add parse_fsa_timestamps_and_texts function, test in conformer_ctc3/decode.py

This commit is contained in:
yaozengwei 2023-02-07 14:59:29 +08:00
parent 0e4f7c59c2
commit 3e1d14b9f8
2 changed files with 125 additions and 21 deletions

View File

@ -96,8 +96,7 @@ from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
get_texts,
get_texts_with_timestamp,
parse_hyp_and_timestamp,
parse_fsa_timestamps_and_texts,
setup_logger,
store_transcripts_and_timestamps,
str2bool,
@ -396,13 +395,8 @@ def decode_one_batch(
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
# Note: `best_path.aux_labels` contains token IDs, not word IDs
# since we are using H, not HLG here.
#
# token_ids is a lit-of-list of IDs
res = get_texts_with_timestamp(best_path)
hyps, timestamps = parse_hyp_and_timestamp(
res=res,
timestamps, hyps = parse_fsa_timestamps_and_texts(
best_paths=best_path,
sp=bpe_model,
subsampling_factor=params.subsampling_factor,
frame_shift_ms=params.frame_shift_ms,
@ -435,12 +429,11 @@ def decode_one_batch(
lattice=lattice, use_double_scores=params.use_double_scores
)
key = f"no_rescore_hlg_scale_{params.hlg_scale}"
res = get_texts_with_timestamp(best_path)
hyps, timestamps = parse_hyp_and_timestamp(
res=res,
timestamps, hyps = parse_fsa_timestamps_and_texts(
best_paths=best_path,
word_table=word_table,
subsampling_factor=params.subsampling_factor,
frame_shift_ms=params.frame_shift_ms,
word_table=word_table,
)
else:
best_path = nbest_decoding(
@ -504,7 +497,18 @@ def decode_dataset(
sos_id: int,
eos_id: int,
G: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[str, List[str], List[str], List[float], List[float]]]]:
) -> Dict[
str,
List[
Tuple[
str,
List[str],
List[str],
List[Tuple[float, float]],
List[Tuple[float, float]],
]
],
]:
"""Decode dataset.
Args:
@ -555,7 +559,7 @@ def decode_dataset(
time = []
if s.alignment is not None and "word" in s.alignment:
time = [
aliword.start
(aliword.start, aliword.end)
for aliword in s.alignment["word"]
if aliword.symbol != ""
]
@ -601,7 +605,15 @@ def save_results(
test_set_name: str,
results_dict: Dict[
str,
List[Tuple[List[str], List[str], List[str], List[float], List[float]]],
List[
Tuple[
List[str],
List[str],
List[str],
List[Tuple[float, float]],
List[Tuple[float, float]],
]
],
],
):
test_set_wers = dict()

View File

@ -454,9 +454,30 @@ def store_transcripts_and_timestamps(
for cut_id, ref, hyp, time_ref, time_hyp in texts:
print(f"{cut_id}:\tref={ref}", file=f)
print(f"{cut_id}:\thyp={hyp}", file=f)
if len(time_ref) > 0:
if isinstance(time_ref[0], tuple):
# each element is <start, end> pair
s = (
"["
+ ", ".join(["(%0.3f, %.03f)" % (i, j) for (i, j) in time_ref])
+ "]"
)
else:
# each element is a float number
s = "[" + ", ".join(["%0.3f" % i for i in time_ref]) + "]"
print(f"{cut_id}:\ttimestamp_ref={s}", file=f)
if len(time_hyp) > 0:
if isinstance(time_hyp[0], tuple):
# each element is <start, end> pair
s = (
"["
+ ", ".join(["(%0.3f, %.03f)" % (i, j) for (i, j) in time_hyp])
+ "]"
)
else:
# each element is a float number
s = "[" + ", ".join(["%0.3f" % i for i in time_hyp]) + "]"
print(f"{cut_id}:\ttimestamp_hyp={s}", file=f)
@ -1493,6 +1514,8 @@ def parse_bpe_start_end_pairs(
end = i
if start != -1 and end != -1:
if not all([tokens[t] == start_token for t in range(start, end + 1)]):
# except the case of all start_token
pairs.append((start, end))
# Reset start and end
start = -1
@ -1554,7 +1577,7 @@ def parse_bpe_timestamps_and_texts(
# Indicates whether it is the first token, i.e., not-repeat and not-blank.
is_first_token = [a != 0 for a in all_aux_labels[i]]
index_pairs = parse_bpe_start_end_pairs(tokens, is_first_token)
assert len(index_pairs) == len(words), (len(index_pairs), len(words))
assert len(index_pairs) == len(words), (len(index_pairs), len(words), tokens)
utt_index_pairs.append(index_pairs)
utt_words.append(words)
@ -1628,3 +1651,72 @@ def parse_timestamps_and_texts(
utt_words.append(words)
return utt_index_pairs, utt_words
def parse_fsa_timestamps_and_texts(
best_paths: k2.Fsa,
sp: Optional[spm.SentencePieceProcessor] = None,
word_table: Optional[k2.SymbolTable] = None,
subsampling_factor: int = 4,
frame_shift_ms: float = 10,
) -> Tuple[List[Tuple[float, float]], List[List[str]]]:
"""Parse timestamps (in seconds) and texts for given decoded fsa paths.
Currently it supports two case:
(1) ctc-decoding, the attribtutes `labels` and `aux_labels`
are both BPE tokens. In this case, sp should be provided.
(2) HLG-based 1best, the attribtute `labels` is the prediction unit,
e.g., phone or BPE tokens; attribute `aux_labels` is the word index.
In this case, word_table should be provided.
Args:
best_paths:
A k2.Fsa with best_paths.arcs.num_axes() == 3, i.e.
containing multiple FSAs, which is expected to be the result
of k2.shortest_path (otherwise the returned values won't
be meaningful).
sp:
The BPE model.
word_table:
The word symbol table.
subsampling_factor:
The subsampling factor of the model.
frame_shift_ms:
Frame shift in milliseconds between two contiguous frames.
Returns:
utt_time_pairs:
A list of pair list. utt_time_pairs[i] is a list of
(start-time, end-time) pairs for each word in
utterance-i.
utt_words:
A list of str list. utt_words[i] is a word list of utterence-i.
"""
if sp is not None:
assert word_table is None, "word_table is not needed if sp is provided."
utt_index_pairs, utt_words = parse_bpe_timestamps_and_texts(
best_paths=best_paths, sp=sp
)
elif word_table is not None:
assert sp is None, "sp is not needed if word_table is provided."
utt_index_pairs, utt_words = parse_timestamps_and_texts(
best_paths=best_paths, word_table=word_table
)
else:
raise ValueError("Either sp or word_table should be provided.")
utt_time_pairs = []
for utt in utt_index_pairs:
start = convert_timestamp(
frames=[i[0] for i in utt],
subsampling_factor=subsampling_factor,
frame_shift_ms=frame_shift_ms,
)
end = convert_timestamp(
# The duration in frames is (end_frame_index - start_frame_index + 1)
frames=[i[1] + 1 for i in utt],
subsampling_factor=subsampling_factor,
frame_shift_ms=frame_shift_ms,
)
utt_time_pairs.append(list(zip(start, end)))
return utt_time_pairs, utt_words