repo/exp \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
--jit 1
|
||||
|
||||
ls -lh $repo/exp
|
||||
|
||||
|
||||
log "Generating H.fst, HL.fst"
|
||||
|
||||
./local/prepare_lang_fst.py --lang-dir $repo/data/lang_bpe_500 --ngram-G $repo/data/lm/G_3_gram.fst.txt
|
||||
|
||||
ls -lh $repo/data/lang_bpe_500
|
||||
|
||||
log "Decoding with H on CPU with OpenFst"
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_H.py \
|
||||
--nn-model $repo/exp/cpu_jit.pt \
|
||||
--H $repo/data/lang_bpe_500/H.fst \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
|
||||
log "Decoding with HL on CPU with OpenFst"
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_HL.py \
|
||||
--nn-model $repo/exp/cpu_jit.pt \
|
||||
--HL $repo/data/lang_bpe_500/HL.fst \
|
||||
--words $repo/data/lang_bpe_500/words.txt \
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
|
||||
log "Decoding with HLG on CPU with OpenFst"
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_HLG.py \
|
||||
--nn-model $repo/exp/cpu_jit.pt \
|
||||
--HLG $repo/data/lang_bpe_500/HLG.fst \
|
||||
--words $repo/data/lang_bpe_500/words.txt \
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
|
||||
rm -rf $repo
|
||||
|
||||
popd
|
||||
|
||||
log "Test aishell"
|
||||
|
||||
pushd egs/aishell/ASR
|
||||
|
||||
repo_url=https://huggingface.co/csukuangfj/icefall_asr_aishell_conformer_ctc
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
pushd $repo
|
||||
|
||||
git lfs pull --include "exp/pretrained.pt"
|
||||
git lfs pull --include "data/lang_char/H.fst"
|
||||
git lfs pull --include "data/lang_char/HL.fst"
|
||||
git lfs pull --include "data/lang_char/HLG.fst"
|
||||
|
||||
popd
|
||||
|
||||
log "Display test files"
|
||||
tree $repo/
|
||||
ls -lh $repo/test_wavs/*.wav
|
||||
|
||||
log "CTC decoding"
|
||||
|
||||
log "Exporting model with torchscript"
|
||||
|
||||
pushd $repo/exp
|
||||
ln -s pretrained.pt epoch-99.pt
|
||||
popd
|
||||
|
||||
./conformer_ctc/export.py \
|
||||
--epoch 99 \
|
||||
--avg 1 \
|
||||
--exp-dir $repo/exp \
|
||||
--tokens $repo/data/lang_char/tokens.txt \
|
||||
--jit 1
|
||||
|
||||
ls -lh $repo/exp
|
||||
|
||||
ls -lh $repo/data/lang_char
|
||||
|
||||
log "Decoding with H on CPU with OpenFst"
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_H.py \
|
||||
--nn-model $repo/exp/cpu_jit.pt \
|
||||
--H $repo/data/lang_char/H.fst \
|
||||
--tokens $repo/data/lang_char/tokens.txt \
|
||||
$repo/test_wavs/0.wav \
|
||||
$repo/test_wavs/1.wav \
|
||||
$repo/test_wavs/2.wav
|
||||
|
||||
log "Decoding with HL on CPU with OpenFst"
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_HL.py \
|
||||
--nn-model $repo/exp/cpu_jit.pt \
|
||||
--HL $repo/data/lang_char/HL.fst \
|
||||
--words $repo/data/lang_char/words.txt \
|
||||
$repo/test_wavs/0.wav \
|
||||
$repo/test_wavs/1.wav \
|
||||
$repo/test_wavs/2.wav
|
||||
|
||||
log "Decoding with HLG on CPU with OpenFst"
|
||||
|
||||
./conformer_ctc/jit_pretrained_decode_with_HLG.py \
|
||||
--nn-model $repo/exp/cpu_jit.pt \
|
||||
--HLG $repo/data/lang_char/HLG.fst \
|
||||
--words $repo/data/lang_char/words.txt \
|
||||
$repo/test_wavs/0.wav \
|
||||
$repo/test_wavs/1.wav \
|
||||
$repo/test_wavs/2.wav
|
||||
|
||||
rm -rf $repo
|
44
.github/scripts/run-swbd-conformer-ctc-2023-08-26.sh
vendored
Executable file
44
.github/scripts/run-swbd-conformer-ctc-2023-08-26.sh
vendored
Executable file
@ -0,0 +1,44 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
cd egs/swbd/ASR
|
||||
|
||||
repo_url=https://huggingface.co/zrjin/icefall-asr-swbd-conformer-ctc-2023-8-26
|
||||
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
git lfs install
|
||||
git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
|
||||
log "Display test files"
|
||||
tree $repo/
|
||||
ls -lh $repo/test_wavs/*.wav
|
||||
|
||||
pushd $repo/exp
|
||||
ln -s epoch-98.pt epoch-99.pt
|
||||
popd
|
||||
|
||||
ls -lh $repo/exp/*.pt
|
||||
|
||||
for method in ctc-decoding 1best; do
|
||||
log "$method"
|
||||
|
||||
./conformer_ctc/pretrained.py \
|
||||
--method $method \
|
||||
--checkpoint $repo/exp/epoch-99.pt \
|
||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||
--words-file $repo/data/lang_bpe_500/words.txt \
|
||||
--HLG $repo/data/lang_bpe_500/HLG.pt \
|
||||
--G $repo/data/lm/G_4_gram.pt \
|
||||
$repo/test_wavs/1089-134686-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0001.wav \
|
||||
$repo/test_wavs/1221-135766-0002.wav
|
||||
done
|
9
.github/workflows/build-docker-image.yml
vendored
9
.github/workflows/build-docker-image.yml
vendored
@ -16,7 +16,7 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [ubuntu-latest]
|
||||
image: ["torch2.0.0-cuda11.7", "torch1.13.0-cuda11.6", "torch1.12.1-cuda11.3", "torch1.9.0-cuda10.2"]
|
||||
image: ["torch2.1.0-cuda12.1", "torch2.1.0-cuda11.8", "torch2.0.0-cuda11.7", "torch1.13.0-cuda11.6", "torch1.12.1-cuda11.3", "torch1.9.0-cuda10.2"]
|
||||
|
||||
steps:
|
||||
# refer to https://github.com/actions/checkout
|
||||
@ -30,6 +30,13 @@ jobs:
|
||||
image=${{ matrix.image }}
|
||||
mv -v ./docker/$image.dockerfile ./Dockerfile
|
||||
|
||||
- name: Free space
|
||||
shell: bash
|
||||
run: |
|
||||
df -h
|
||||
rm -rf /opt/hostedtoolcache
|
||||
df -h
|
||||
|
||||
- name: Log in to Docker Hub
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
|
15
.github/workflows/run-docker-image.yml
vendored
15
.github/workflows/run-docker-image.yml
vendored
@ -14,7 +14,7 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [ubuntu-latest]
|
||||
image: ["torch2.0.0-cuda11.7", "torch1.13.0-cuda11.6", "torch1.12.1-cuda11.3", "torch1.9.0-cuda10.2"]
|
||||
image: ["torch2.1.0-cuda12.1", "torch2.1.0-cuda11.8", "torch2.0.0-cuda11.7", "torch1.13.0-cuda11.6", "torch1.12.1-cuda11.3", "torch1.9.0-cuda10.2"]
|
||||
steps:
|
||||
# refer to https://github.com/actions/checkout
|
||||
- uses: actions/checkout@v2
|
||||
@ -30,8 +30,15 @@ jobs:
|
||||
uname -a
|
||||
cat /etc/*release
|
||||
|
||||
find / -name libcuda* 2>/dev/null
|
||||
|
||||
ls -lh /usr/local/
|
||||
