mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-12 11:32:19 +00:00
add parse_fsa_timestamps_and_texts function, test in conformer_ctc3/decode.py
This commit is contained in:
parent
0e4f7c59c2
commit
3e1d14b9f8
@ -96,8 +96,7 @@ from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
get_texts,
|
||||
get_texts_with_timestamp,
|
||||
parse_hyp_and_timestamp,
|
||||
parse_fsa_timestamps_and_texts,
|
||||
setup_logger,
|
||||
store_transcripts_and_timestamps,
|
||||
str2bool,
|
||||
@ -396,13 +395,8 @@ def decode_one_batch(
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
# Note: `best_path.aux_labels` contains token IDs, not word IDs
|
||||
# since we are using H, not HLG here.
|
||||
#
|
||||
# token_ids is a lit-of-list of IDs
|
||||
res = get_texts_with_timestamp(best_path)
|
||||
hyps, timestamps = parse_hyp_and_timestamp(
|
||||
res=res,
|
||||
timestamps, hyps = parse_fsa_timestamps_and_texts(
|
||||
best_paths=best_path,
|
||||
sp=bpe_model,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
frame_shift_ms=params.frame_shift_ms,
|
||||
@ -435,12 +429,11 @@ def decode_one_batch(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
key = f"no_rescore_hlg_scale_{params.hlg_scale}"
|
||||
res = get_texts_with_timestamp(best_path)
|
||||
hyps, timestamps = parse_hyp_and_timestamp(
|
||||
res=res,
|
||||
timestamps, hyps = parse_fsa_timestamps_and_texts(
|
||||
best_paths=best_path,
|
||||
word_table=word_table,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
frame_shift_ms=params.frame_shift_ms,
|
||||
word_table=word_table,
|
||||
)
|
||||
else:
|
||||
best_path = nbest_decoding(
|
||||
@ -504,7 +497,18 @@ def decode_dataset(
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str], List[float], List[float]]]]:
|
||||
) -> Dict[
|
||||
str,
|
||||
List[
|
||||
Tuple[
|
||||
str,
|
||||
List[str],
|
||||
List[str],
|
||||
List[Tuple[float, float]],
|
||||
List[Tuple[float, float]],
|
||||
]
|
||||
],
|
||||
]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
@ -555,7 +559,7 @@ def decode_dataset(
|
||||
time = []
|
||||
if s.alignment is not None and "word" in s.alignment:
|
||||
time = [
|
||||
aliword.start
|
||||
(aliword.start, aliword.end)
|
||||
for aliword in s.alignment["word"]
|
||||
if aliword.symbol != ""
|
||||
]
|
||||
@ -601,7 +605,15 @@ def save_results(
|
||||
test_set_name: str,
|
||||
results_dict: Dict[
|
||||
str,
|
||||
List[Tuple[List[str], List[str], List[str], List[float], List[float]]],
|
||||
List[
|
||||
Tuple[
|
||||
List[str],
|
||||
List[str],
|
||||
List[str],
|
||||
List[Tuple[float, float]],
|
||||
List[Tuple[float, float]],
|
||||
]
|
||||
],
|
||||
],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
|
102
icefall/utils.py
102
icefall/utils.py
@ -454,11 +454,32 @@ def store_transcripts_and_timestamps(
|
||||
for cut_id, ref, hyp, time_ref, time_hyp in texts:
|
||||
print(f"{cut_id}:\tref={ref}", file=f)
|
||||
print(f"{cut_id}:\thyp={hyp}", file=f)
|
||||
|
||||
if len(time_ref) > 0:
|
||||
s = "[" + ", ".join(["%0.3f" % i for i in time_ref]) + "]"
|
||||
if isinstance(time_ref[0], tuple):
|
||||
# each element is <start, end> pair
|
||||
s = (
|
||||
"["
|
||||
+ ", ".join(["(%0.3f, %.03f)" % (i, j) for (i, j) in time_ref])
|
||||
+ "]"
|
||||
)
|
||||
else:
|
||||
# each element is a float number
|
||||
s = "[" + ", ".join(["%0.3f" % i for i in time_ref]) + "]"
|
||||
print(f"{cut_id}:\ttimestamp_ref={s}", file=f)
|
||||
s = "[" + ", ".join(["%0.3f" % i for i in time_hyp]) + "]"
|
||||
print(f"{cut_id}:\ttimestamp_hyp={s}", file=f)
|
||||
|
||||
if len(time_hyp) > 0:
|
||||
if isinstance(time_hyp[0], tuple):
|
||||
# each element is <start, end> pair
|
||||
s = (
|
||||
"["
|
||||
+ ", ".join(["(%0.3f, %.03f)" % (i, j) for (i, j) in time_hyp])
|
||||
+ "]"
|
||||
)
|
||||
else:
|
||||
# each element is a float number
|
||||
s = "[" + ", ".join(["%0.3f" % i for i in time_hyp]) + "]"
|
||||
print(f"{cut_id}:\ttimestamp_hyp={s}", file=f)
|
||||
|
||||
|
||||
def write_error_stats(
|
||||
@ -1493,7 +1514,9 @@ def parse_bpe_start_end_pairs(
|
||||
end = i
|
||||
|
||||
if start != -1 and end != -1:
|
||||
pairs.append((start, end))
|
||||
if not all([tokens[t] == start_token for t in range(start, end + 1)]):
|
||||
# except the case of all start_token
|
||||
pairs.append((start, end))
