mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-06 15:44:17 +00:00
Merge branch 'k2-fsa:master' into gigaspeech_recipe
This commit is contained in:
commit
3e5436e5d4
3
.flake8
3
.flake8
@ -14,4 +14,5 @@ per-file-ignores =
|
|||||||
exclude =
|
exclude =
|
||||||
.git,
|
.git,
|
||||||
**/data/**,
|
**/data/**,
|
||||||
icefall/shared/make_kn_lm.py
|
icefall/shared/make_kn_lm.py,
|
||||||
|
icefall/__init__.py
|
||||||
|
4
.github/workflows/style_check.yml
vendored
4
.github/workflows/style_check.yml
vendored
@ -45,7 +45,9 @@ jobs:
|
|||||||
|
|
||||||
- name: Install Python dependencies
|
- name: Install Python dependencies
|
||||||
run: |
|
run: |
|
||||||
python3 -m pip install --upgrade pip black==21.6b0 flake8==3.9.2
|
python3 -m pip install --upgrade pip black==21.6b0 flake8==3.9.2 click==8.0.4
|
||||||
|
# See https://github.com/psf/black/issues/2964
|
||||||
|
# The version of click should be selected from 8.0.0, 8.0.1, 8.0.2, 8.0.3, and 8.0.4
|
||||||
|
|
||||||
- name: Run flake8
|
- name: Run flake8
|
||||||
shell: bash
|
shell: bash
|
||||||
|
@ -27,9 +27,21 @@ Installation
|
|||||||
``icefall`` depends on `k2 <https://github.com/k2-fsa/k2>`_ and
|
``icefall`` depends on `k2 <https://github.com/k2-fsa/k2>`_ and
|
||||||
`lhotse <https://github.com/lhotse-speech/lhotse>`_.
|
`lhotse <https://github.com/lhotse-speech/lhotse>`_.
|
||||||
|
|
||||||
We recommend you to install ``k2`` first, as ``k2`` is bound to
|
We recommend you to use the following steps to install the dependencies.
|
||||||
a specific version of PyTorch after compilation. Install ``k2`` also
|
|
||||||
installs its dependency PyTorch, which can be reused by ``lhotse``.
|
- (0) Install PyTorch and torchaudio
|
||||||
|
- (1) Install k2
|
||||||
|
- (2) Install lhotse
|
||||||
|
|
||||||
|
.. caution::
|
||||||
|
|
||||||
|
Installation order matters.
|
||||||
|
|
||||||
|
(0) Install PyTorch and torchaudio
|
||||||
|
----------------------------------
|
||||||
|
|
||||||
|
Please refer `<https://pytorch.org/>`_ to install PyTorch
|
||||||
|
and torchaudio.
|
||||||
|
|
||||||
|
|
||||||
(1) Install k2
|
(1) Install k2
|
||||||
@ -54,14 +66,15 @@ to install ``k2``.
|
|||||||
Please refer to `<https://lhotse.readthedocs.io/en/latest/getting-started.html#installation>`_
|
Please refer to `<https://lhotse.readthedocs.io/en/latest/getting-started.html#installation>`_
|
||||||
to install ``lhotse``.
|
to install ``lhotse``.
|
||||||
|
|
||||||
.. HINT::
|
|
||||||
|
|
||||||
Install ``lhotse`` also installs its dependency `torchaudio <https://github.com/pytorch/audio>`_.
|
.. hint::
|
||||||
|
|
||||||
.. CAUTION::
|
We strongly recommend you to use::
|
||||||
|
|
||||||
|
pip install git+https://github.com/lhotse-speech/lhotse
|
||||||
|
|
||||||
|
to install the latest version of lhotse.
|
||||||
|
|
||||||
If you have installed ``torchaudio``, please consider uninstalling it before
|
|
||||||
installing ``lhotse``. Otherwise, it may update your already installed PyTorch.
|
|
||||||
|
|
||||||
(3) Download icefall
|
(3) Download icefall
|
||||||
--------------------
|
--------------------
|
||||||
|
@ -70,7 +70,7 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|||||||
# |-- lexicon.txt
|
# |-- lexicon.txt
|
||||||
# `-- speaker.info
|
# `-- speaker.info
|
||||||
|
|
||||||
if [ ! -d $dl_dir/aishell/data_aishell/wav ]; then
|
if [ ! -d $dl_dir/aishell/data_aishell/wav/train ]; then
|
||||||
lhotse download aishell $dl_dir
|
lhotse download aishell $dl_dir
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
@ -55,18 +55,17 @@ from typing import List
|
|||||||
|
|
||||||
import kaldifeat
|
import kaldifeat
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
|
||||||
import torchaudio
|
import torchaudio
|
||||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
from beam_search import (
|
||||||
from conformer import Conformer
|
beam_search,
|
||||||
from decoder import Decoder
|
greedy_search,
|
||||||
from joiner import Joiner
|
greedy_search_batch,
|
||||||
from model import Transducer
|
modified_beam_search,
|
||||||
|
)
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
from icefall.env import get_env_info
|
|
||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import AttributeDict
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
@ -111,6 +110,13 @@ def get_parser():
|
|||||||
"The sample rate has to be 16kHz.",
|
"The sample rate has to be 16kHz.",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--beam-size",
|
"--beam-size",
|
||||||
type=int,
|
type=int,
|
||||||
@ -137,70 +143,6 @@ def get_parser():
|
|||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
def get_params() -> AttributeDict:
|
|
||||||
params = AttributeDict(
|
|
||||||
{
|
|
||||||
# parameters for conformer
|
|
||||||
"feature_dim": 80,
|
|
||||||
"encoder_out_dim": 512,
|
|
||||||
"subsampling_factor": 4,
|
|
||||||
"attention_dim": 512,
|
|
||||||
"nhead": 8,
|
|
||||||
"dim_feedforward": 2048,
|
|
||||||
"num_encoder_layers": 12,
|
|
||||||
"vgg_frontend": False,
|
|
||||||
"env_info": get_env_info(),
|
|
||||||
"sample_rate": 16000,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
return params
|
|
||||||
|
|
||||||
|
|
||||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
|
||||||
encoder = Conformer(
|
|
||||||
num_features=params.feature_dim,
|
|
||||||
output_dim=params.encoder_out_dim,
|
|
||||||
subsampling_factor=params.subsampling_factor,
|
|
||||||
d_model=params.attention_dim,
|
|
||||||
nhead=params.nhead,
|
|
||||||
dim_feedforward=params.dim_feedforward,
|
|
||||||
num_encoder_layers=params.num_encoder_layers,
|
|
||||||
vgg_frontend=params.vgg_frontend,
|
|
||||||
)
|
|
||||||
return encoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
|
||||||
decoder = Decoder(
|
|
||||||
vocab_size=params.vocab_size,
|
|
||||||
embedding_dim=params.encoder_out_dim,
|
|
||||||
blank_id=params.blank_id,
|
|
||||||
context_size=params.context_size,
|
|
||||||
)
|
|
||||||
return decoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
|
||||||
joiner = Joiner(
|
|
||||||
input_dim=params.encoder_out_dim,
|
|
||||||
output_dim=params.vocab_size,
|
|
||||||
)
|
|
||||||
return joiner
|
|
||||||
|
|
||||||
|
|
||||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
|
||||||
encoder = get_encoder_model(params)
|
|
||||||
decoder = get_decoder_model(params)
|
|
||||||
joiner = get_joiner_model(params)
|
|
||||||
|
|
||||||
model = Transducer(
|
|
||||||
encoder=encoder,
|
|
||||||
decoder=decoder,
|
|
||||||
joiner=joiner,
|
|
||||||
)
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def read_sound_files(
|
def read_sound_files(
|
||||||
filenames: List[str], expected_sample_rate: float
|
filenames: List[str], expected_sample_rate: float
|
||||||
) -> List[torch.Tensor]:
|
) -> List[torch.Tensor]:
|
||||||
@ -225,6 +167,7 @@ def read_sound_files(
|
|||||||
return ans
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
def main():
|
def main():
|
||||||
parser = get_parser()
|
parser = get_parser()
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
@ -249,7 +192,7 @@ def main():
|
|||||||
model = get_transducer_model(params)
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
model.load_state_dict(checkpoint["model"])
|
model.load_state_dict(checkpoint["model"], strict=False)
|
||||||
model.to(device)
|
model.to(device)
|
||||||
model.eval()
|
model.eval()
|
||||||
model.device = device
|
model.device = device
|
||||||
@ -279,12 +222,22 @@ def main():
|
|||||||
features, batch_first=True, padding_value=math.log(1e-10)
|
features, batch_first=True, padding_value=math.log(1e-10)
|
||||||
)
|
)
|
||||||
|
|
||||||
hyps = []
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
with torch.no_grad():
|
x=features, x_lens=feature_lens
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
)
|
||||||
x=features, x_lens=feature_lens
|
hyp_list = []
|
||||||
|
if params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_list = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
)
|
)
|
||||||
|
elif params.method == "modified_beam_search":
|
||||||
|
hyp_list = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
for i in range(encoder_out.size(0)):
|
for i in range(encoder_out.size(0)):
|
||||||
# fmt: off
|
# fmt: off
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
@ -301,17 +254,15 @@ def main():
|
|||||||
encoder_out=encoder_out_i,
|
encoder_out=encoder_out_i,
|
||||||
beam=params.beam_size,
|
beam=params.beam_size,
|
||||||
)
|
)
|
||||||
elif params.method == "modified_beam_search":
|
|
||||||
hyp = modified_beam_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
beam=params.beam_size,
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"Unsupported decoding method: {params.method}"
|
f"Unsupported decoding method: {params.method}"
|
||||||
)
|
)
|
||||||
hyps.append([lexicon.token_table[i] for i in hyp])
|
hyp_list.append(hyp)
|
||||||
|
|
||||||
|
hyps = []
|
||||||
|
for hyp in hyp_list:
|
||||||
|
hyps.append([lexicon.token_table[i] for i in hyp])
|
||||||
|
|
||||||
s = "\n"
|
s = "\n"
|
||||||
for filename, hyp in zip(params.sound_files, hyps):
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
@ -55,18 +55,17 @@ from typing import List
|
|||||||
|
|
||||||
import kaldifeat
|
import kaldifeat
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
|
||||||
import torchaudio
|
import torchaudio
|
||||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
from beam_search import (
|
||||||
from conformer import Conformer
|
beam_search,
|
||||||
from decoder import Decoder
|
greedy_search,
|
||||||
from joiner import Joiner
|
greedy_search_batch,
|
||||||
from model import Transducer
|
modified_beam_search,
|
||||||
|
)
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
from icefall.env import get_env_info
|
|
||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import AttributeDict
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
@ -111,6 +110,13 @@ def get_parser():
|
|||||||
"The sample rate has to be 16kHz.",
|
"The sample rate has to be 16kHz.",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--beam-size",
|
"--beam-size",
|
||||||
type=int,
|
type=int,
|
||||||
@ -137,70 +143,6 @@ def get_parser():
|
|||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
def get_params() -> AttributeDict:
|
|
||||||
params = AttributeDict(
|
|
||||||
{
|
|
||||||
# parameters for conformer
|
|
||||||
"feature_dim": 80,
|
|
||||||
"encoder_out_dim": 512,
|
|
||||||
"subsampling_factor": 4,
|
|
||||||
"attention_dim": 512,
|
|
||||||
"nhead": 8,
|
|
||||||
"dim_feedforward": 2048,
|
|
||||||
"num_encoder_layers": 12,
|
|
||||||
"vgg_frontend": False,
|
|
||||||
"env_info": get_env_info(),
|
|
||||||
"sample_rate": 16000,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