ls -lh /usr/local/cuda*
|
||||
|
||||
nvcc --version
|
||||
|
||||
ls -lh /usr/local/cuda-*/compat/*
|
||||
|
||||
# For torch1.9.0-cuda10.2
|
||||
export LD_LIBRARY_PATH=/usr/local/cuda-10.2/compat:$LD_LIBRARY_PATH
|
||||
|
||||
@ -41,6 +48,12 @@ jobs:
|
||||
# For torch2.0.0-cuda11.7
|
||||
export LD_LIBRARY_PATH=/usr/local/cuda-11.7/compat:$LD_LIBRARY_PATH
|
||||
|
||||
# For torch2.1.0-cuda11.8
|
||||
export LD_LIBRARY_PATH=/usr/local/cuda-11.8/compat:$LD_LIBRARY_PATH
|
||||
|
||||
# For torch2.1.0-cuda12.1
|
||||
export LD_LIBRARY_PATH=/usr/local/cuda-12.1/compat:$LD_LIBRARY_PATH
|
||||
|
||||
|
||||
which nvcc
|
||||
cuda_dir=$(dirname $(which nvcc))
|
||||
|
126
.github/workflows/run-gigaspeech-zipformer-2023-10-17.yml
vendored
Normal file
126
.github/workflows/run-gigaspeech-zipformer-2023-10-17.yml
vendored
Normal file
@ -0,0 +1,126 @@
|
||||
# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com)
|
||||
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: run-gigaspeech-zipformer-2023-10-17
|
||||
# zipformer
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
types: [labeled]
|
||||
|
||||
schedule:
|
||||
# minute (0-59)
|
||||
# hour (0-23)
|
||||
# day of the month (1-31)
|
||||
# month (1-12)
|
||||
# day of the week (0-6)
|
||||
# nightly build at 15:50 UTC time every day
|
||||
- cron: "50 15 * * *"
|
||||
|
||||
concurrency:
|
||||
group: run_gigaspeech_2023_10_17_zipformer-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
run_gigaspeech_2023_10_17_zipformer:
|
||||
if: github.event.label.name == 'zipformer' ||github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest]
|
||||
python-version: [3.8]
|
||||
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: 'pip'
|
||||
cache-dependency-path: '**/requirements-ci.txt'
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: |
|
||||
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||
pip uninstall -y protobuf
|
||||
pip install --no-binary protobuf protobuf==3.20.*
|
||||
|
||||
- name: Cache kaldifeat
|
||||
id: my-cache
|
||||
uses: actions/cache@v2
|
||||
with:
|
||||
path: |
|
||||
~/tmp/kaldifeat
|
||||
key: cache-tmp-${{ matrix.python-version }}-2023-05-22
|
||||
|
||||
- name: Install kaldifeat
|
||||
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
.github/scripts/install-kaldifeat.sh
|
||||
|
||||
- name: Inference with pre-trained model
|
||||
shell: bash
|
||||
env:
|
||||
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||
run: |
|
||||
mkdir -p egs/gigaspeech/ASR/data
|
||||
ln -sfv ~/tmp/fbank-libri egs/gigaspeech/ASR/data/fbank
|
||||
ls -lh egs/gigaspeech/ASR/data/*
|
||||
|
||||
sudo apt-get -qq install git-lfs tree
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||
|
||||
.github/scripts/run-gigaspeech-zipformer-2023-10-17.sh
|
||||
|
||||
- name: Display decoding results for gigaspeech zipformer
|
||||
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||
shell: bash
|
||||
run: |
|
||||
cd egs/gigaspeech/ASR/
|
||||
tree ./zipformer/exp
|
||||
|
||||
cd zipformer
|
||||
echo "results for zipformer"
|
||||
echo "===greedy search==="
|
||||
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
echo "===fast_beam_search==="
|
||||
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
echo "===modified beam search==="
|
||||
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
- name: Upload decoding results for gigaspeech zipformer
|
||||
uses: actions/upload-artifact@v2
|
||||
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
||||
with:
|
||||
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-latest-cpu-zipformer-2022-11-11
|
||||
path: egs/gigaspeech/ASR/zipformer/exp/
|
@ -14,7 +14,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: run-pre-trained-conformer-ctc
|
||||
name: run-pre-trained-ctc
|
||||
|
||||
on:
|
||||
push:
|
||||
@ -23,13 +23,20 @@ on:
|
||||
pull_request:
|
||||
types: [labeled]
|
||||
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
test-run:
|
||||
description: 'Test (y/n)?'
|
||||
required: true
|
||||
default: 'y'
|
||||
|
||||
concurrency:
|
||||
group: run_pre_trained_conformer_ctc-${{ github.ref }}
|
||||
group: run_pre_trained_ctc-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
run_pre_trained_conformer_ctc:
|
||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||
run_pre_trained_ctc:
|
||||
if: github.event.label.name == 'ready' || github.event_name == 'push' || github.event.inputs.test-run == 'y' || github.event.label.name == 'ctc'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
@ -77,4 +84,4 @@ jobs:
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||
.github/scripts/run-pre-trained-conformer-ctc.sh
|
||||
.github/scripts/run-pre-trained-ctc.sh
|
84
.github/workflows/run-swbd-conformer-ctc.yml
vendored
Normal file
84
.github/workflows/run-swbd-conformer-ctc.yml
vendored
Normal file
@ -0,0 +1,84 @@
|
||||
# Copyright 2023 Xiaomi Corp. (author: Zengrui Jin)
|
||||
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: run-swbd-conformer_ctc
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
types: [labeled]
|
||||
|
||||
concurrency:
|
||||
group: run-swbd-conformer_ctc-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
run-swbd-conformer_ctc:
|
||||
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event_name == 'push' || github.event.label.name == 'swbd'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest]
|
||||
python-version: [3.8]
|
||||
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: 'pip'
|
||||
cache-dependency-path: '**/requirements-ci.txt'
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: |
|
||||
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||
pip uninstall -y protobuf
|
||||
pip install --no-binary protobuf protobuf==3.20.*
|
||||
|
||||
- name: Cache kaldifeat
|
||||
id: my-cache
|
||||
uses: actions/cache@v2
|
||||
with:
|
||||
path: |
|
||||
~/tmp/kaldifeat
|
||||
key: cache-tmp-${{ matrix.python-version }}-2023-05-22
|
||||
|
||||
- name: Install kaldifeat
|
||||
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