|
||||
# Reset start and end
|
||||
start = -1
|
||||
end = -1
|
||||
@ -1554,7 +1577,7 @@ def parse_bpe_timestamps_and_texts(
|
||||
# Indicates whether it is the first token, i.e., not-repeat and not-blank.
|
||||
is_first_token = [a != 0 for a in all_aux_labels[i]]
|
||||
index_pairs = parse_bpe_start_end_pairs(tokens, is_first_token)
|
||||
assert len(index_pairs) == len(words), (len(index_pairs), len(words))
|
||||
assert len(index_pairs) == len(words), (len(index_pairs), len(words), tokens)
|
||||
utt_index_pairs.append(index_pairs)
|
||||
utt_words.append(words)
|
||||
|
||||
@ -1628,3 +1651,72 @@ def parse_timestamps_and_texts(
|
||||
utt_words.append(words)
|
||||
|
||||
return utt_index_pairs, utt_words
|
||||
|
||||
|
||||
def parse_fsa_timestamps_and_texts(
|
||||
best_paths: k2.Fsa,
|
||||
sp: Optional[spm.SentencePieceProcessor] = None,
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
subsampling_factor: int = 4,
|
||||
frame_shift_ms: float = 10,
|
||||
) -> Tuple[List[Tuple[float, float]], List[List[str]]]:
|
||||
"""Parse timestamps (in seconds) and texts for given decoded fsa paths.
|
||||
Currently it supports two case:
|
||||
(1) ctc-decoding, the attribtutes `labels` and `aux_labels`
|
||||
are both BPE tokens. In this case, sp should be provided.
|
||||
(2) HLG-based 1best, the attribtute `labels` is the prediction unit,
|
||||
e.g., phone or BPE tokens; attribute `aux_labels` is the word index.
|
||||
In this case, word_table should be provided.
|
||||
|
||||
Args:
|
||||
best_paths:
|
||||
A k2.Fsa with best_paths.arcs.num_axes() == 3, i.e.
|
||||
containing multiple FSAs, which is expected to be the result
|
||||
of k2.shortest_path (otherwise the returned values won't
|
||||
be meaningful).
|
||||
sp:
|
||||
The BPE model.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
subsampling_factor:
|
||||
The subsampling factor of the model.
|
||||
frame_shift_ms:
|
||||
Frame shift in milliseconds between two contiguous frames.
|
||||
|
||||
Returns:
|
||||
utt_time_pairs:
|
||||
A list of pair list. utt_time_pairs[i] is a list of
|
||||
(start-time, end-time) pairs for each word in
|
||||
utterance-i.
|
||||
utt_words:
|
||||
A list of str list. utt_words[i] is a word list of utterence-i.
|
||||
"""
|
||||
if sp is not None:
|
||||
assert word_table is None, "word_table is not needed if sp is provided."
|
||||
utt_index_pairs, utt_words = parse_bpe_timestamps_and_texts(
|
||||
best_paths=best_paths, sp=sp
|
||||
)
|
||||
elif word_table is not None:
|
||||
assert sp is None, "sp is not needed if word_table is provided."
|
||||
utt_index_pairs, utt_words = parse_timestamps_and_texts(
|
||||
best_paths=best_paths, word_table=word_table
|
||||
)
|
||||
else:
|
||||
raise ValueError("Either sp or word_table should be provided.")
|
||||
|
||||
utt_time_pairs = []
|
||||
for utt in utt_index_pairs:
|
||||
start = convert_timestamp(
|
||||
frames=[i[0] for i in utt],
|
||||
subsampling_factor=subsampling_factor,
|
||||
frame_shift_ms=frame_shift_ms,
|
||||
)
|
||||
end = convert_timestamp(
|
||||
# The duration in frames is (end_frame_index - start_frame_index + 1)
|
||||
frames=[i[1] + 1 for i in utt],
|
||||
subsampling_factor=subsampling_factor,
|
||||
frame_shift_ms=frame_shift_ms,
|
||||
)
|
||||
utt_time_pairs.append(list(zip(start, end)))
|
||||
|
||||
return utt_time_pairs, utt_words
|
||||
|
Loading…
x
Reference in New Issue
Block a user