return params
|
|
||||||
|
|
||||||
|
|
||||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
|
||||||
encoder = Conformer(
|
|
||||||
num_features=params.feature_dim,
|
|
||||||
output_dim=params.encoder_out_dim,
|
|
||||||
subsampling_factor=params.subsampling_factor,
|
|
||||||
d_model=params.attention_dim,
|
|
||||||
nhead=params.nhead,
|
|
||||||
dim_feedforward=params.dim_feedforward,
|
|
||||||
num_encoder_layers=params.num_encoder_layers,
|
|
||||||
vgg_frontend=params.vgg_frontend,
|
|
||||||
)
|
|
||||||
return encoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
|
||||||
decoder = Decoder(
|
|
||||||
vocab_size=params.vocab_size,
|
|
||||||
embedding_dim=params.encoder_out_dim,
|
|
||||||
blank_id=params.blank_id,
|
|
||||||
context_size=params.context_size,
|
|
||||||
)
|
|
||||||
return decoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
|
||||||
joiner = Joiner(
|
|
||||||
input_dim=params.encoder_out_dim,
|
|
||||||
output_dim=params.vocab_size,
|
|
||||||
)
|
|
||||||
return joiner
|
|
||||||
|
|
||||||
|
|
||||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
|
||||||
encoder = get_encoder_model(params)
|
|
||||||
decoder = get_decoder_model(params)
|
|
||||||
joiner = get_joiner_model(params)
|
|
||||||
|
|
||||||
model = Transducer(
|
|
||||||
encoder=encoder,
|
|
||||||
decoder=decoder,
|
|
||||||
joiner=joiner,
|
|
||||||
)
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def read_sound_files(
|
def read_sound_files(
|
||||||
filenames: List[str], expected_sample_rate: float
|
filenames: List[str], expected_sample_rate: float
|
||||||
) -> List[torch.Tensor]:
|
) -> List[torch.Tensor]:
|
||||||
@ -225,6 +167,7 @@ def read_sound_files(
|
|||||||
return ans
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
def main():
|
def main():
|
||||||
parser = get_parser()
|
parser = get_parser()
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
@ -279,12 +222,22 @@ def main():
|
|||||||
features, batch_first=True, padding_value=math.log(1e-10)
|
features, batch_first=True, padding_value=math.log(1e-10)
|
||||||
)
|
)
|
||||||
|
|
||||||
hyps = []
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
with torch.no_grad():
|
x=features, x_lens=feature_lens
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
)
|
||||||
x=features, x_lens=feature_lens
|
hyp_list = []
|
||||||
|
if params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_list = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
)
|
)
|
||||||
|
elif params.method == "modified_beam_search":
|
||||||
|
hyp_list = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
for i in range(encoder_out.size(0)):
|
for i in range(encoder_out.size(0)):
|
||||||
# fmt: off
|
# fmt: off
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
@ -301,17 +254,15 @@ def main():
|
|||||||
encoder_out=encoder_out_i,
|
encoder_out=encoder_out_i,
|
||||||
beam=params.beam_size,
|
beam=params.beam_size,
|
||||||
)
|
)
|
||||||
elif params.method == "modified_beam_search":
|
|
||||||
hyp = modified_beam_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
beam=params.beam_size,
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"Unsupported decoding method: {params.method}"
|
f"Unsupported decoding method: {params.method}"
|
||||||
)
|
)
|
||||||
hyps.append([lexicon.token_table[i] for i in hyp])
|
hyp_list.append(hyp)
|
||||||
|
|
||||||
|
hyps = []
|
||||||
|
for hyp in hyp_list:
|
||||||
|
hyps.append([lexicon.token_table[i] for i in hyp])
|
||||||
|
|
||||||
s = "\n"
|
s = "\n"
|
||||||
for filename, hyp in zip(params.sound_files, hyps):
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
@ -17,14 +17,96 @@
|
|||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from typing import Dict, List, Optional
|
from typing import Dict, List, Optional
|
||||||
|
|
||||||
|
import k2
|
||||||
import torch
|
import torch
|
||||||
from model import Transducer
|
from model import Transducer
|
||||||
|
|
||||||
|
from icefall.decode import one_best_decoding
|
||||||
|
from icefall.utils import get_texts
|
||||||
|
|
||||||
|
|
||||||
|
def fast_beam_search(
|
||||||
|
model: Transducer,
|
||||||
|
decoding_graph: k2.Fsa,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
encoder_out_lens: torch.Tensor,
|
||||||
|
beam: float,
|
||||||
|
max_states: int,
|
||||||
|
max_contexts: int,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""It limits the maximum number of symbols per frame to 1.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
decoding_graph:
|
||||||
|
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder.
|
||||||
|
encoder_out_lens:
|
||||||
|
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
||||||
|
before padding.
|
||||||
|
beam:
|
||||||
|
Beam value, similar to the beam used in Kaldi..
|
||||||
|
max_states:
|
||||||
|
Max states per stream per frame.
|
||||||
|
max_contexts:
|
||||||
|
Max contexts pre stream per frame.
|
||||||
|
Returns:
|
||||||
|
Return the decoded result.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
vocab_size = model.decoder.vocab_size
|
||||||
|
|
||||||
|
B, T, C = encoder_out.shape
|
||||||
|
|
||||||
|
config = k2.RnntDecodingConfig(
|
||||||
|
vocab_size=vocab_size,
|
||||||
|
decoder_history_len=context_size,
|
||||||
|
beam=beam,
|
||||||
|
max_contexts=max_contexts,
|
||||||
|
max_states=max_states,
|
||||||
|
)
|
||||||
|
individual_streams = []
|
||||||
|
for i in range(B):
|
||||||
|
individual_streams.append(k2.RnntDecodingStream(decoding_graph))
|
||||||
|
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
# shape is a RaggedShape of shape (B, context)
|
||||||
|
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
||||||
|
shape, contexts = decoding_streams.get_contexts()
|
||||||
|
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
||||||
|
contexts = contexts.to(torch.int64)
|
||||||
|
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
||||||
|
decoder_out = model.decoder(contexts, need_pad=False)
|
||||||
|
# current_encoder_out is of shape
|
||||||
|
# (shape.NumElements(), 1, encoder_out_dim)
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = torch.index_select(
|
||||||
|
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1)
|
||||||
|
)
|
||||||
|
# fmt: on
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out.unsqueeze(2), decoder_out.unsqueeze(1)
|
||||||
|
)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
log_probs = logits.log_softmax(dim=-1)
|
||||||
|
decoding_streams.advance(log_probs)
|
||||||
|
decoding_streams.terminate_and_flush_to_streams()
|
||||||
|
lattice = decoding_streams.format_output(encoder_out_lens.tolist())
|
||||||
|
|
||||||
|
best_path = one_best_decoding(lattice)
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
return hyps
|
||||||
|
|
||||||
|
|
||||||
def greedy_search(
|
def greedy_search(
|
||||||
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
|
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
|
||||||
) -> List[int]:
|
) -> List[int]:
|
||||||
"""
|
"""Greedy search for a single utterance.
|
||||||
Args:
|
Args:
|
||||||
model:
|
model:
|
||||||
An instance of `Transducer`.
|
An instance of `Transducer`.
|
||||||
@ -96,6 +178,68 @@ def greedy_search(
|
|||||||
return hyp
|
return hyp
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search_batch(
|
||||||
|
model: Transducer, encoder_out: torch.Tensor
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
The transducer model.
|
||||||
|
encoder_out:
|
||||||
|
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
||||||
|
Returns:
|
||||||
|
Return a list-of-list of token IDs containing the decoded results.
|
||||||
|
len(ans) equals to encoder_out.size(0).
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||||
|
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
|
hyps = [[blank_id] * context_size for _ in range(batch_size)]
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
hyps,
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
) # (batch_size, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
# decoder_out: (batch_size, 1, decoder_out_dim)
|
||||||
|
for t in range(T):
|
||||||
|
current_encoder_out = encoder_out[:, t : t + 1, :].unsqueeze(2) # noqa
|
||||||
|
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
||||||
|
logits = model.joiner(current_encoder_out, decoder_out.unsqueeze(1))
|
||||||
|
# logits'shape (batch_size, 1, 1, vocab_size)
|
||||||
|
|
||||||
|
logits = logits.squeeze(1).squeeze(1) # (batch_size, vocab_size)
|
||||||
|
assert logits.ndim == 2, logits.shape
|
||||||
|
y = logits.argmax(dim=1).tolist()
|
||||||
|
emitted = False
|
||||||
|
for i, v in enumerate(y):
|
||||||
|
if v != blank_id:
|
||||||
|
hyps[i].append(v)
|
||||||
|
emitted = True
|
||||||
|
if emitted:
|
||||||
|
# update decoder output
|
||||||
|
decoder_input = [h[-context_size:] for h in hyps]
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
decoder_input,
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
|
||||||
|
ans = [h[context_size:] for h in hyps]
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class Hypothesis:
|
class Hypothesis:
|
||||||
# The predicted tokens so far.
|
# The predicted tokens so far.
|
||||||
@ -222,13 +366,156 @@ class HypothesisList(object):
|
|||||||
return ", ".join(s)
|
return ", ".join(s)
|
||||||
|
|
||||||
|
|
||||||
|
def _get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
|
||||||
|
"""Return a ragged shape with axes [utt][num_hyps].
|
||||||
|
|
||||||
|
Args:
|
||||||
|
hyps:
|
||||||
|
len(hyps) == batch_size. It contains the current hypothesis for
|
||||||
|
each utterance in the batch.
|
||||||
|
Returns:
|
||||||
|
Return a ragged shape with 2 axes [utt][num_hyps]. Note that
|
||||||
|
the shape is on CPU.
|
||||||
|
"""
|
||||||
|
num_hyps = [len(h) for h in hyps]
|
||||||
|
|
||||||
|
# torch.cumsum() is inclusive sum, so we put a 0 at the beginning
|
||||||
|
# to get exclusive sum later.
|
||||||
|
num_hyps.insert(0, 0)
|
||||||
|
|
||||||
|
num_hyps = torch.tensor(num_hyps)
|
||||||
|
row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32)
|
||||||
|
ans = k2.ragged.create_ragged_shape2(
|
||||||
|
row_splits=row_splits, cached_tot_size=row_splits[-1].item()
|
||||||
|
)
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
def modified_beam_search(
|
def modified_beam_search(
|
||||||
model: Transducer,
|
model: Transducer,
|
||||||
encoder_out: torch.Tensor,
|
encoder_out: torch.Tensor,
|
||||||
beam: int = 4,
|
beam: int = 4,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
The transducer model.
|
||||||
|
encoder_out:
|
||||||
|
Output from the encoder. Its shape is (N, T, C).
|
||||||
|
beam:
|
||||||
|
Number of active paths during the beam search.