.github/scripts/install-kaldifeat.sh
|
||||
|
||||
- name: Inference with pre-trained model
|
||||
shell: bash
|
||||
env:
|
||||
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||
run: |
|
||||
sudo apt-get -qq install git-lfs tree
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||
|
||||
.github/scripts/run-swbd-conformer-ctc-2023-08-26.sh
|
43
.github/workflows/run-yesno-recipe.yml
vendored
43
.github/workflows/run-yesno-recipe.yml
vendored
@ -60,12 +60,12 @@ jobs:
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: |
|
||||
grep -v '^#' ./requirements-ci.txt | grep -v kaldifst | xargs -n 1 -L 1 pip install
|
||||
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||
pip uninstall -y protobuf
|
||||
pip install --no-binary protobuf protobuf==3.20.*
|
||||
|
||||
pip install --no-deps --force-reinstall https://huggingface.co/csukuangfj/k2/resolve/main/cpu/k2-1.24.3.dev20230508+cpu.torch1.13.1-cp38-cp38-linux_x86_64.whl
|
||||
pip install kaldifeat==1.25.0.dev20230726+cpu.torch1.13.1 -f https://csukuangfj.github.io/kaldifeat/cpu.html
|
||||
pip install --no-deps --force-reinstall k2==1.24.4.dev20231021+cpu.torch1.13.1 -f https://k2-fsa.github.io/k2/cpu.html
|
||||
pip install kaldifeat==1.25.1.dev20231022+cpu.torch1.13.1 -f https://csukuangfj.github.io/kaldifeat/cpu.html
|
||||
|
||||
- name: Run yesno recipe
|
||||
shell: bash
|
||||
@ -140,9 +140,46 @@ jobs:
|
||||
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
|
||||
download/waves_yesno/0_0_1_0_0_0_1_0.wav
|
||||
|
||||
- name: Test decoding with H
|
||||
shell: bash
|
||||
working-directory: ${{github.workspace}}
|
||||
run: |
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
echo $PYTHONPATH
|
||||
|
||||
cd egs/yesno/ASR
|
||||
python3 ./tdnn/export.py --epoch 14 --avg 2 --jit 1
|
||||
|
||||
python3 ./tdnn/jit_pretrained_decode_with_H.py \
|
||||
--nn-model ./tdnn/exp/cpu_jit.pt \
|
||||
--H ./data/lang_phone/H.fst \
|
||||
--tokens ./data/lang_phone/tokens.txt \
|
||||
./download/waves_yesno/0_0_0_1_0_0_0_1.wav \
|
||||
./download/waves_yesno/0_0_1_0_0_0_1_0.wav \
|
||||
./download/waves_yesno/0_0_1_0_0_1_1_1.wav
|
||||
|
||||
- name: Test decoding with HL
|
||||
shell: bash
|
||||
working-directory: ${{github.workspace}}
|
||||
run: |
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
echo $PYTHONPATH
|
||||
|
||||
cd egs/yesno/ASR
|
||||
python3 ./tdnn/export.py --epoch 14 --avg 2 --jit 1
|
||||
|
||||
python3 ./tdnn/jit_pretrained_decode_with_HL.py \
|
||||
--nn-model ./tdnn/exp/cpu_jit.pt \
|
||||
--HL ./data/lang_phone/HL.fst \
|
||||
--words ./data/lang_phone/words.txt \
|
||||
./download/waves_yesno/0_0_0_1_0_0_0_1.wav \
|
||||
./download/waves_yesno/0_0_1_0_0_0_1_0.wav \
|
||||
./download/waves_yesno/0_0_1_0_0_1_1_1.wav
|
||||
|
||||
- name: Show generated files
|
||||
shell: bash
|
||||
working-directory: ${{github.workspace}}
|
||||
run: |
|
||||
cd egs/yesno/ASR
|
||||
ls -lh tdnn/exp
|
||||
ls -lh data/lang_phone
|
||||
|
2
.gitignore
vendored
2
.gitignore
vendored
@ -34,3 +34,5 @@ node_modules
|
||||
*.param
|
||||
*.bin
|
||||
.DS_Store
|
||||
*.fst
|
||||
*.arpa
|
||||
|
26
README.md
26
README.md
@ -29,6 +29,7 @@ We provide the following recipes:
|
||||
- [yesno][yesno]
|
||||
- [LibriSpeech][librispeech]
|
||||
- [GigaSpeech][gigaspeech]
|
||||
- [AMI][ami]
|
||||
- [Aishell][aishell]
|
||||
- [Aishell2][aishell2]
|
||||
- [Aishell4][aishell4]
|
||||
@ -37,6 +38,7 @@ We provide the following recipes:
|
||||
- [Aidatatang_200zh][aidatatang_200zh]
|
||||
- [WenetSpeech][wenetspeech]
|
||||
- [Alimeeting][alimeeting]
|
||||
- [Switchboard][swbd]
|
||||
- [TAL_CSASR][tal_csasr]
|
||||
|
||||
### yesno
|
||||
@ -118,9 +120,9 @@ We provide a Colab notebook to run a pre-trained transducer conformer + stateles
|
||||
|
||||
| Encoder | Params | test-clean | test-other |
|
||||
|-----------------|--------|------------|------------|
|
||||
| zipformer | 65.5M | 2.21 | 4.91 |
|
||||
| zipformer-small | 23.2M | 2.46 | 5.83 |
|
||||
| zipformer-large | 148.4M | 2.11 | 4.77 |
|
||||
| zipformer | 65.5M | 2.21 | 4.79 |
|
||||
| zipformer-small | 23.2M | 2.42 | 5.73 |
|
||||
| zipformer-large | 148.4M | 2.06 | 4.63 |
|
||||
|
||||
Note: No auxiliary losses are used in the training and no LMs are used
|
||||
in the decoding.
|
||||
@ -146,8 +148,11 @@ in the decoding.
|
||||
|
||||
### GigaSpeech
|
||||
|
||||
We provide two models for this recipe: [Conformer CTC model][GigaSpeech_conformer_ctc]
|
||||
and [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][GigaSpeech_pruned_transducer_stateless2].
|
||||
We provide three models for this recipe:
|
||||
|
||||
- [Conformer CTC model][GigaSpeech_conformer_ctc]
|
||||
- [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][GigaSpeech_pruned_transducer_stateless2].
|
||||
- [Transducer: Zipformer encoder + Embedding decoder][GigaSpeech_zipformer]
|
||||
|
||||
#### Conformer CTC
|
||||
|
||||
@ -163,6 +168,14 @@ and [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned R
|
||||
| fast beam search | 10.50 | 10.69 |
|
||||
| modified beam search | 10.40 | 10.51 |
|
||||
|
||||
#### Transducer: Zipformer encoder + Embedding decoder
|
||||
|
||||
| | Dev | Test |
|
||||
|----------------------|-------|-------|
|
||||
| greedy search | 10.31 | 10.50 |
|
||||
| fast beam search | 10.26 | 10.48 |
|
||||
| modified beam search | 10.25 | 10.38 |
|
||||
|
||||
|
||||
### Aishell
|
||||
|
||||
@ -376,6 +389,7 @@ Please see: [ -
|
||||
\lambda_2 \log p_{\text{bi-gram}}\left(y_u|\mathit{x},y_{1:u-1}\right)
|
||||
|
||||
In LODR, an additional bi-gram LM estimated on the source domain (e.g training corpus) is required. Comared to DR,
|
||||
In LODR, an additional bi-gram LM estimated on the source domain (e.g training corpus) is required. Compared to DR,
|
||||
the only difference lies in the choice of source domain LM. According to the original `paper <https://arxiv.org/abs/2203.16776>`_,
|
||||
LODR achieves similar performance compared DR in both intra-domain and cross-domain settings.