|
||||||
|
Returns:
|
||||||
|
Return a list-of-list of token IDs. ans[i] is the decoding results
|
||||||
|
for the i-th utterance.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3, encoder_out.shape
|
||||||
|
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
device = model.device
|
||||||
|
B = [HypothesisList() for _ in range(batch_size)]
|
||||||
|
for i in range(batch_size):
|
||||||
|
B[i].add(
|
||||||
|
Hypothesis(
|
||||||
|
ys=[blank_id] * context_size,
|
||||||
|
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
current_encoder_out = encoder_out[:, t : t + 1, :].unsqueeze(2) # noqa
|
||||||
|
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
|
||||||
|
|
||||||
|
hyps_shape = _get_hyps_shape(B).to(device)
|
||||||
|
|
||||||
|
A = [list(b) for b in B]
|
||||||
|
B = [HypothesisList() for _ in range(batch_size)]
|
||||||
|
|
||||||
|
ys_log_probs = torch.cat(
|
||||||
|
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
|
||||||
|
) # (num_hyps, 1)
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
) # (num_hyps, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||||
|
# decoder_output is of shape (num_hyps, 1, 1, decoder_output_dim)
|
||||||
|
|
||||||
|
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
||||||
|
# as index, so we use `to(torch.int64)` below.
|
||||||
|
current_encoder_out = torch.index_select(
|
||||||
|
current_encoder_out,
|
||||||
|
dim=0,
|
||||||
|
index=hyps_shape.row_ids(1).to(torch.int64),
|
||||||
|
) # (num_hyps, 1, 1, encoder_out_dim)
|
||||||
|
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out,
|
||||||
|
decoder_out,
|
||||||
|
) # (num_hyps, 1, 1, vocab_size)
|
||||||
|
|
||||||
|
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
|
||||||
|
|
||||||
|
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
||||||
|
|
||||||
|
log_probs.add_(ys_log_probs)
|
||||||
|
|
||||||
|
vocab_size = log_probs.size(-1)
|
||||||
|
|
||||||
|
log_probs = log_probs.reshape(-1)
|
||||||
|
|
||||||
|
row_splits = hyps_shape.row_splits(1) * vocab_size
|
||||||
|
log_probs_shape = k2.ragged.create_ragged_shape2(
|
||||||
|
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
||||||
|
)
|
||||||
|
ragged_log_probs = k2.RaggedTensor(
|
||||||
|
shape=log_probs_shape, value=log_probs
|
||||||
|
)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||||
|
|
||||||
|
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||||
|
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||||
|
|
||||||
|
for k in range(len(topk_hyp_indexes)):
|
||||||
|
hyp_idx = topk_hyp_indexes[k]
|
||||||
|
hyp = A[i][hyp_idx]
|
||||||
|
|
||||||
|
new_ys = hyp.ys[:]
|
||||||
|
new_token = topk_token_indexes[k]
|
||||||
|
if new_token != blank_id:
|
||||||
|
new_ys.append(new_token)
|
||||||
|
|
||||||
|
new_log_prob = topk_log_probs[k]
|
||||||
|
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||||
|
B[i].add(new_hyp)
|
||||||
|
|
||||||
|
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
|
||||||
|
ans = [h.ys[context_size:] for h in best_hyps]
|
||||||
|
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def _deprecated_modified_beam_search(
|
||||||
|
model: Transducer,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
beam: int = 4,
|
||||||
) -> List[int]:
|
) -> List[int]:
|
||||||
"""It limits the maximum number of symbols per frame to 1.
|
"""It limits the maximum number of symbols per frame to 1.
|
||||||
|
|
||||||
|
It decodes only one utterance at a time. We keep it only for reference.
|
||||||
|
The function :func:`modified_beam_search` should be preferred as it
|
||||||
|
supports batch decoding.
|
||||||
|
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
model:
|
model:
|
||||||
An instance of `Transducer`.
|
An instance of `Transducer`.
|
||||||
|
@ -42,6 +42,17 @@ Usage:
|
|||||||
--max-duration 100 \
|
--max-duration 100 \
|
||||||
--decoding-method modified_beam_search \
|
--decoding-method modified_beam_search \
|
||||||
--beam-size 4
|
--beam-size 4
|
||||||
|
|
||||||
|
(4) fast beam search
|
||||||
|
./pruned_transducer_stateless/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless/exp \
|
||||||
|
--max-duration 1500 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--beam 4 \
|
||||||
|
--max-contexts 4 \
|
||||||
|
--max-states 8
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
@ -49,13 +60,20 @@ import argparse
|
|||||||
import logging
|
import logging
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Dict, List, Tuple
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
import sentencepiece as spm
|
import sentencepiece as spm
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from asr_datamodule import LibriSpeechAsrDataModule
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
from train import get_params, get_transducer_model
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
from icefall.checkpoint import (
|
||||||
@ -80,27 +98,28 @@ def get_parser():
|
|||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=28,
|
default=28,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
"Note: Epoch counts from 0.",
|
Note: Epoch counts from 0.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=15,
|
default=15,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help="Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch' and '--iter'",
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--avg-last-n",
|
|
||||||
type=int,
|
|
||||||
default=0,
|
|
||||||
help="""If positive, --epoch and --avg are ignored and it
|
|
||||||
will use the last n checkpoints exp_dir/checkpoint-xxx.pt
|
|
||||||
where xxx is the number of processed batches while
|
|
||||||
saving that checkpoint.
|
|
||||||
""",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -125,6 +144,7 @@ def get_parser():
|
|||||||
- greedy_search
|
- greedy_search
|
||||||
- beam_search
|
- beam_search
|
||||||
- modified_beam_search
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -132,8 +152,35 @@ def get_parser():
|
|||||||
"--beam-size",
|
"--beam-size",
|
||||||
type=int,
|
type=int,
|
||||||
default=4,
|
default=4,
|
||||||
|
help="""An interger indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
help="""Used only when --decoding-method is
|
help="""Used only when --decoding-method is
|
||||||
beam_search or modified_beam_search""",
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -146,7 +193,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
type=int,
|
type=int,
|
||||||
default=3,
|
default=1,
|
||||||
help="""Maximum number of symbols per frame.
|
help="""Maximum number of symbols per frame.
|
||||||
Used only when --decoding_method is greedy_search""",
|
Used only when --decoding_method is greedy_search""",
|
||||||
)
|
)
|
||||||
@ -159,6 +206,7 @@ def decode_one_batch(
|
|||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
sp: spm.SentencePieceProcessor,
|
sp: spm.SentencePieceProcessor,
|
||||||
batch: dict,
|
batch: dict,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
) -> Dict[str, List[List[str]]]:
|
) -> Dict[str, List[List[str]]]:
|
||||||
"""Decode one batch and return the result in a dict. The dict has the
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
following format:
|
following format:
|
||||||
@ -181,6 +229,9 @@ def decode_one_batch(
|
|||||||
It is the return value from iterating
|
It is the return value from iterating
|
||||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
for the format of the `batch`.
|
for the format of the `batch`.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
Returns:
|
Returns:
|
||||||
Return the decoding result. See above description for the format of
|
Return the decoding result. See above description for the format of
|
||||||
the returned dict.
|
the returned dict.
|
||||||
@ -199,36 +250,74 @@ def decode_one_batch(
|
|||||||
x=feature, x_lens=feature_lens
|
x=feature, x_lens=feature_lens
|
||||||
)
|
)
|
||||||
hyps = []
|
hyps = []
|
||||||
batch_size = encoder_out.size(0)
|
|
||||||
|
|
||||||
for i in range(batch_size):
|
if params.decoding_method == "fast_beam_search":
|
||||||
# fmt: off
|
hyp_tokens = fast_beam_search(
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
model=model,
|
||||||
# fmt: on
|
decoding_graph=decoding_graph,
|
||||||
if params.decoding_method == "greedy_search":
|
encoder_out=encoder_out,
|
||||||
hyp = greedy_search(
|
encoder_out_lens=encoder_out_lens,
|
||||||
model=model,
|
beam=params.beam,
|
||||||
encoder_out=encoder_out_i,
|
max_contexts=params.max_contexts,
|
||||||
max_sym_per_frame=params.max_sym_per_frame,
|
max_states=params.max_states,
|
||||||
)
|
)
|
||||||
elif params.decoding_method == "beam_search":
|
for hyp in sp.decode(hyp_tokens):
|
||||||
hyp = beam_search(
|
hyps.append(hyp.split())
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
elif (
|
||||||
)
|
params.decoding_method == "greedy_search"
|
||||||
elif params.decoding_method == "modified_beam_search":
|
and params.max_sym_per_frame == 1
|
||||||
hyp = modified_beam_search(
|
):
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
hyp_tokens = greedy_search_batch(
|
||||||
)
|
model=model,
|
||||||
else:
|
encoder_out=encoder_out,
|
||||||
raise ValueError(
|
)
|
||||||
f"Unsupported decoding method: {params.decoding_method}"
|
for hyp in sp.decode(hyp_tokens):
|
||||||
)
|
hyps.append(hyp.split())
|
||||||
hyps.append(sp.decode(hyp).split())
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
else:
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
if params.decoding_method == "greedy_search":
|
||||||
return {"greedy_search": hyps}
|
return {"greedy_search": hyps}
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
return {
|
||||||
|
(
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
): hyps
|
||||||
|
}
|
||||||
else:
|
else:
|
||||||
return {f"beam_{params.beam_size}": hyps}
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
|
|
||||||
|
|
||||||
def decode_dataset(
|
def decode_dataset(
|
||||||
@ -236,6 +325,7 @@ def decode_dataset(
|
|||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
sp: spm.SentencePieceProcessor,
|
sp: spm.SentencePieceProcessor,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
"""Decode dataset.
|
"""Decode dataset.
|
||||||
|
|
||||||
@ -248,6 +338,9 @@ def decode_dataset(
|
|||||||
The neural model.
|
The neural model.
|
||||||
sp:
|
sp:
|
||||||
The BPE model.
|
The BPE model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
Returns:
|
Returns:
|
||||||
Return a dict, whose key may be "greedy_search" if greedy search
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
@ -275,6 +368,7 @@ def decode_dataset(
|
|||||||
params=params,
|
params=params,
|
||||||
model=model,
|
model=model,
|
||||||
sp=sp,
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
batch=batch,
|
batch=batch,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -355,13 +449,24 @@ def main():
|
|||||||
assert params.decoding_method in (
|
assert params.decoding_method in (
|
||||||
"greedy_search",
|
"greedy_search",
|
||||||
"beam_search",
|
"beam_search",
|
||||||
|
"fast_beam_search",
|
||||||
"modified_beam_search",
|
"modified_beam_search",
|
||||||
)
|
)
|
||||||
params.res_dir = params.exp_dir / params.decoding_method
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
if params.iter > 0:
|
||||||
if "beam_search" in params.decoding_method:
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
params.suffix += f"-beam-{params.beam_size}"
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += (
|
||||||
|
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
params.suffix += f"-context-{params.context_size}"
|
params.suffix += f"-context-{params.context_size}"
|
||||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
@ -387,8 +492,20 @@ def main():
|
|||||||
logging.info("About to create model")
|
logging.info("About to create model")
|
||||||
model = get_transducer_model(params)
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
if params.avg_last_n > 0:
|
if params.iter > 0:
|
||||||
filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n]
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
logging.info(f"averaging {filenames}")
|
logging.info(f"averaging {filenames}")
|
||||||
model.to(device)
|
model.to(device)
|
||||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
@ -408,6 +525,11 @@ def main():
|
|||||||
model.eval()
|
model.eval()
|
||||||
model.device = device
|
model.device = device
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
logging.info(f"Number of model parameters: {num_param}")
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
@ -428,6 +550,7 @@ def main():
|
|||||||
params=params,
|
params=params,
|
||||||
model=model,
|
model=model,
|
||||||
sp=sp,
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
)
|
)
|
||||||
|
|
||||||
save_results(
|
save_results(
|
||||||
|
@ -61,6 +61,7 @@ class Decoder(nn.Module):
|
|||||||
|
|
||||||
assert context_size >= 1, context_size
|
assert context_size >= 1, context_size
|
||||||
self.context_size = context_size
|
self.context_size = context_size
|
||||||
|
self.vocab_size = vocab_size
|
||||||
if context_size > 1:
|
if context_size > 1:
|
||||||
self.conv = nn.Conv1d(
|
self.conv = nn.Conv1d(
|
||||||
in_channels=embedding_dim,
|
in_channels=embedding_dim,
|
||||||
|
@ -50,7 +50,12 @@ import kaldifeat
|
|||||||
import sentencepiece as spm
|
import sentencepiece as spm
|
||||||
import torch
|
import torch
|
||||||
import torchaudio
|
import torchaudio
|
||||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
from train import get_params, get_transducer_model
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
@ -122,7 +127,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
type=int,
|
type=int,
|
||||||
default=3,
|
default=1,
|
||||||
help="""Maximum number of symbols per frame. Used only when
|
help="""Maximum number of symbols per frame. Used only when
|
||||||
--method is greedy_search.
|
--method is greedy_search.
|
||||||
""",
|
""",
|
||||||
@ -224,28 +229,43 @@ def main():
|
|||||||
if params.method == "beam_search":
|
if params.method == "beam_search":
|
||||||
msg += f" with beam size {params.beam_size}"
|
msg += f" with beam size {params.beam_size}"
|
||||||
logging.info(msg)
|
logging.info(msg)
|
||||||
for i in range(num_waves):
|
if params.method == "modified_beam_search":
|
||||||
# fmt: off
|
hyp_tokens = modified_beam_search(
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
model=model,
|
||||||
# fmt: on
|
encoder_out=encoder_out,
|
||||||
if params.method == "greedy_search":
|
beam=params.beam_size,
|
||||||
hyp = greedy_search(
|
)
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
max_sym_per_frame=params.max_sym_per_frame,
|
|
||||||
)
|
|
||||||
elif params.method == "beam_search":
|
|
||||||
hyp = beam_search(
|
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
|
||||||
)
|
|
||||||
elif params.method == "modified_beam_search":
|
|
||||||
hyp = modified_beam_search(
|
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unsupported method: {params.method}")
|
|
||||||
|
|
||||||
hyps.append(sp.decode(hyp).split())
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
else:
|
||||||
|
for i in range(num_waves):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported method: {params.method}")
|
||||||
|
|
||||||
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
s = "\n"
|
s = "\n"
|
||||||
for filename, hyp in zip(params.sound_files, hyps):
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
@ -33,6 +33,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
|
import warnings
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from shutil import copyfile
|
from shutil import copyfile
|
||||||
from typing import Any, Dict, Optional, Tuple
|
from typing import Any, Dict, Optional, Tuple
|
||||||
@ -392,12 +393,16 @@ def load_checkpoint_if_available(
|
|||||||
"batch_idx_train",
|
"batch_idx_train",
|
||||||
"best_train_loss",
|
"best_train_loss",
|
||||||
"best_valid_loss",
|
"best_valid_loss",
|
||||||
"cur_batch_idx",
|
|
||||||
]
|
]
|
||||||
for k in keys:
|
for k in keys:
|
||||||
params[k] = saved_params[k]
|
params[k] = saved_params[k]
|
||||||
|
|
||||||
params["start_epoch"] = saved_params["cur_epoch"]
|
if params.start_batch > 0:
|
||||||
|
if "cur_epoch" in saved_params:
|
||||||
|
params["start_epoch"] = saved_params["cur_epoch"]
|
||||||
|
|
||||||
|
if "cur_batch_idx" in saved_params:
|
||||||
|
params["cur_batch_idx"] = saved_params["cur_batch_idx"]
|
||||||
|
|
||||||
return saved_params
|
return saved_params
|
||||||
|
|
||||||
@ -492,7 +497,11 @@ def compute_loss(
|
|||||||
assert loss.requires_grad == is_training
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
info = MetricsTracker()
|
info = MetricsTracker()
|
||||||
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
info["frames"] = (
|
||||||
|
(feature_lens // params.subsampling_factor).sum().item()
|
||||||
|
)
|
||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
# Note: We use reduction=sum while computing the loss.
|
||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
@ -783,6 +792,13 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
def remove_short_and_long_utt(c: Cut):
|
def remove_short_and_long_utt(c: Cut):
|
||||||
# Keep only utterances with duration between 1 second and 20 seconds
|
# Keep only utterances with duration between 1 second and 20 seconds
|
||||||
|
#
|
||||||
|
# Caution: There is a reason to select 20.0 here. Please see
|
||||||
|
# ../local/display_manifest_statistics.py
|
||||||
|
#
|
||||||
|
# You should use ../local/display_manifest_statistics.py to get
|
||||||
|
# an utterance duration distribution for your dataset to select
|
||||||
|
# the threshold
|
||||||
return 1.0 <= c.duration <= 20.0
|
return 1.0 <= c.duration <= 20.0
|
||||||
|
|
||||||
num_in_total = len(train_cuts)
|
num_in_total = len(train_cuts)
|
||||||
@ -797,7 +813,9 @@ def run(rank, world_size, args):
|
|||||||
logging.info(f"After removing short and long utterances: {num_left}")
|
logging.info(f"After removing short and long utterances: {num_left}")
|
||||||
logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
|
logging.info(f"Removed {num_removed} utterances ({removed_percent:.5f}%)")
|
||||||
|
|
||||||
if checkpoints and "sampler" in checkpoints:
|
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
||||||
|
# We only load the sampler's state dict when it loads a checkpoint
|
||||||
|
# saved in the middle of an epoch
|
||||||
sampler_state_dict = checkpoints["sampler"]
|
sampler_state_dict = checkpoints["sampler"]
|
||||||
else:
|
else:
|
||||||
sampler_state_dict = None
|
sampler_state_dict = None
|
||||||
|
@ -23,6 +23,7 @@ from functools import lru_cache
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, Dict, Optional
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||||
from lhotse.dataset import (
|
from lhotse.dataset import (
|
||||||
BucketingSampler,
|
BucketingSampler,
|
||||||
@ -34,11 +35,20 @@ from lhotse.dataset import (
|
|||||||
SpecAugment,
|
SpecAugment,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
from icefall.utils import str2bool
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class _SeedWorkers:
|
||||||
|
def __init__(self, seed: int):
|
||||||
|
self.seed = seed
|
||||||
|
|
||||||
|
def __call__(self, worker_id: int):
|
||||||
|
fix_random_seed(self.seed + worker_id)
|
||||||
|
|
||||||
|
|
||||||
class LibriSpeechAsrDataModule:
|
class LibriSpeechAsrDataModule:
|
||||||
"""
|
"""
|
||||||
DataModule for k2 ASR experiments.
|
DataModule for k2 ASR experiments.
|
||||||
@ -301,12 +311,18 @@ class LibriSpeechAsrDataModule:
|
|||||||
logging.info("Loading sampler state dict")
|
logging.info("Loading sampler state dict")
|
||||||
train_sampler.load_state_dict(sampler_state_dict)
|
train_sampler.load_state_dict(sampler_state_dict)
|
||||||
|
|
||||||
|
# 'seed' is derived from the current random state, which will have
|
||||||
|
# previously been set in the main process.
|
||||||
|
seed = torch.randint(0, 100000, ()).item()
|
||||||
|
worker_init_fn = _SeedWorkers(seed)
|
||||||
|
|
||||||
train_dl = DataLoader(
|
train_dl = DataLoader(
|
||||||
train,
|
train,
|
||||||
sampler=train_sampler,
|
sampler=train_sampler,
|
||||||
batch_size=None,
|
batch_size=None,
|
||||||
num_workers=self.args.num_workers,
|
num_workers=self.args.num_workers,
|
||||||
persistent_workers=False,
|
persistent_workers=False,
|
||||||
|
worker_init_fn=worker_init_fn,
|
||||||
)
|
)
|
||||||
|
|
||||||
return train_dl
|
return train_dl
|
||||||
|
@ -34,6 +34,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
|
import warnings
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from shutil import copyfile
|
from shutil import copyfile
|
||||||
from typing import Optional, Tuple
|
from typing import Optional, Tuple
|
||||||
@ -393,7 +394,11 @@ def compute_loss(
|
|||||||
assert loss.requires_grad == is_training
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
info = MetricsTracker()
|
info = MetricsTracker()
|
||||||
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
info["frames"] = (
|
||||||
|
(feature_lens // params.subsampling_factor).sum().item()
|
||||||
|
)
|
||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
# Note: We use reduction=sum while computing the loss.
|
||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
|
@ -35,6 +35,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2"
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
|
import warnings
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from shutil import copyfile
|
from shutil import copyfile
|
||||||
from typing import Optional, Tuple
|
from typing import Optional, Tuple
|
||||||
@ -397,7 +398,11 @@ def compute_loss(
|
|||||||
assert loss.requires_grad == is_training
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
info = MetricsTracker()
|
info = MetricsTracker()
|
||||||
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
info["frames"] = (
|
||||||
|
(feature_lens // params.subsampling_factor).sum().item()
|
||||||
|
)
|
||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
# Note: We use reduction=sum while computing the loss.
|
||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
|
@ -17,6 +17,7 @@
|
|||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from typing import Dict, List, Optional
|
from typing import Dict, List, Optional
|
||||||
|
|
||||||
|
import k2
|
||||||
import torch
|
import torch
|
||||||
from model import Transducer
|
from model import Transducer
|
||||||
|
|
||||||
@ -24,7 +25,7 @@ from model import Transducer
|
|||||||
def greedy_search(
|
def greedy_search(
|
||||||
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
|
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
|
||||||
) -> List[int]:
|
) -> List[int]:
|
||||||
"""
|
"""Greedy search for a single utterance.
|
||||||
Args:
|
Args:
|
||||||
model:
|
model:
|
||||||
An instance of `Transducer`.
|
An instance of `Transducer`.
|
||||||
@ -80,7 +81,7 @@ def greedy_search(
|
|||||||
logits = model.joiner(
|
logits = model.joiner(
|
||||||
current_encoder_out, decoder_out, encoder_out_len, decoder_out_len
|
current_encoder_out, decoder_out, encoder_out_len, decoder_out_len
|
||||||
)
|
)
|
||||||
# logits is (1, 1, 1, vocab_size)
|
# logits is (1, vocab_size)
|
||||||
|
|
||||||
y = logits.argmax().item()
|
y = logits.argmax().item()
|
||||||
if y != blank_id:
|
if y != blank_id:
|
||||||
@ -101,6 +102,75 @@ def greedy_search(
|
|||||||
return hyp
|
return hyp
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search_batch(
|
||||||
|
model: Transducer, encoder_out: torch.Tensor
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
The transducer model.
|
||||||
|
encoder_out:
|
||||||
|
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
||||||
|
Returns:
|
||||||
|
Return a list-of-list of token IDs containing the decoded results.
|
||||||
|
len(ans) equals to encoder_out.size(0).