|
||||
As a bi-gram is much faster to evaluate, LODR is usually much faster.
|
||||
|
@ -2,12 +2,13 @@ Decoding with language models
|
||||
=============================
|
||||
|
||||
This section describes how to use external langugage models
|
||||
during decoding to improve the WER of transducer models.
|
||||
during decoding to improve the WER of transducer models. To train an external language model,
|
||||
please refer to this tutorial: :ref:`train_nnlm`.
|
||||
|
||||
The following decoding methods with external langugage models are available:
|
||||
|
||||
|
||||
.. list-table:: LM-rescoring-based methods vs shallow-fusion-based methods (The numbers in each field is WER on test-clean, WER on test-other and decoding time on test-clean)
|
||||
.. list-table::
|
||||
:widths: 25 50
|
||||
:header-rows: 1
|
||||
|
||||
|
@ -30,6 +30,8 @@ which will give you something like below:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
"torch2.1.0-cuda12.1"
|
||||
"torch2.1.0-cuda11.8"
|
||||
"torch2.0.0-cuda11.7"
|
||||
"torch1.12.1-cuda11.3"
|
||||
"torch1.9.0-cuda10.2"
|
||||
|
@ -125,7 +125,7 @@ Python code. We have also set up ``PATH`` so that you can use
|
||||
.. caution::
|
||||
|
||||
Please don't use `<https://github.com/tencent/ncnn>`_.
|
||||
We have made some modifications to the offical `ncnn`_.
|
||||
We have made some modifications to the official `ncnn`_.
|
||||
|
||||
We will synchronize `<https://github.com/csukuangfj/ncnn>`_ periodically
|
||||
with the official one.
|
||||
|
@ -1,3 +1,5 @@
|
||||
.. _icefall_export_to_ncnn:
|
||||
|
||||
Export to ncnn
|
||||
==============
|
||||
|
||||
|
@ -47,7 +47,7 @@ The data preparation contains several stages, you can use the following two
|
||||
options:
|
||||
|
||||
- ``--stage``
|
||||
- ``--stop-stage``
|
||||
- ``--stop_stage``
|
||||
|
||||
to control which stage(s) should be run. By default, all stages are executed.
|
||||
|
||||
@ -56,8 +56,8 @@ For example,
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./prepare.sh --stage 0 --stop-stage 0 # run only stage 0
|
||||
$ ./prepare.sh --stage 2 --stop-stage 5 # run from stage 2 to stage 5
|
||||
$ ./prepare.sh --stage 0 --stop_stage 0 # run only stage 0
|
||||
$ ./prepare.sh --stage 2 --stop_stage 5 # run from stage 2 to stage 5
|
||||
|
||||
.. HINT::
|
||||
|
||||
@ -108,15 +108,15 @@ As usual, you can control the stages you want to run by specifying the following
|
||||
two options:
|
||||
|
||||
- ``--stage``
|
||||
- ``--stop-stage``
|
||||
- ``--stop_stage``
|
||||
|
||||
For example,
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./distillation_with_hubert.sh --stage 0 --stop-stage 0 # run only stage 0
|
||||
$ ./distillation_with_hubert.sh --stage 2 --stop-stage 4 # run from stage 2 to stage 5
|
||||
$ ./distillation_with_hubert.sh --stage 0 --stop_stage 0 # run only stage 0
|
||||
$ ./distillation_with_hubert.sh --stage 2 --stop_stage 4 # run from stage 2 to stage 5
|
||||
|
||||
Here are a few options in `./distillation_with_hubert.sh <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/distillation_with_hubert.sh>`_
|
||||
you need to know before you proceed.
|
||||
@ -134,7 +134,7 @@ and prepares MVQ-augmented training manifests.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./distillation_with_hubert.sh --stage 2 --stop-stage 2 # run only stage 2
|
||||
$ ./distillation_with_hubert.sh --stage 2 --stop_stage 2 # run only stage 2
|
||||
|
||||
Please see the
|
||||
following screenshot for the output of an example execution.
|
||||
@ -172,7 +172,7 @@ To perform training, please run stage 3 by executing the following command.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./prepare.sh --stage 3 --stop-stage 3 # run MVQ training
|
||||
$ ./prepare.sh --stage 3 --stop_stage 3 # run MVQ training
|
||||
|
||||
Here is the code snippet for training:
|
||||
|
||||
|
7
docs/source/recipes/RNN-LM/index.rst
Normal file
7
docs/source/recipes/RNN-LM/index.rst
Normal file
@ -0,0 +1,7 @@
|
||||
RNN-LM
|
||||
======
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
librispeech/lm-training
|
104
docs/source/recipes/RNN-LM/librispeech/lm-training.rst
Normal file
104
docs/source/recipes/RNN-LM/librispeech/lm-training.rst
Normal file
@ -0,0 +1,104 @@
|
||||
.. _train_nnlm:
|
||||
|
||||
Train an RNN langugage model
|
||||
======================================
|
||||
|
||||
If you have enough text data, you can train a neural network language model (NNLM) to improve
|
||||
the WER of your E2E ASR system. This tutorial shows you how to train an RNNLM from
|
||||
scratch.
|
||||
|
||||
.. HINT::
|
||||
|
||||
For how to use an NNLM during decoding, please refer to the following tutorials:
|
||||
:ref:`shallow_fusion`, :ref:`LODR`, :ref:`rescoring`
|
||||
|
||||
.. note::
|
||||
|
||||
This tutorial is based on the LibriSpeech recipe. Please check it out for the necessary
|
||||
python scripts for this tutorial. We use the LibriSpeech LM-corpus as the LM training set
|
||||
for illustration purpose. You can also collect your own data. The data format is quite simple:
|
||||
each line should contain a complete sentence, and words should be separated by space.
|
||||
|
||||
First, let's download the training data for the RNNLM. This can be done via the
|
||||
following command:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ wget https://www.openslr.org/resources/11/librispeech-lm-norm.txt.gz
|
||||
$ gzip -d librispeech-lm-norm.txt.gz
|
||||
|
||||
As we are training a BPE-level RNNLM, we need to tokenize the training text, which requires a
|
||||
BPE tokenizer. This can be achieved by executing the following command:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ # if you don't have the BPE
|
||||
$ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15
|
||||
$ cd icefall-asr-librispeech-zipformer-2023-05-15/data/lang_bpe_500
|
||||
$ git lfs pull --include bpe.model
|
||||
$ cd ../../..
|
||||
|
||||
$ ./local/prepare_lm_training_data.py \
|
||||
--bpe-model icefall-asr-librispeech-zipformer-2023-05-15/data/lang_bpe_500/bpe.model \
|
||||
--lm-data librispeech-lm-norm.txt \
|
||||
--lm-archive data/lang_bpe_500/lm_data.pt
|
||||
|
||||
Now, you should have a file name ``lm_data.pt`` file store under the directory ``data/lang_bpe_500``.