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||||
|
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
|
hyps = [[blank_id] * context_size for _ in range(batch_size)]
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
hyps,
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
) # (batch_size, context_size)
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
# decoder_out: (batch_size, 1, decoder_out_dim)
|
||||||
|
|
||||||
|
encoder_out_len = torch.ones(batch_size, dtype=torch.int32)
|
||||||
|
decoder_out_len = torch.ones(batch_size, dtype=torch.int32)
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
|
||||||
|
# current_encoder_out's shape: (batch_size, 1, encoder_out_dim)
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out, decoder_out, encoder_out_len, decoder_out_len
|
||||||
|
) # (batch_size, vocab_size)
|
||||||
|
|
||||||
|
assert logits.ndim == 2, logits.shape
|
||||||
|
y = logits.argmax(dim=1).tolist()
|
||||||
|
emitted = False
|
||||||
|
for i, v in enumerate(y):
|
||||||
|
if v != blank_id:
|
||||||
|
hyps[i].append(v)
|
||||||
|
emitted = True
|
||||||
|
|
||||||
|
if emitted:
|
||||||
|
# update decoder output
|
||||||
|
decoder_input = [h[-context_size:] for h in hyps]
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
decoder_input,
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
) # (batch_size, context_size)
|
||||||
|
decoder_out = model.decoder(
|
||||||
|
decoder_input,
|
||||||
|
need_pad=False,
|
||||||
|
) # (batch_size, 1, decoder_out_dim)
|
||||||
|
|
||||||
|
ans = [h[context_size:] for h in hyps]
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class Hypothesis:
|
class Hypothesis:
|
||||||
# The predicted tokens so far.
|
# The predicted tokens so far.
|
||||||
@ -252,9 +322,11 @@ def run_decoder(
|
|||||||
|
|
||||||
device = model.device
|
device = model.device
|
||||||
|
|
||||||
decoder_input = torch.tensor([ys[-context_size:]], device=device).reshape(
|
decoder_input = torch.tensor(
|
||||||
1, context_size
|
[ys[-context_size:]],
|
||||||
)
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
).reshape(1, context_size)
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
decoder_cache[key] = decoder_out
|
decoder_cache[key] = decoder_out
|
||||||
@ -314,13 +386,158 @@ def run_joiner(
|
|||||||
return log_prob
|
return log_prob
|
||||||
|
|
||||||
|
|
||||||
|
def _get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
|
||||||
|
"""Return a ragged shape with axes [utt][num_hyps].
|
||||||
|
|
||||||
|
Args:
|
||||||
|
hyps:
|
||||||
|
len(hyps) == batch_size. It contains the current hypothesis for
|
||||||
|
each utterance in the batch.
|
||||||
|
Returns:
|
||||||
|
Return a ragged shape with 2 axes [utt][num_hyps]. Note that
|
||||||
|
the shape is on CPU.
|
||||||
|
"""
|
||||||
|
num_hyps = [len(h) for h in hyps]
|
||||||
|
|
||||||
|
# torch.cumsum() is inclusive sum, so we put a 0 at the beginning
|
||||||
|
# to get exclusive sum later.
|
||||||
|
num_hyps.insert(0, 0)
|
||||||
|
|
||||||
|
num_hyps = torch.tensor(num_hyps)
|
||||||
|
row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32)
|
||||||
|
ans = k2.ragged.create_ragged_shape2(
|
||||||
|
row_splits=row_splits, cached_tot_size=row_splits[-1].item()
|
||||||
|
)
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
def modified_beam_search(
|
def modified_beam_search(
|
||||||
model: Transducer,
|
model: Transducer,
|
||||||
encoder_out: torch.Tensor,
|
encoder_out: torch.Tensor,
|
||||||
beam: int = 4,
|
beam: int = 4,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcodded.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
The transducer model.
|
||||||
|
encoder_out:
|
||||||
|
Output from the encoder. Its shape is (N, T, C).
|
||||||
|
beam:
|
||||||
|
Number of active paths during the beam search.
|
||||||
|
Returns:
|
||||||
|
Return a list-of-list of token IDs. ans[i] is the decoding results
|
||||||
|
for the i-th utterance.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3, encoder_out.shape
|
||||||
|
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
device = model.device
|
||||||
|
B = [HypothesisList() for _ in range(batch_size)]
|
||||||
|
for i in range(batch_size):
|
||||||
|
B[i].add(
|
||||||
|
Hypothesis(
|
||||||
|
ys=[blank_id] * context_size,
|
||||||
|
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out_len = torch.tensor([1])
|
||||||
|
decoder_out_len = torch.tensor([1])
|
||||||
|
for t in range(T):
|
||||||
|
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
|
||||||
|
# current_encoder_out's shape is: (batch_size, 1, encoder_out_dim)
|
||||||
|
|
||||||
|
hyps_shape = _get_hyps_shape(B).to(device)
|
||||||
|
|
||||||
|
A = [list(b) for b in B]
|
||||||
|
B = [HypothesisList() for _ in range(batch_size)]
|
||||||
|
|
||||||
|
ys_log_probs = torch.cat(
|
||||||
|
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
|
||||||
|
) # (num_hyps, 1)
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
) # (num_hyps, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
# decoder_output is of shape (num_hyps, 1, decoder_output_dim)
|
||||||
|
|
||||||
|
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
||||||
|
# as index, so we use `to(torch.int64)` below.
|
||||||
|
current_encoder_out = torch.index_select(
|
||||||
|
current_encoder_out,
|
||||||
|
dim=0,
|
||||||
|
index=hyps_shape.row_ids(1).to(torch.int64),
|
||||||
|
) # (num_hyps, 1, encoder_out_dim)
|
||||||
|
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out,
|
||||||
|
decoder_out,
|
||||||
|
encoder_out_len.expand(decoder_out.size(0)),
|
||||||
|
decoder_out_len.expand(decoder_out.size(0)),
|
||||||
|
)
|
||||||
|
# logits is of shape (num_hyps, vocab_size)
|
||||||
|
|
||||||
|
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
||||||
|
|
||||||
|
log_probs.add_(ys_log_probs)
|
||||||
|
|
||||||
|
vocab_size = log_probs.size(-1)
|
||||||
|
|
||||||
|
log_probs = log_probs.reshape(-1)
|
||||||
|
|
||||||
|
row_splits = hyps_shape.row_splits(1) * vocab_size
|
||||||
|
log_probs_shape = k2.ragged.create_ragged_shape2(
|
||||||
|
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
||||||
|
)
|
||||||
|
ragged_log_probs = k2.RaggedTensor(
|
||||||
|
shape=log_probs_shape, value=log_probs
|
||||||
|
)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||||
|
|
||||||
|
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||||
|
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||||
|
|
||||||
|
for k in range(len(topk_hyp_indexes)):
|
||||||
|
hyp_idx = topk_hyp_indexes[k]
|
||||||
|
hyp = A[i][hyp_idx]
|
||||||
|
|
||||||
|
new_ys = hyp.ys[:]
|
||||||
|
new_token = topk_token_indexes[k]
|
||||||
|
if new_token != blank_id:
|
||||||
|
new_ys.append(new_token)
|
||||||
|
|
||||||
|
new_log_prob = topk_log_probs[k]
|
||||||
|
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||||
|
B[i].add(new_hyp)
|
||||||
|
|
||||||
|
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
|
||||||
|
ans = [h.ys[context_size:] for h in best_hyps]
|
||||||
|
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def _deprecated_modified_beam_search(
|
||||||
|
model: Transducer,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
beam: int = 4,
|
||||||
) -> List[int]:
|
) -> List[int]:
|
||||||
"""It limits the maximum number of symbols per frame to 1.
|
"""It limits the maximum number of symbols per frame to 1.
|
||||||
|
|
||||||
|
It decodes only one utterance at a time. We keep it only for reference.
|
||||||
|
The function :func:`modified_beam_search` should be preferred as it
|
||||||
|
supports batch decoding.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
model:
|
model:
|
||||||
An instance of `Transducer`.
|
An instance of `Transducer`.
|
||||||
@ -341,12 +558,6 @@ def modified_beam_search(
|
|||||||
|
|
||||||
device = model.device
|
device = model.device
|
||||||
|
|
||||||
decoder_input = torch.tensor(
|
|
||||||
[blank_id] * context_size, device=device
|
|
||||||
).reshape(1, context_size)
|
|
||||||
|
|
||||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
|
||||||
|
|
||||||
T = encoder_out.size(1)
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
B = HypothesisList()
|
B = HypothesisList()
|
||||||
|
@ -109,8 +109,11 @@ class Conformer(Transformer):
|
|||||||
x, pos_emb = self.encoder_pos(x)
|
x, pos_emb = self.encoder_pos(x)
|
||||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||||
|
|
||||||
# Caution: We assume the subsampling factor is 4!
|
with warnings.catch_warnings():
|
||||||
lengths = ((x_lens - 1) // 2 - 1) // 2
|
warnings.simplefilter("ignore")
|
||||||
|
# Caution: We assume the subsampling factor is 4!
|
||||||
|
lengths = ((x_lens - 1) // 2 - 1) // 2
|
||||||
|
|
||||||
assert x.size(0) == lengths.max().item()
|
assert x.size(0) == lengths.max().item()
|
||||||
mask = make_pad_mask(lengths)
|
mask = make_pad_mask(lengths)
|
||||||
|
|
||||||
|
@ -55,14 +55,15 @@ import sentencepiece as spm
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from asr_datamodule import LibriSpeechAsrDataModule
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
from beam_search import (
|
||||||
from conformer import Conformer
|
beam_search,
|
||||||
from decoder import Decoder
|
greedy_search,
|
||||||
from joiner import Joiner
|
greedy_search_batch,
|
||||||
from model import Transducer
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
from icefall.env import get_env_info
|
|
||||||
from icefall.utils import (
|
from icefall.utils import (
|
||||||
AttributeDict,
|
AttributeDict,
|
||||||
setup_logger,
|
setup_logger,
|
||||||
@ -135,7 +136,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
type=int,
|
type=int,
|
||||||
default=3,
|
default=1,
|
||||||
help="""Maximum number of symbols per frame.
|
help="""Maximum number of symbols per frame.