|
||||
This is the packed training data for the RNNLM. We then sort the training data according to its
|
||||
sentence length.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ # This could take a while (~ 20 minutes), feel free to grab a cup of coffee :)
|
||||
$ ./local/sort_lm_training_data.py \
|
||||
--in-lm-data data/lang_bpe_500/lm_data.pt \
|
||||
--out-lm-data data/lang_bpe_500/sorted_lm_data.pt \
|
||||
--out-statistics data/lang_bpe_500/lm_data_stats.txt
|
||||
|
||||
|
||||
The aforementioned steps can be repeated to create a a validation set for you RNNLM. Let's say
|
||||
you have a validation set in ``valid.txt``, you can just set ``--lm-data valid.txt``
|
||||
and ``--lm-archive data/lang_bpe_500/lm-data-valid.pt`` when calling ``./local/prepare_lm_training_data.py``.
|
||||
|
||||
After completing the previous steps, the training and testing sets for training RNNLM are ready.
|
||||
The next step is to train the RNNLM model. The training command is as follows:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ # assume you are in the icefall root directory
|
||||
$ cd rnn_lm
|
||||
$ ln -s ../../egs/librispeech/ASR/data .
|
||||
$ cd ..
|
||||
$ ./rnn_lm/train.py \
|
||||
--world-size 4 \
|
||||
--exp-dir ./rnn_lm/exp \
|
||||
--start-epoch 0 \
|
||||
--num-epochs 10 \
|
||||
--use-fp16 0 \
|
||||
--tie-weights 1 \
|
||||
--embedding-dim 2048 \
|
||||
--hidden_dim 2048 \
|
||||
--num-layers 3 \
|
||||
--batch-size 300 \
|
||||
--lm-data rnn_lm/data/lang_bpe_500/sorted_lm_data.pt \
|
||||
--lm-data-valid rnn_lm/data/lang_bpe_500/sorted_lm_data.pt
|
||||
|
||||
|
||||
.. note::
|
||||
|
||||
You can adjust the RNNLM hyper parameters to control the size of the RNNLM,
|
||||
such as embedding dimension and hidden state dimension. For more details, please
|
||||
run ``./rnn_lm/train.py --help``.
|
||||
|
||||
.. note::
|
||||
|
||||
The training of RNNLM can take a long time (usually a couple of days).
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -15,3 +15,4 @@ We may add recipes for other tasks as well in the future.
|
||||
|
||||
Non-streaming-ASR/index
|
||||
Streaming-ASR/index
|
||||
RNN-LM/index
|
||||
|
@ -211,7 +211,7 @@ class Aidatatang_200zhAsrDataModule:
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
@ -635,7 +635,6 @@ def train_one_epoch(
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
@ -800,7 +799,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -145,6 +145,56 @@ for m in greedy_search modified_beam_search fast_beam_search ; do
|
||||
done
|
||||
```
|
||||
|
||||
#### Pruned transducer stateless 7 streaming
|
||||
[./pruned_transducer_stateless7_streaming](./pruned_transducer_stateless7_streaming)
|
||||
|
||||
It's Streaming version of Zipformer1 with Pruned RNNT loss.
|
||||
|
||||
| | test | dev | comment |
|
||||
|------------------------|------|------|---------------------------------------|
|
||||
| greedy search | 6.95 | 6.29 | --epoch 44 --avg 15 --max-duration 600 |
|
||||
| modified beam search | 6.51 | 5.90 | --epoch 44 --avg 15 --max-duration 600 |
|
||||
| fast beam search | 6.73 | 6.09 | --epoch 44 --avg 15 --max-duration 600 |
|
||||
|
||||
Training command is:
|
||||
|
||||
```bash
|
||||
./prepare.sh
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="0,1"
|
||||
|
||||
./pruned_transducer_stateless7_streaming/train.py \
|
||||
--world-size 2 \
|
||||
--num-epochs 50 \
|
||||
--use-fp16 1 \
|
||||
--context-size 1 \
|
||||
--max-duration 800 \
|
||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||
--enable-musan 0 \
|
||||
--spec-aug-time-warp-factor 20
|
||||
```
|
||||
|
||||
**Caution**: It uses `--context-size=1`.
|
||||
|
||||
The decoding command is:
|
||||
```bash
|
||||
for m in greedy_search modified_beam_search fast_beam_search ; do
|
||||
./pruned_transducer_stateless7_streaming/decode.py \
|
||||
--epoch 44 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--context-size 1 \
|
||||
--decoding-method $m
|
||||
done
|
||||
```
|
||||
|
||||
Pretrained models, training logs, decoding logs, tensorboard and decoding results
|
||||
are available at
|
||||
<https://huggingface.co/zrjin/icefall-asr-aishell-zipformer-pruned-transducer-stateless7-streaming-2023-10-16/>
|
||||
|
||||
|
||||
|
||||
#### Pruned transducer stateless 7
|
||||
|
||||
[./pruned_transducer_stateless7](./pruned_transducer_stateless7)
|
||||
|
21
egs/aishell/ASR/conformer_ctc/export.py
Normal file → Executable file
21
egs/aishell/ASR/conformer_ctc/export.py
Normal file → Executable file
@ -23,12 +23,12 @@ import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from conformer import Conformer
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import AttributeDict, str2bool
|
||||
from icefall.utils import AttributeDict, num_tokens, str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
@ -63,11 +63,10 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
"--tokens",
|
||||
type=str,
|
||||
default="data/lang_char",
|
||||
help="""It contains language related input files such as "lexicon.txt"
|
||||
""",
|
||||
required=True,
|
||||
help="Path to the tokens.txt.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -98,16 +97,16 @@ def get_params() -> AttributeDict:
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
logging.info(params)
|
||||
# Load tokens.txt here
|
||||
token_table = k2.SymbolTable.from_file(params.tokens)
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
num_classes = num_tokens(token_table) + 1 # +1 for the blank
|
||||
|
||||
logging.info(params)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
|
1
egs/aishell/ASR/conformer_ctc/jit_pretrained_decode_with_H.py
Symbolic link
1
egs/aishell/ASR/conformer_ctc/jit_pretrained_decode_with_H.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/conformer_ctc/jit_pretrained_decode_with_H.py
|
1
egs/aishell/ASR/conformer_ctc/jit_pretrained_decode_with_HL.py
Symbolic link
1
egs/aishell/ASR/conformer_ctc/jit_pretrained_decode_with_HL.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/conformer_ctc/jit_pretrained_decode_with_HL.py
|
1
egs/aishell/ASR/conformer_ctc/jit_pretrained_decode_with_HLG.py
Symbolic link
1
egs/aishell/ASR/conformer_ctc/jit_pretrained_decode_with_HLG.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/conformer_ctc/jit_pretrained_decode_with_HLG.py
|
0
egs/aishell/ASR/conformer_ctc/test_transformer.py
Normal file → Executable file
0
egs/aishell/ASR/conformer_ctc/test_transformer.py
Normal file → Executable file
1