|
||||||
Used only when --decoding_method is greedy_search""",
|
Used only when --decoding_method is greedy_search""",
|
||||||
)
|
)
|
||||||
@ -143,70 +144,6 @@ def get_parser():
|
|||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
def get_params() -> AttributeDict:
|
|
||||||
params = AttributeDict(
|
|
||||||
{
|
|
||||||
# parameters for conformer
|
|
||||||
"feature_dim": 80,
|
|
||||||
"encoder_out_dim": 512,
|
|
||||||
"subsampling_factor": 4,
|
|
||||||
"attention_dim": 512,
|
|
||||||
"nhead": 8,
|
|
||||||
"dim_feedforward": 2048,
|
|
||||||
"num_encoder_layers": 12,
|
|
||||||
"vgg_frontend": False,
|
|
||||||
"env_info": get_env_info(),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
return params
|
|
||||||
|
|
||||||
|
|
||||||
def get_encoder_model(params: AttributeDict):
|
|
||||||
# TODO: We can add an option to switch between Conformer and Transformer
|
|
||||||
encoder = Conformer(
|
|
||||||
num_features=params.feature_dim,
|
|
||||||
output_dim=params.encoder_out_dim,
|
|
||||||
subsampling_factor=params.subsampling_factor,
|
|
||||||
d_model=params.attention_dim,
|
|
||||||
nhead=params.nhead,
|
|
||||||
dim_feedforward=params.dim_feedforward,
|
|
||||||
num_encoder_layers=params.num_encoder_layers,
|
|
||||||
vgg_frontend=params.vgg_frontend,
|
|
||||||
)
|
|
||||||
return encoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_decoder_model(params: AttributeDict):
|
|
||||||
decoder = Decoder(
|
|
||||||
vocab_size=params.vocab_size,
|
|
||||||
embedding_dim=params.encoder_out_dim,
|
|
||||||
blank_id=params.blank_id,
|
|
||||||
context_size=params.context_size,
|
|
||||||
)
|
|
||||||
return decoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_joiner_model(params: AttributeDict):
|
|
||||||
joiner = Joiner(
|
|
||||||
input_dim=params.encoder_out_dim,
|
|
||||||
output_dim=params.vocab_size,
|
|
||||||
)
|
|
||||||
return joiner
|
|
||||||
|
|
||||||
|
|
||||||
def get_transducer_model(params: AttributeDict):
|
|
||||||
encoder = get_encoder_model(params)
|
|
||||||
decoder = get_decoder_model(params)
|
|
||||||
joiner = get_joiner_model(params)
|
|
||||||
|
|
||||||
model = Transducer(
|
|
||||||
encoder=encoder,
|
|
||||||
decoder=decoder,
|
|
||||||
joiner=joiner,
|
|
||||||
)
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def decode_one_batch(
|
def decode_one_batch(
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
@ -251,32 +188,47 @@ def decode_one_batch(
|
|||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
x=feature, x_lens=feature_lens
|
x=feature, x_lens=feature_lens
|
||||||
)
|
)
|
||||||
hyps = []
|
hyp_list: List[List[int]] = []
|
||||||
batch_size = encoder_out.size(0)
|
|
||||||
|
|
||||||
for i in range(batch_size):
|
if (
|
||||||
# fmt: off
|
params.decoding_method == "greedy_search"
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
and params.max_sym_per_frame == 1
|
||||||
# fmt: on
|
):
|
||||||
if params.decoding_method == "greedy_search":
|
hyp_list = greedy_search_batch(
|
||||||
hyp = greedy_search(
|
model=model,
|
||||||
model=model,
|
encoder_out=encoder_out,
|
||||||
encoder_out=encoder_out_i,
|
)
|
||||||
max_sym_per_frame=params.max_sym_per_frame,
|
elif params.decoding_method == "modified_beam_search":
|
||||||
)
|
hyp_list = modified_beam_search(
|
||||||
elif params.decoding_method == "beam_search":
|
model=model,
|
||||||
hyp = beam_search(
|
encoder_out=encoder_out,
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
beam=params.beam_size,
|
||||||
)
|
)
|
||||||
elif params.decoding_method == "modified_beam_search":
|
else:
|
||||||
hyp = modified_beam_search(
|
batch_size = encoder_out.size(0)
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
for i in range(batch_size):
|
||||||
)
|
# fmt: off
|
||||||
else:
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
raise ValueError(
|
# fmt: on
|
||||||
f"Unsupported decoding method: {params.decoding_method}"
|
if params.decoding_method == "greedy_search":
|
||||||
)
|
hyp = greedy_search(
|
||||||
hyps.append(sp.decode(hyp).split())
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyp_list.append(hyp)
|
||||||
|
|
||||||
|
hyps = [sp.decode(hyp).split() for hyp in hyp_list]
|
||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
if params.decoding_method == "greedy_search":
|
||||||
return {"greedy_search": hyps}
|
return {"greedy_search": hyps}
|
||||||
@ -487,8 +439,5 @@ def main():
|
|||||||
logging.info("Done!")
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
torch.set_num_threads(1)
|
|
||||||
torch.set_num_interop_threads(1)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
@ -59,17 +59,15 @@ from typing import List
|
|||||||
import kaldifeat
|
import kaldifeat
|
||||||
import sentencepiece as spm
|
import sentencepiece as spm
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
|
||||||
import torchaudio
|
import torchaudio
|
||||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
from beam_search import (
|
||||||
from conformer import Conformer
|
beam_search,
|
||||||
from decoder import Decoder
|
greedy_search,
|
||||||
from joiner import Joiner
|
greedy_search_batch,
|
||||||
from model import Transducer
|
modified_beam_search,
|
||||||
|
)
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import get_params, get_transducer_model
|
||||||
from icefall.env import get_env_info
|
|
||||||
from icefall.utils import AttributeDict
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
@ -115,6 +113,13 @@ def get_parser():
|
|||||||
"The sample rate has to be 16kHz.",
|
"The sample rate has to be 16kHz.",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--beam-size",
|
"--beam-size",
|
||||||
type=int,
|
type=int,
|
||||||
@ -132,7 +137,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
type=int,
|
type=int,
|
||||||
default=3,
|
default=1,
|
||||||
help="""Maximum number of symbols per frame. Used only when
|
help="""Maximum number of symbols per frame. Used only when
|
||||||
--method is greedy_search.
|
--method is greedy_search.
|
||||||
""",
|
""",
|
||||||
@ -141,70 +146,6 @@ def get_parser():
|
|||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
def get_params() -> AttributeDict:
|
|
||||||
params = AttributeDict(
|
|
||||||
{
|
|
||||||
"sample_rate": 16000,
|
|
||||||
# parameters for conformer
|
|
||||||
"feature_dim": 80,
|
|
||||||
"encoder_out_dim": 512,
|
|
||||||
"subsampling_factor": 4,
|
|
||||||
"attention_dim": 512,
|
|
||||||
"nhead": 8,
|
|
||||||
"dim_feedforward": 2048,
|
|
||||||
"num_encoder_layers": 12,
|
|
||||||
"vgg_frontend": False,
|
|
||||||
"env_info": get_env_info(),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
return params
|
|
||||||
|
|
||||||
|
|
||||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
|
||||||
encoder = Conformer(
|
|
||||||
num_features=params.feature_dim,
|
|
||||||
output_dim=params.encoder_out_dim,
|
|
||||||
subsampling_factor=params.subsampling_factor,
|
|
||||||
d_model=params.attention_dim,
|
|
||||||
nhead=params.nhead,
|
|
||||||
dim_feedforward=params.dim_feedforward,
|
|
||||||
num_encoder_layers=params.num_encoder_layers,
|
|
||||||
vgg_frontend=params.vgg_frontend,
|
|
||||||
)
|
|
||||||
return encoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
|
||||||
decoder = Decoder(
|
|
||||||
vocab_size=params.vocab_size,
|
|
||||||
embedding_dim=params.encoder_out_dim,
|
|
||||||
blank_id=params.blank_id,
|
|
||||||
context_size=params.context_size,
|
|
||||||
)
|
|
||||||
return decoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
|
||||||
joiner = Joiner(
|
|
||||||
input_dim=params.encoder_out_dim,
|
|
||||||
output_dim=params.vocab_size,
|
|
||||||
)
|
|
||||||
return joiner
|
|
||||||
|
|
||||||
|
|
||||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
|
||||||
encoder = get_encoder_model(params)
|
|
||||||
decoder = get_decoder_model(params)
|
|
||||||
joiner = get_joiner_model(params)
|
|
||||||
|
|
||||||
model = Transducer(
|
|
||||||
encoder=encoder,
|
|
||||||
decoder=decoder,
|
|
||||||
joiner=joiner,
|
|
||||||
)
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def read_sound_files(
|
def read_sound_files(
|
||||||
filenames: List[str], expected_sample_rate: float
|
filenames: List[str], expected_sample_rate: float
|
||||||
) -> List[torch.Tensor]:
|
) -> List[torch.Tensor]:
|
||||||
@ -294,33 +235,45 @@ def main():
|
|||||||
)
|
)
|
||||||
|
|
||||||
num_waves = encoder_out.size(0)
|
num_waves = encoder_out.size(0)
|
||||||
hyps = []
|
hyp_list = []
|
||||||
msg = f"Using {params.method}"
|
msg = f"Using {params.method}"
|
||||||
if params.method == "beam_search":
|
if params.method == "beam_search":
|
||||||
msg += f" with beam size {params.beam_size}"
|
msg += f" with beam size {params.beam_size}"
|
||||||
logging.info(msg)
|
logging.info(msg)
|
||||||
for i in range(num_waves):
|
|
||||||
# fmt: off
|
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
|
||||||
# fmt: on
|
|
||||||
if params.method == "greedy_search":
|
|
||||||
hyp = greedy_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
max_sym_per_frame=params.max_sym_per_frame,
|
|
||||||
)
|
|
||||||
elif params.method == "beam_search":
|
|
||||||
hyp = beam_search(
|
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
|
||||||
)
|
|
||||||
elif params.method == "modified_beam_search":
|
|
||||||
hyp = modified_beam_search(
|
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unsupported method: {params.method}")
|
|
||||||
|
|
||||||
hyps.append(sp.decode(hyp).split())
|
if params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_list = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
)
|
||||||
|
elif params.method == "modified_beam_search":
|
||||||
|
hyp_list = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
for i in range(num_waves):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported method: {params.method}")
|
||||||
|
hyp_list.append(hyp)
|
||||||
|
|
||||||
|
hyps = [sp.decode(hyp).split() for hyp in hyp_list]
|
||||||
|
|
||||||
s = "\n"
|
s = "\n"
|
||||||
for filename, hyp in zip(params.sound_files, hyps):
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
@ -34,6 +34,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
|
import warnings
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from shutil import copyfile
|
from shutil import copyfile
|
||||||
from typing import Optional, Tuple
|
from typing import Optional, Tuple
|
||||||
@ -419,7 +420,11 @@ def compute_loss(
|
|||||||
assert loss.requires_grad == is_training
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
info = MetricsTracker()
|
info = MetricsTracker()
|
||||||
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
info["frames"] = (
|
||||||
|
(feature_lens // params.subsampling_factor).sum().item()
|
||||||
|
)
|
||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
# Note: We use reduction=sum while computing the loss.
|
||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
|
@ -22,6 +22,7 @@ import logging
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
from lhotse import CutSet, Fbank, FbankConfig
|
from lhotse import CutSet, Fbank, FbankConfig
|
||||||
from lhotse.dataset import (
|
from lhotse.dataset import (
|
||||||
BucketingSampler,
|
BucketingSampler,
|
||||||
@ -34,11 +35,20 @@ from lhotse.dataset.input_strategies import (
|
|||||||
OnTheFlyFeatures,
|
OnTheFlyFeatures,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
)
|
)
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
from icefall.utils import str2bool
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class _SeedWorkers:
|
||||||
|
def __init__(self, seed: int):
|
||||||
|
self.seed = seed
|
||||||
|
|
||||||
|
def __call__(self, worker_id: int):
|
||||||
|
fix_random_seed(self.seed + worker_id)
|
||||||
|
|
||||||
|
|
||||||
class AsrDataModule:
|
class AsrDataModule:
|
||||||
def __init__(self, args: argparse.Namespace):
|
def __init__(self, args: argparse.Namespace):
|
||||||
self.args = args
|
self.args = args
|
||||||
@ -253,12 +263,19 @@ class AsrDataModule:
|
|||||||
)
|
)
|
||||||
|
|
||||||
logging.info("About to create train dataloader")
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
|
# 'seed' is derived from the current random state, which will have
|
||||||
|
# previously been set in the main process.
|
||||||
|
seed = torch.randint(0, 100000, ()).item()
|
||||||
|
worker_init_fn = _SeedWorkers(seed)
|
||||||
|
|
||||||
train_dl = DataLoader(
|
train_dl = DataLoader(
|
||||||
train,
|
train,
|
||||||
sampler=train_sampler,
|
sampler=train_sampler,
|
||||||
batch_size=None,
|
batch_size=None,
|
||||||
num_workers=self.args.num_workers,
|
num_workers=self.args.num_workers,
|
||||||
persistent_workers=False,
|
persistent_workers=False,
|
||||||
|
worker_init_fn=worker_init_fn,
|
||||||
)
|
)
|
||||||
return train_dl
|
return train_dl
|
||||||
|
|
||||||
|
@ -46,15 +46,16 @@ import sentencepiece as spm
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from asr_datamodule import AsrDataModule
|
from asr_datamodule import AsrDataModule
|
||||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
from beam_search import (
|
||||||
from conformer import Conformer
|
beam_search,
|
||||||
from decoder import Decoder
|
greedy_search,
|
||||||
from joiner import Joiner
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
from librispeech import LibriSpeech
|
from librispeech import LibriSpeech
|
||||||
from model import Transducer
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
from icefall.env import get_env_info
|
|
||||||
from icefall.utils import (
|
from icefall.utils import (
|
||||||
AttributeDict,
|
AttributeDict,
|
||||||
setup_logger,
|
setup_logger,
|
||||||
@ -127,7 +128,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
type=int,
|
type=int,
|
||||||
default=3,
|
default=1,
|
||||||
help="""Maximum number of symbols per frame.
|
help="""Maximum number of symbols per frame.
|
||||||
Used only when --decoding_method is greedy_search""",
|
Used only when --decoding_method is greedy_search""",
|
||||||
)
|
)
|
||||||
@ -135,71 +136,6 @@ def get_parser():
|
|||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
def get_params() -> AttributeDict:
|
|
||||||
params = AttributeDict(
|
|
||||||
{
|
|
||||||
# parameters for conformer
|
|
||||||
"feature_dim": 80,
|
|
||||||
"encoder_out_dim": 512,
|
|
||||||
"subsampling_factor": 4,
|
|
||||||
"attention_dim": 512,
|
|
||||||
"nhead": 8,
|
|
||||||
"dim_feedforward": 2048,
|
|
||||||
"num_encoder_layers": 12,
|
|
||||||
"vgg_frontend": False,
|
|
||||||
"env_info": get_env_info(),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
return params
|
|
||||||
|
|
||||||
|
|
||||||
def get_encoder_model(params: AttributeDict):
|
|
||||||
# TODO: We can add an option to switch between Conformer and Transformer
|
|
||||||
encoder = Conformer(
|
|
||||||
num_features=params.feature_dim,
|
|
||||||
output_dim=params.encoder_out_dim,
|
|
||||||
subsampling_factor=params.subsampling_factor,
|
|
||||||
d_model=params.attention_dim,
|
|
||||||
nhead=params.nhead,
|
|
||||||
dim_feedforward=params.dim_feedforward,
|
|
||||||
num_encoder_layers=params.num_encoder_layers,
|
|
||||||
vgg_frontend=params.vgg_frontend,
|
|
||||||
)
|
|
||||||
return encoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_decoder_model(params: AttributeDict):
|
|
||||||
decoder = Decoder(
|
|
||||||
vocab_size=params.vocab_size,
|
|
||||||
embedding_dim=params.encoder_out_dim,
|
|
||||||
blank_id=params.blank_id,
|
|
||||||
context_size=params.context_size,
|
|
||||||
)
|
|
||||||
return decoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_joiner_model(params: AttributeDict):
|
|
||||||
joiner = Joiner(
|
|
||||||
input_dim=params.encoder_out_dim,
|
|
||||||
output_dim=params.vocab_size,
|
|
||||||
)
|
|
||||||
return joiner
|
|
||||||
|
|
||||||
|
|
||||||
def get_transducer_model(params: AttributeDict):
|
|
||||||
encoder = get_encoder_model(params)
|
|
||||||
decoder = get_decoder_model(params)
|
|
||||||
joiner = get_joiner_model(params)
|
|
||||||
|
|
||||||
model = Transducer(
|
|
||||||
encoder=encoder,
|
|
||||||
decoder=decoder,
|
|
||||||
joiner=joiner,
|
|
||||||
)
|
|
||||||
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def decode_one_batch(
|
def decode_one_batch(
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
@ -244,32 +180,47 @@ def decode_one_batch(
|
|||||||
encoder_out, encoder_out_lens = model.encoder(
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
x=feature, x_lens=feature_lens
|
x=feature, x_lens=feature_lens
|
||||||
)
|
)
|
||||||
hyps = []
|
hyp_list = []
|
||||||
batch_size = encoder_out.size(0)
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
for i in range(batch_size):
|
if (
|
||||||
# fmt: off
|
params.decoding_method == "greedy_search"
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
and params.max_sym_per_frame == 1
|
||||||
# fmt: on
|
):
|
||||||
if params.decoding_method == "greedy_search":
|
hyp_list = greedy_search_batch(
|
||||||
hyp = greedy_search(
|
model=model,
|
||||||
model=model,
|
encoder_out=encoder_out,
|
||||||
encoder_out=encoder_out_i,
|
)
|
||||||
max_sym_per_frame=params.max_sym_per_frame,
|
elif params.decoding_method == "modified_beam_search":
|
||||||
)
|
hyp_list = modified_beam_search(
|
||||||
elif params.decoding_method == "beam_search":
|
model=model,
|
||||||
hyp = beam_search(
|
encoder_out=encoder_out,
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
beam=params.beam_size,
|
||||||
)
|
)
|
||||||
elif params.decoding_method == "modified_beam_search":
|
else:
|
||||||
hyp = modified_beam_search(
|
for i in range(batch_size):
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
# fmt: off
|
||||||
)
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
else:
|
# fmt: on
|
||||||
raise ValueError(
|
if params.decoding_method == "greedy_search":
|
||||||
f"Unsupported decoding method: {params.decoding_method}"
|
hyp = greedy_search(
|
||||||
)
|
model=model,
|
||||||
hyps.append(sp.decode(hyp).split())
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyp_list.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
|
hyps = [sp.decode(hyp).split() for hyp in hyp_list]
|
||||||
|
|
||||||
if params.decoding_method == "greedy_search":
|
if params.decoding_method == "greedy_search":
|
||||||
return {"greedy_search": hyps}
|
return {"greedy_search": hyps}
|
||||||
@ -483,8 +434,5 @@ def main():
|
|||||||
logging.info("Done!")
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
torch.set_num_threads(1)
|
|
||||||
torch.set_num_interop_threads(1)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
@ -59,17 +59,15 @@ from typing import List
|
|||||||
import kaldifeat
|
import kaldifeat
|
||||||
import sentencepiece as spm
|
import sentencepiece as spm
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
|
||||||
import torchaudio
|
import torchaudio
|
||||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
from beam_search import (
|
||||||
from conformer import Conformer
|
beam_search,
|
||||||
from decoder import Decoder
|
greedy_search,
|
||||||
from joiner import Joiner
|
greedy_search_batch,
|
||||||
from model import Transducer
|
modified_beam_search,
|
||||||
|
)
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import get_params, get_transducer_model
|
||||||
from icefall.env import get_env_info
|
|
||||||
from icefall.utils import AttributeDict
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
@ -115,6 +113,13 @@ def get_parser():
|
|||||||
"The sample rate has to be 16kHz.",
|
"The sample rate has to be 16kHz.",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--beam-size",
|
"--beam-size",
|
||||||
type=int,
|
type=int,
|
||||||
@ -132,7 +137,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
type=int,
|
type=int,
|
||||||
default=3,
|
default=1,
|
||||||
help="""Maximum number of symbols per frame. Used only when
|
help="""Maximum number of symbols per frame. Used only when
|
||||||
--method is greedy_search.
|
--method is greedy_search.