egs/aishell/ASR/local/prepare_lang_fst.py
Symbolic link
1
egs/aishell/ASR/local/prepare_lang_fst.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/prepare_lang_fst.py
|
@ -15,7 +15,6 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
# You can install sentencepiece via:
|
||||
#
|
||||
# pip install sentencepiece
|
||||
@ -26,12 +25,12 @@
|
||||
# Please install a version >=0.1.96
|
||||
|
||||
import argparse
|
||||
import re
|
||||
import shutil
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
|
||||
from icefall import byte_encode, tokenize_by_CJK_char
|
||||
|
||||
|
||||
@ -74,6 +73,11 @@ def main():
|
||||
model_type = "unigram"
|
||||
|
||||
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
|
||||
model_file = Path(model_prefix + ".model")
|
||||
if model_file.is_file():
|
||||
print(f"{model_file} exists - skipping")
|
||||
return
|
||||
|
||||
character_coverage = 1.0
|
||||
input_sentence_size = 100000000
|
||||
|
||||
@ -88,23 +92,18 @@ def main():
|
||||
|
||||
_convert_to_bchar(args.transcript, train_text)
|
||||
|
||||
model_file = Path(model_prefix + ".model")
|
||||
if not model_file.is_file():
|
||||
spm.SentencePieceTrainer.train(
|
||||
input=train_text,
|
||||
vocab_size=vocab_size,
|
||||
model_type=model_type,
|
||||
model_prefix=model_prefix,
|
||||
input_sentence_size=input_sentence_size,
|
||||
character_coverage=character_coverage,
|
||||
user_defined_symbols=user_defined_symbols,
|
||||
unk_id=unk_id,
|
||||
bos_id=-1,
|
||||
eos_id=-1,
|
||||
)
|
||||
else:
|
||||
print(f"{model_file} exists - skipping")
|
||||
return
|
||||
spm.SentencePieceTrainer.train(
|
||||
input=train_text,
|
||||
vocab_size=vocab_size,
|
||||
model_type=model_type,
|
||||
model_prefix=model_prefix,
|
||||
input_sentence_size=input_sentence_size,
|
||||
character_coverage=character_coverage,
|
||||
user_defined_symbols=user_defined_symbols,
|
||||
unk_id=unk_id,
|
||||
bos_id=-1,
|
||||
eos_id=-1,
|
||||
)
|
||||
|
||||
shutil.copyfile(model_file, f"{lang_dir}/bbpe.model")
|
||||
|
||||
|
@ -144,6 +144,7 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
./local/prepare_lang.py --lang-dir $lang_phone_dir
|
||||
fi
|
||||
|
||||
|
||||
# Train a bigram P for MMI training
|
||||
if [ ! -f $lang_phone_dir/transcript_words.txt ]; then
|
||||
log "Generate data to train phone based bigram P"
|
||||
@ -258,6 +259,13 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
--max-order=3 \
|
||||
data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram_char.fst.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_char_dir/HLG.fst ]; then
|
||||
lang_phone_dir=data/lang_phone
|
||||
./local/prepare_lang_fst.py \
|
||||
--lang-dir $lang_phone_dir \
|
||||
--ngram-G ./data/lm/G_3_gram.fst.txt
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||
|
@ -872,7 +872,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1045,7 +1045,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -703,7 +703,7 @@ def compute_loss(
|
||||
if batch_idx_train >= warm_step
|
||||
else 0.1 + 0.9 * (batch_idx_train / warm_step)
|
||||
)
|
||||
loss = params.simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
|
||||
loss = simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
|
||||
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
@ -1028,7 +1028,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1031,7 +1031,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1019,7 +1019,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/README.md
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/README.md
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/README.md
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/asr_datamodule.py
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/beam_search.py
|
735
egs/aishell/ASR/pruned_transducer_stateless7_streaming/decode.py
Executable file
735
egs/aishell/ASR/pruned_transducer_stateless7_streaming/decode.py
Executable file
@ -0,0 +1,735 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./pruned_transducer_stateless7_streaming/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||
--max-duration 600 \
|
||||
--decode-chunk-len 32 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search (not recommended)
|
||||
./pruned_transducer_stateless7_streaming/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||
--max-duration 600 \
|
||||
--decode-chunk-len 32 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./pruned_transducer_stateless7_streaming/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||
--max-duration 600 \
|
||||
--decode-chunk-len 32 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search (one best)
|
||||
./pruned_transducer_stateless7_streaming/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||
--max-duration 600 \
|
||||
--decode-chunk-len 32 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
|
||||
(5) fast beam search (nbest)
|
||||
./pruned_transducer_stateless7_streaming/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||
--max-duration 600 \
|
||||
--decode-chunk-len 32 \
|
||||
--decoding-method fast_beam_search_nbest \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
|
||||
(6) fast beam search (nbest oracle WER)
|
||||
./pruned_transducer_stateless7_streaming/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||
--max-duration 600 \
|
||||
--decode-chunk-len 32 \
|
||||
--decoding-method fast_beam_search_nbest_oracle \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
|
||||
(7) fast beam search (with LG)
|
||||
./pruned_transducer_stateless7_streaming/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||
--max-duration 600 \
|
||||
--decode-chunk-len 32 \
|
||||
--decoding-method fast_beam_search_nbest_LG \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import AishellAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall import ContextGraph
|
||||
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless3/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_char",
|
||||
help="The lang dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-score",
|
||||
type=float,
|
||||
default=2,
|
||||
help="""
|
||||
The bonus score of each token for the context biasing words/phrases.
|
||||
Used only when --decoding_method is modified_beam_search.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-file",
|
||||
type=str,
|
||||
default="",
|
||||
help="""
|
||||
The path of the context biasing lists, one word/phrase each line
|
||||
Used only when --decoding_method is modified_beam_search.
|
||||
""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
token_table: k2.SymbolTable,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
context_graph: Optional[ContextGraph] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
token_table:
|
||||
It maps token ID to a string.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
feature_lens += 30
|
||||
feature = torch.nn.functional.pad(
|
||||
feature,
|
||||
pad=(0, 0, 0, 30),
|
||||
value=LOG_EPS,
|
||||
)
|
||||
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
context_graph=context_graph,
|
||||
)
|
||||
else:
|
||||
hyp_tokens = []
|
||||
batch_size = encoder_out.size(0)
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyp_tokens.append(hyp)
|
||||
|
||||
hyps = [[token_table[t] for t in tokens] for tokens in hyp_tokens]
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
return {
|
||||
(
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
): hyps
|
||||
}
|
||||
else:
|
||||
key = f"beam_size_{params.beam_size}"
|
||||
if params.has_contexts:
|
||||
key += f"-context-score-{params.context_score}"
|
||||
else:
|
||||
key += "-no-context-words"
|
||||
return {key: hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
token_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
context_graph: Optional[ContextGraph] = None,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
token_table:
|
||||
It maps a token ID to a string.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 50
|
||||
else:
|
||||
log_interval = 20
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
token_table=token_table,
|
||||
decoding_graph=decoding_graph,
|
||||
context_graph=context_graph,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AishellAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"modified_beam_search",
|
||||
)
|
||||
|
||||
if os.path.exists(params.context_file):
|
||||
params.has_contexts = True
|
||||
else:
|
||||
params.has_contexts = False
|
||||
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
if params.has_contexts:
|
||||
params.suffix += f"-context-score-{params.context_score}"
|
||||
else:
|
||||
params.suffix += "-no-contexts-words"
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
params.blank_id = 0
|
||||
params.vocab_size = max(lexicon.tokens) + 1
|
||||
|
||||
graph_compiler = CharCtcTrainingGraphCompiler(
|
||||
lexicon=lexicon,
|
||||
device=device,
|
||||
)
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
assert model.encoder.decode_chunk_size == params.decode_chunk_len // 2, (
|
||||
model.encoder.decode_chunk_size,
|
||||
params.decode_chunk_len,
|
||||
)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
||||
if params.decoding_method == "modified_beam_search":
|
||||
if os.path.exists(params.context_file):
|
||||
contexts_text = []
|
||||
for line in open(params.context_file).readlines():
|
||||
contexts_text.append(line.strip())
|
||||
contexts = graph_compiler.texts_to_ids(contexts_text)
|
||||
context_graph = ContextGraph(params.context_score)
|
||||
context_graph.build(contexts)
|
||||
else:
|
||||
context_graph = None
|
||||
else:
|
||||
context_graph = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
aishell = AishellAsrDataModule(args)
|
||||
|
||||
test_cuts = aishell.test_cuts()
|
||||
dev_cuts = aishell.valid_cuts()
|
||||
|
||||
test_dl = aishell.test_dataloaders(test_cuts)
|
||||
dev_dl = aishell.test_dataloaders(dev_cuts)
|
||||
|
||||
test_sets = ["test", "dev"]
|
||||
test_dls = [test_dl, dev_dl]
|
||||
|
||||
import time
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dls):
|
||||
start = time.time()
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
token_table=lexicon.token_table,
|
||||
decoding_graph=decoding_graph,
|
||||
context_graph=context_graph,
|
||||
)
|
||||
logging.info(f"Elasped time for {test_set}: {time.time() - start}")
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/decode_stream.py
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless7/decoder.py
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/encoder_interface.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/export-for-ncnn-zh.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/export-for-ncnn.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/export-onnx-zh.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/export-onnx.py
|
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/export.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/export.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/export.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/jit_pretrained.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/jit_trace_export.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/jit_trace_pretrained.py
|
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/joiner.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless7/joiner.py
|
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/model.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless7/model.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/ncnn_custom_layer.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/onnx_check.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/onnx_model_wrapper.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/onnx_pretrained.py
|
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/optim.py
Symbolic link
1
egs/aishell/ASR/pruned_transducer_stateless7_streaming/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless7/optim.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/pretrained.py
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless7/scaling.py
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless7/scaling_converter.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/streaming-ncnn-decode.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless2/streaming_beam_search.py
|
627
egs/aishell/ASR/pruned_transducer_stateless7_streaming/streaming_decode.py
Executable file
627
egs/aishell/ASR/pruned_transducer_stateless7_streaming/streaming_decode.py
Executable file
@ -0,0 +1,627 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corporation (Authors: Wei Kang, Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./pruned_transducer_stateless7_streaming/streaming_decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--decode-chunk-len 32 \
|
||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||
--decoding-method greedy_search \
|
||||
--num-decode-streams 2000
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import AishellAsrDataModule
|
||||
from decode_stream import DecodeStream
|
||||
from kaldifeat import Fbank, FbankOptions
|
||||
from lhotse import CutSet
|
||||
from streaming_beam_search import (
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
modified_beam_search,
|
||||
)
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
from zipformer import stack_states, unstack_states
|
||||
|
||||
from icefall import ContextGraph
|
||||
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless7_streaming/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Supported decoding methods are:
|
||||
greedy_search
|
||||
modified_beam_search
|
||||
fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num_active_paths",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=32,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-decode-streams",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The number of streams that can be decoded parallel.",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_chunk(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
decode_streams: List[DecodeStream],
|
||||
) -> List[int]:
|
||||
"""Decode one chunk frames of features for each decode_streams and
|
||||
return the indexes of finished streams in a List.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
decode_streams:
|
||||
A List of DecodeStream, each belonging to a utterance.
|
||||
Returns:
|
||||
Return a List containing which DecodeStreams are finished.
|
||||
"""
|
||||
device = model.device
|
||||
|
||||
features = []
|
||||
feature_lens = []
|
||||
states = []
|
||||
processed_lens = []
|
||||
|
||||
for stream in decode_streams:
|
||||
feat, feat_len = stream.get_feature_frames(params.decode_chunk_len)
|
||||
features.append(feat)
|
||||
feature_lens.append(feat_len)
|
||||
states.append(stream.states)
|
||||
processed_lens.append(stream.done_frames)
|
||||
|
||||
feature_lens = torch.tensor(feature_lens, device=device)
|
||||
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||
|
||||
# We subsample features with ((x_len - 7) // 2 + 1) // 2 and the max downsampling
|
||||
# factor in encoders is 8.
|
||||
# After feature embedding (x_len - 7) // 2, we have (23 - 7) // 2 = 8.
|
||||
tail_length = 23
|
||||
if features.size(1) < tail_length:
|
||||
pad_length = tail_length - features.size(1)
|
||||
feature_lens += pad_length
|
||||
features = torch.nn.functional.pad(
|
||||
features,
|
||||
(0, 0, 0, pad_length),
|
||||
mode="constant",
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
states = stack_states(states)
|
||||
processed_lens = torch.tensor(processed_lens, device=device)
|
||||
|
||||
encoder_out, encoder_out_lens, new_states = model.encoder.streaming_forward(
|
||||
x=features,
|
||||
x_lens=feature_lens,
|
||||
states=states,
|
||||
)
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
processed_lens = processed_lens + encoder_out_lens
|
||||
fast_beam_search_one_best(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
processed_lens=processed_lens,
|
||||
streams=decode_streams,
|
||||
beam=params.beam,
|
||||
max_states=params.max_states,
|
||||
max_contexts=params.max_contexts,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
modified_beam_search(
|
||||
model=model,
|
||||
streams=decode_streams,
|
||||
encoder_out=encoder_out,
|
||||
num_active_paths=params.num_active_paths,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
|
||||
states = unstack_states(new_states)
|
||||
|
||||
finished_streams = []
|
||||
for i in range(len(decode_streams)):
|
||||
decode_streams[i].states = states[i]
|
||||
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||
if decode_streams[i].done:
|
||||
finished_streams.append(i)
|
||||
|
||||
return finished_streams
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
cuts: CutSet,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
token_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
context_graph: Optional[ContextGraph] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
cuts:
|
||||
Lhotse Cutset containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
device = model.device
|
||||
|
||||
opts = FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = 16000
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
log_interval = 50
|
||||
|
||||
decode_results = []
|
||||
# Contain decode streams currently running.
|
||||
decode_streams = []
|
||||
for num, cut in enumerate(cuts):
|
||||
# each utterance has a DecodeStream.
|
||||
initial_states = model.encoder.get_init_state(device=device)
|
||||
decode_stream = DecodeStream(
|
||||
params=params,
|
||||
cut_id=cut.id,
|
||||
initial_states=initial_states,
|
||||
decoding_graph=decoding_graph,
|
||||
device=device,
|
||||
)
|
||||
|
||||
audio: np.ndarray = cut.load_audio()
|
||||
# audio.shape: (1, num_samples)
|
||||
assert len(audio.shape) == 2
|
||||
assert audio.shape[0] == 1, "Should be single channel"
|
||||
assert audio.dtype == np.float32, audio.dtype
|
||||
|
||||
# The trained model is using normalized samples
|
||||
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
||||
|
||||
samples = torch.from_numpy(audio).squeeze(0)
|
||||
|
||||
fbank = Fbank(opts)
|
||||
feature = fbank(samples.to(device))
|
||||
decode_stream.set_features(feature, tail_pad_len=params.decode_chunk_len)
|
||||
decode_stream.ground_truth = cut.supervisions[0].text
|
||||
|
||||
decode_streams.append(decode_stream)
|
||||
|
||||
while len(decode_streams) >= params.num_decode_streams:
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
[
|
||||
token_table[result]
|
||||
for result in decode_streams[i].decoding_result()
|
||||
],
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
if num % log_interval == 0:
|
||||
logging.info(f"Cuts processed until now is {num}.")