|
||||||
""",
|
""",
|
||||||
@ -141,70 +146,6 @@ def get_parser():
|
|||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
def get_params() -> AttributeDict:
|
|
||||||
params = AttributeDict(
|
|
||||||
{
|
|
||||||
"sample_rate": 16000,
|
|
||||||
# parameters for conformer
|
|
||||||
"feature_dim": 80,
|
|
||||||
"encoder_out_dim": 512,
|
|
||||||
"subsampling_factor": 4,
|
|
||||||
"attention_dim": 512,
|
|
||||||
"nhead": 8,
|
|
||||||
"dim_feedforward": 2048,
|
|
||||||
"num_encoder_layers": 12,
|
|
||||||
"vgg_frontend": False,
|
|
||||||
"env_info": get_env_info(),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
return params
|
|
||||||
|
|
||||||
|
|
||||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
|
||||||
encoder = Conformer(
|
|
||||||
num_features=params.feature_dim,
|
|
||||||
output_dim=params.encoder_out_dim,
|
|
||||||
subsampling_factor=params.subsampling_factor,
|
|
||||||
d_model=params.attention_dim,
|
|
||||||
nhead=params.nhead,
|
|
||||||
dim_feedforward=params.dim_feedforward,
|
|
||||||
num_encoder_layers=params.num_encoder_layers,
|
|
||||||
vgg_frontend=params.vgg_frontend,
|
|
||||||
)
|
|
||||||
return encoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
|
||||||
decoder = Decoder(
|
|
||||||
vocab_size=params.vocab_size,
|
|
||||||
embedding_dim=params.encoder_out_dim,
|
|
||||||
blank_id=params.blank_id,
|
|
||||||
context_size=params.context_size,
|
|
||||||
)
|
|
||||||
return decoder
|
|
||||||
|
|
||||||
|
|
||||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
|
||||||
joiner = Joiner(
|
|
||||||
input_dim=params.encoder_out_dim,
|
|
||||||
output_dim=params.vocab_size,
|
|
||||||
)
|
|
||||||
return joiner
|
|
||||||
|
|
||||||
|
|
||||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
|
||||||
encoder = get_encoder_model(params)
|
|
||||||
decoder = get_decoder_model(params)
|
|
||||||
joiner = get_joiner_model(params)
|
|
||||||
|
|
||||||
model = Transducer(
|
|
||||||
encoder=encoder,
|
|
||||||
decoder=decoder,
|
|
||||||
joiner=joiner,
|
|
||||||
)
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def read_sound_files(
|
def read_sound_files(
|
||||||
filenames: List[str], expected_sample_rate: float
|
filenames: List[str], expected_sample_rate: float
|
||||||
) -> List[torch.Tensor]:
|
) -> List[torch.Tensor]:
|
||||||
@ -294,33 +235,46 @@ def main():
|
|||||||
)
|
)
|
||||||
|
|
||||||
num_waves = encoder_out.size(0)
|
num_waves = encoder_out.size(0)
|
||||||
hyps = []
|
hyp_list = []
|
||||||
msg = f"Using {params.method}"
|
msg = f"Using {params.method}"
|
||||||
if params.method == "beam_search":
|
if params.method == "beam_search":
|
||||||
msg += f" with beam size {params.beam_size}"
|
msg += f" with beam size {params.beam_size}"
|
||||||
logging.info(msg)
|
logging.info(msg)
|
||||||
for i in range(num_waves):
|
|
||||||
# fmt: off
|
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
|
||||||
# fmt: on
|
|
||||||
if params.method == "greedy_search":
|
|
||||||
hyp = greedy_search(
|
|
||||||
model=model,
|
|
||||||
encoder_out=encoder_out_i,
|
|
||||||
max_sym_per_frame=params.max_sym_per_frame,
|
|
||||||
)
|
|
||||||
elif params.method == "beam_search":
|
|
||||||
hyp = beam_search(
|
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
|
||||||
)
|
|
||||||
elif params.method == "modified_beam_search":
|
|
||||||
hyp = modified_beam_search(
|
|
||||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unsupported method: {params.method}")
|
|
||||||
|
|
||||||
hyps.append(sp.decode(hyp).split())
|
if params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_list = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
)
|
||||||
|
elif params.method == "modified_beam_search":
|
||||||
|
hyp_list = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
else:
|
||||||
|
for i in range(num_waves):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported method: {params.method}")
|
||||||
|
hyp_list.append(hyp)
|
||||||
|
|
||||||
|
hyps = [sp.decode(hyp).split() for hyp in hyp_list]
|
||||||
|
|
||||||
s = "\n"
|
s = "\n"
|
||||||
for filename, hyp in zip(params.sound_files, hyps):
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
@ -58,6 +58,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
|||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
import random
|
import random
|
||||||
|
import warnings
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from shutil import copyfile
|
from shutil import copyfile
|
||||||
from typing import Optional, Tuple
|
from typing import Optional, Tuple
|
||||||
@ -466,7 +467,11 @@ def compute_loss(
|
|||||||
assert loss.requires_grad == is_training
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
info = MetricsTracker()
|
info = MetricsTracker()
|
||||||
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
info["frames"] = (
|
||||||
|
(feature_lens // params.subsampling_factor).sum().item()
|
||||||
|
)
|
||||||
|
|
||||||
# Note: We use reduction=sum while computing the loss.
|
# Note: We use reduction=sum while computing the loss.
|
||||||
info["loss"] = loss.detach().cpu().item()
|
info["loss"] = loss.detach().cpu().item()
|
||||||
|
@ -0,0 +1,55 @@
|
|||||||
|
from .checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
remove_checkpoints,
|
||||||
|
save_checkpoint,
|
||||||
|
save_checkpoint_with_global_batch_idx,
|
||||||
|
)
|
||||||
|
|
||||||
|
from .decode import (
|
||||||
|
get_lattice,
|
||||||
|
nbest_decoding,
|
||||||
|
nbest_oracle,
|
||||||
|
one_best_decoding,
|
||||||
|
rescore_with_attention_decoder,
|
||||||
|
rescore_with_n_best_list,
|
||||||
|
rescore_with_whole_lattice,
|
||||||
|
)
|
||||||
|
|
||||||
|
from .dist import (
|
||||||
|
cleanup_dist,
|
||||||
|
setup_dist,
|
||||||
|
)
|
||||||
|
|
||||||
|
from .env import (
|
||||||
|
get_env_info,
|
||||||
|
get_git_branch_name,
|
||||||
|
get_git_date,
|
||||||
|
get_git_sha1,
|
||||||
|
)
|
||||||
|
|
||||||
|
from .utils import (
|
||||||
|
AttributeDict,
|
||||||
|
MetricsTracker,
|
||||||
|
add_eos,
|
||||||
|
add_sos,
|
||||||
|
concat,
|
||||||
|
encode_supervisions,
|
||||||
|
get_alignments,
|
||||||
|
get_executor,
|
||||||
|
get_texts,
|
||||||
|
l1_norm,
|
||||||
|
l2_norm,
|
||||||
|
linf_norm,
|
||||||
|
load_alignments,
|
||||||
|
make_pad_mask,
|
||||||
|
measure_gradient_norms,
|
||||||
|
measure_weight_norms,
|
||||||
|
optim_step_and_measure_param_change,
|
||||||
|
save_alignments,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
@ -216,27 +216,62 @@ def save_checkpoint_with_global_batch_idx(
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def find_checkpoints(out_dir: Path) -> List[str]:
|
def find_checkpoints(out_dir: Path, iteration: int = 0) -> List[str]:
|
||||||
"""Find all available checkpoints in a directory.
|
"""Find all available checkpoints in a directory.
|
||||||
|
|
||||||
The checkpoint filenames have the form: `checkpoint-xxx.pt`
|
The checkpoint filenames have the form: `checkpoint-xxx.pt`
|
||||||
where xxx is a numerical value.
|
where xxx is a numerical value.
|
||||||
|
|
||||||
|
Assume you have the following checkpoints in the folder `foo`:
|
||||||
|
|
||||||
|
- checkpoint-1.pt
|
||||||
|
- checkpoint-20.pt
|
||||||
|
- checkpoint-300.pt
|
||||||
|
- checkpoint-4000.pt
|
||||||
|
|
||||||
|
Case 1 (Return all checkpoints)::
|
||||||
|
|
||||||
|
find_checkpoints(out_dir='foo')
|
||||||
|
|
||||||
|
Case 2 (Return checkpoints newer than checkpoint-20.pt, i.e.,
|
||||||
|
checkpoint-4000.pt, checkpoint-300.pt, and checkpoint-20.pt)
|
||||||
|
|
||||||
|
find_checkpoints(out_dir='foo', iteration=20)
|
||||||
|
|
||||||
|
Case 3 (Return checkpoints older than checkpoint-20.pt, i.e.,
|
||||||
|
checkpoint-20.pt, checkpoint-1.pt)::
|
||||||
|
|
||||||
|
find_checkpoints(out_dir='foo', iteration=-20)
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
out_dir:
|
out_dir:
|
||||||
The directory where to search for checkpoints.
|
The directory where to search for checkpoints.
|
||||||
|
iteration:
|
||||||
|
If it is 0, return all available checkpoints.
|
||||||
|
If it is positive, return the checkpoints whose iteration number is
|
||||||
|
greater than or equal to `iteration`.
|
||||||
|
If it is negative, return the checkpoints whose iteration number is
|
||||||
|
less than or equal to `-iteration`.
|
||||||
Returns:
|
Returns:
|
||||||
Return a list of checkpoint filenames, sorted in descending
|
Return a list of checkpoint filenames, sorted in descending
|
||||||
order by the numerical value in the filename.
|
order by the numerical value in the filename.
|
||||||
"""
|
"""
|
||||||
checkpoints = list(glob.glob(f"{out_dir}/checkpoint-[0-9]*.pt"))
|
checkpoints = list(glob.glob(f"{out_dir}/checkpoint-[0-9]*.pt"))
|
||||||
pattern = re.compile(r"checkpoint-([0-9]+).pt")
|
pattern = re.compile(r"checkpoint-([0-9]+).pt")
|
||||||
idx_checkpoints = [
|
iter_checkpoints = [
|
||||||
(int(pattern.search(c).group(1)), c) for c in checkpoints
|
(int(pattern.search(c).group(1)), c) for c in checkpoints
|
||||||
]
|
]
|
||||||
|
# iter_checkpoints is a list of tuples. Each tuple contains
|
||||||
|
# two elements: (iteration_number, checkpoint-iteration_number.pt)
|
||||||
|
|
||||||
|
iter_checkpoints = sorted(
|
||||||
|
iter_checkpoints, reverse=True, key=lambda x: x[0]
|
||||||
|
)
|
||||||
|
if iteration >= 0:
|
||||||
|
ans = [ic[1] for ic in iter_checkpoints if ic[0] >= iteration]
|
||||||
|
else:
|
||||||
|
ans = [ic[1] for ic in iter_checkpoints if ic[0] <= -iteration]
|
||||||
|
|
||||||
idx_checkpoints = sorted(idx_checkpoints, reverse=True, key=lambda x: x[0])
|
|
||||||
ans = [ic[1] for ic in idx_checkpoints]
|
|
||||||
return ans
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@ -135,8 +135,13 @@ def get_diagnostics_for_dim(
|
|||||||
return ""
|
return ""
|
||||||
count = sum(counts)
|
count = sum(counts)
|
||||||
stats = stats / count
|
stats = stats / count
|
||||||
stats, _ = torch.symeig(stats)
|
try:
|
||||||
stats = stats.abs().sqrt()
|
eigs, _ = torch.symeig(stats)
|
||||||
|
stats = eigs.abs().sqrt()
|
||||||
|
except: # noqa
|
||||||
|
print("Error getting eigenvalues, trying another method.")
|
||||||
|
eigs = torch.linalg.eigvals(stats)
|
||||||
|
stats = eigs.abs().sqrt()
|
||||||
# sqrt so it reflects data magnitude, like stddev- not variance
|
# sqrt so it reflects data magnitude, like stddev- not variance
|
||||||
elif sizes_same:
|
elif sizes_same:
|
||||||
stats = torch.stack(stats).sum(dim=0)
|
stats = torch.stack(stats).sum(dim=0)
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
[tool.isort]
|
[tool.isort]
|
||||||
profile = "black"
|
profile = "black"
|
||||||
|
skip = ["icefall/__init__.py"]
|
||||||
|
|
||||||
[tool.black]
|
[tool.black]
|
||||||
line-length = 80
|
line-length = 80
|
||||||
|
@ -11,7 +11,7 @@ graphviz==0.19.1
|
|||||||
-f https://download.pytorch.org/whl/cpu/torch_stable.html torch==1.10.0+cpu
|
-f https://download.pytorch.org/whl/cpu/torch_stable.html torch==1.10.0+cpu
|
||||||
-f https://download.pytorch.org/whl/cpu/torch_stable.html torchaudio==0.10.0+cpu
|
-f https://download.pytorch.org/whl/cpu/torch_stable.html torchaudio==0.10.0+cpu
|
||||||
|
|
||||||
-f https://k2-fsa.org/nightly/ k2==1.9.dev20211101+cpu.torch1.10.0
|
-f https://k2-fsa.org/nightly/ k2==1.14.dev20220316+cpu.torch1.10.0
|
||||||
|
|
||||||
git+https://github.com/lhotse-speech/lhotse
|
git+https://github.com/lhotse-speech/lhotse
|
||||||
kaldilm==1.11
|
kaldilm==1.11
|
||||||
|
Loading…
x
Reference in New Issue
Block a user