|
||||
|
||||
# decode final chunks of last sequences
|
||||
while len(decode_streams):
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
[
|
||||
token_table[result]
|
||||
for result in decode_streams[i].decoding_result()
|
||||
],
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
key = "greedy_search"
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
key = (
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
key = f"num_active_paths_{params.num_active_paths}"
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
return {key: decode_results}
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AishellAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
# for streaming
|
||||
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_len}"
|
||||
|
||||
# for fast_beam_search
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
params.blank_id = 0
|
||||
params.vocab_size = max(lexicon.tokens) + 1
|
||||
|
||||
graph_compiler = CharCtcTrainingGraphCompiler(
|
||||
lexicon=lexicon,
|
||||
device=device,
|
||||
)
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
decoding_graph = None
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
|
||||
if params.decoding_method == "modified_beam_search":
|
||||
if os.path.exists(params.context_file):
|
||||
contexts_text = []
|
||||
for line in open(params.context_file).readlines():
|
||||
contexts_text.append(line.strip())
|
||||
contexts = graph_compiler.texts_to_ids(contexts_text)
|
||||
context_graph = ContextGraph(params.context_score)
|
||||
context_graph.build(contexts)
|
||||
else:
|
||||
context_graph = None
|
||||
else:
|
||||
context_graph = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
aishell = AishellAsrDataModule(args)
|
||||
|
||||
test_cuts = aishell.test_cuts()
|
||||
valid_cuts = aishell.valid_cuts()
|
||||
|
||||
test_sets = ["test", "valid"]
|
||||
cuts = [test_cuts, valid_cuts]
|
||||
|
||||
for test_set, test_cut in zip(test_sets, cuts):
|
||||
results_dict = decode_dataset(
|
||||
cuts=test_cut,
|
||||
params=params,
|
||||
model=model,
|
||||
token_table=lexicon.token_table,
|
||||
decoding_graph=decoding_graph,
|
||||
context_graph=context_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/test_model.py
|
1251
egs/aishell/ASR/pruned_transducer_stateless7_streaming/train.py
Executable file
1251
egs/aishell/ASR/pruned_transducer_stateless7_streaming/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1253
egs/aishell/ASR/pruned_transducer_stateless7_streaming/train2.py
Executable file
1253
egs/aishell/ASR/pruned_transducer_stateless7_streaming/train2.py
Executable file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/zipformer.py
|
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7_streaming/zipformer2.py
|
@ -198,7 +198,7 @@ class AishellAsrDataModule:
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
@ -160,7 +160,7 @@ class AsrDataModule:
|
||||
if cuts_musan is not None:
|
||||
logging.info("Enable MUSAN")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
@ -218,7 +218,7 @@ class AiShell2AsrDataModule:
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
@ -730,7 +730,6 @@ def train_one_epoch(
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
@ -919,7 +918,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -228,7 +228,7 @@ class Aishell4AsrDataModule:
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
@ -908,7 +908,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -211,7 +211,7 @@ class AlimeetingAsrDataModule:
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
@ -635,7 +635,6 @@ def train_one_epoch(
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
@ -800,7 +799,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -208,7 +208,7 @@ class AlimeetingAsrDataModule:
|
||||
logging.info("Enable MUSAN")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
@ -288,7 +288,6 @@ class AlimeetingAsrDataModule:
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
|
@ -999,7 +999,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -214,7 +214,7 @@ class AmiAsrDataModule:
|
||||
logging.info("Enable MUSAN")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
@ -988,7 +988,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -202,7 +202,7 @@ class AmiAsrDataModule:
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
@ -230,7 +230,7 @@ class CommonVoiceAsrDataModule:
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
@ -1019,7 +1019,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -256,7 +256,7 @@ class CSJAsrDataModule:
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.musan_dir / "musan_cuts.jsonl.gz")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
@ -1074,7 +1074,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1075,7 +1075,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -15,6 +15,7 @@ ln -sfv /path/to/GigaSpeech download/GigaSpeech
|
||||
## Performance Record
|
||||
| | Dev | Test |
|
||||
|--------------------------------|-------|-------|
|
||||
| `zipformer` | 10.25 | 10.38 |
|
||||
| `conformer_ctc` | 10.47 | 10.58 |
|
||||
| `pruned_transducer_stateless2` | 10.40 | 10.51 |
|
||||
|
||||
|
@ -1,4 +1,78 @@
|
||||
## Results
|
||||
### zipformer (zipformer + pruned stateless transducer)
|
||||
|
||||
See <https://github.com/k2-fsa/icefall/pull/1254> for more details.
|
||||
|
||||
[zipformer](./zipformer)
|
||||
|
||||
- Non-streaming
|
||||
- normal-scaled model, number of model parameters: 65549011, i.e., 65.55 M
|
||||
|
||||
You can find a pretrained model, training logs, decoding logs, and decoding results at:
|
||||
<https://huggingface.co/yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17>
|
||||
|
||||
The tensorboard log for training is available at
|
||||
<https://wandb.ai/yifanyeung/icefall-asr-gigaspeech-zipformer-2023-10-20>
|
||||
|
||||
You can use <https://github.com/k2-fsa/sherpa> to deploy it.
|
||||
|
||||
| decoding method | test-clean | test-other | comment |
|
||||
|----------------------|------------|------------|--------------------|
|
||||
| greedy_search | 10.31 | 10.50 | --epoch 30 --avg 9 |
|
||||
| modified_beam_search | 10.25 | 10.38 | --epoch 30 --avg 9 |
|
||||
| fast_beam_search | 10.26 | 10.48 | --epoch 30 --avg 9 |
|
||||
|
||||
The training command is:
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
./zipformer/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 1 \
|
||||
--use-fp16 1 \
|
||||
--exp-dir zipformer/exp \
|
||||
--causal 0 \
|
||||
--subset XL \
|
||||
--max-duration 700 \
|
||||
--use-transducer 1 \
|
||||
--use-ctc 0 \
|
||||
--lr-epochs 1 \
|
||||
--master-port 12345
|
||||
```
|
||||
|
||||
The decoding command is:
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
|
||||
# greedy search
|
||||
./zipformer/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 9 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 1000 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
# modified beam search
|
||||
./zipformer/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 9 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 1000 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
# fast beam search (one best)
|
||||
./zipformer/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 9 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--max-duration 1000 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
```
|
||||
|
||||
### GigaSpeech BPE training results (Pruned Transducer 2)
|
||||
|
||||
#### 2022-05-12
|
||||
|
@ -194,7 +194,7 @@ class GigaSpeechAsrDataModule:
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
@ -217,7 +217,7 @@ class GigaSpeechAsrDataModule:
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user