mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
from local
This commit is contained in:
parent
299885310c
commit
3df12ef89d
Binary file not shown.
@ -155,8 +155,6 @@ class Conformer(Transformer):
|
||||
x += self.sigmoid(alpha) * layer_outputs[(enum+1)*self.group_layer_num-1]
|
||||
x = self.layer_norm(x/self.group_num)
|
||||
# x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
|
||||
# return x, lengths
|
||||
return x, mask
|
||||
|
||||
|
||||
0
egs/tedlium2/ASR/conformer_ctc2/__init__.py
Normal file
0
egs/tedlium2/ASR/conformer_ctc2/__init__.py
Normal file
453
egs/tedlium2/ASR/conformer_ctc2/asr_datamodule.py
Normal file
453
egs/tedlium2/ASR/conformer_ctc2/asr_datamodule.py
Normal file
@ -0,0 +1,453 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import inspect
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||
AudioSamples,
|
||||
OnTheFlyFeatures,
|
||||
)
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class _SeedWorkers:
|
||||
def __init__(self, seed: int):
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, worker_id: int):
|
||||
fix_random_seed(self.seed + worker_id)
|
||||
|
||||
|
||||
class LibriSpeechAsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--full-libri",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use 960h LibriSpeech. Otherwise, use 100h subset.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to drop last batch. Used by sampler.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use SpecAugment for training dataset.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-musan",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, select noise from MUSAN and mix it"
|
||||
"with training dataset. ",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--input-strategy",
|
||||
type=str,
|
||||
default="PrecomputedFeatures",
|
||||
help="AudioSamples or PrecomputedFeatures",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
transforms = []
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = []
|
||||
if self.args.enable_spec_aug:
|
||||
logging.info("Enable SpecAugment")
|
||||
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||
# Set the value of num_frame_masks according to Lhotse's version.
|
||||
# In different Lhotse's versions, the default of num_frame_masks is
|
||||
# different.
|
||||
num_frame_masks = 10
|
||||
num_frame_masks_parameter = inspect.signature(
|
||||
SpecAugment.__init__
|
||||
).parameters["num_frame_masks"]
|
||||
if num_frame_masks_parameter.default == 1:
|
||||
num_frame_masks = 2
|
||||
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||
input_transforms.append(
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=num_frame_masks,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable SpecAugment")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
train = K2SpeechRecognitionDataset(
|
||||
input_strategy=eval(self.args.input_strategy)(),
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SingleCutSampler.")
|
||||
train_sampler = SingleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
# 'seed' is derived from the current random state, which will have
|
||||
# previously been set in the main process.
|
||||
seed = torch.randint(0, 100000, ()).item()
|
||||
worker_init_fn = _SeedWorkers(seed)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
worker_init_fn=worker_init_fn,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else eval(self.args.input_strategy)(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_clean_100_cuts(self) -> CutSet:
|
||||
logging.info("About to get train-clean-100 cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_train-clean-100.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_clean_360_cuts(self) -> CutSet:
|
||||
logging.info("About to get train-clean-360 cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_train-clean-360.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_other_500_cuts(self) -> CutSet:
|
||||
logging.info("About to get train-other-500 cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_train-other-500.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_all_shuf_cuts(self) -> CutSet:
|
||||
logging.info(
|
||||
"About to get the shuffled train-clean-100, \
|
||||
train-clean-360 and train-other-500 cuts"
|
||||
)
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_train-all-shuf.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_clean_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev-clean cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_dev-clean.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_other_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev-other cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_dev-other.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_clean_cuts(self) -> CutSet:
|
||||
logging.info("About to get test-clean cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_test-clean.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_other_cuts(self) -> CutSet:
|
||||
logging.info("About to get test-other cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "librispeech_cuts_test-other.jsonl.gz"
|
||||
)
|
||||
236
egs/tedlium2/ASR/conformer_ctc2/asr_metrics.py
Normal file
236
egs/tedlium2/ASR/conformer_ctc2/asr_metrics.py
Normal file
@ -0,0 +1,236 @@
|
||||
from __future__ import unicode_literals
|
||||
import logging
|
||||
from typing import Any, Dict, List, Tuple, Union
|
||||
import sys
|
||||
import pandas as pd
|
||||
import jiwer
|
||||
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
def levenshtein(u, v):
|
||||
prev = None
|
||||
curr = [0] + list(range(1, len(v) + 1))
|
||||
# Operations: (SUB, DEL, INS)
|
||||
prev_ops = None
|
||||
curr_ops = [(0, 0, i) for i in range(len(v) + 1)]
|
||||
for x in range(1, len(u) + 1):
|
||||
prev, curr = curr, [x] + ([None] * len(v))
|
||||
prev_ops, curr_ops = curr_ops, [(0, x, 0)] + ([None] * len(v))
|
||||
for y in range(1, len(v) + 1):
|
||||
delcost = prev[y] + 1
|
||||
addcost = curr[y - 1] + 1
|
||||
subcost = prev[y - 1] + int(u[x - 1] != v[y - 1])
|
||||
curr[y] = min(subcost, delcost, addcost)
|
||||
if curr[y] == subcost:
|
||||
(n_s, n_d, n_i) = prev_ops[y - 1]
|
||||
curr_ops[y] = (n_s + int(u[x - 1] != v[y - 1]), n_d, n_i)
|
||||
elif curr[y] == delcost:
|
||||
(n_s, n_d, n_i) = prev_ops[y]
|
||||
curr_ops[y] = (n_s, n_d + 1, n_i)
|
||||
else:
|
||||
(n_s, n_d, n_i) = curr_ops[y - 1]
|
||||
curr_ops[y] = (n_s, n_d, n_i + 1)
|
||||
return curr[len(v)], curr_ops[len(v)]
|
||||
|
||||
|
||||
|
||||
def get_unicode_code(text):
|
||||
result = ''.join( char if ord(char) < 128 else '\\u'+format(ord(char), 'x') for char in text )
|
||||
return result
|
||||
|
||||
|
||||
def _measure_cer(
|
||||
reference : str, transcription : str
|
||||
) -> Tuple[int, int, int, int]:
|
||||
"""
|
||||
소스 단어를 대상 단아로 변환하는 데 필요한 편집 작업(삭제, 삽입, 바꾸기)의 수를 확인합니다.
|
||||
hints 횟수는 소스 딘아의 전체 길이에서 삭제 및 대체 횟수를 빼서 제공할 수 있습니다.
|
||||
|
||||
:param transcription: 대상 단어로 변환할 소스 문자열
|
||||
:param reference: 소스 단어
|
||||
:return: a tuple of #hits, #substitutions, #deletions, #insertions
|
||||
"""
|
||||
|
||||
ref, hyp = [], []
|
||||
|
||||
ref.append(reference)
|
||||
hyp.append(transcription)
|
||||
|
||||
#print("? : ", ref)
|
||||
|
||||
cer_s, cer_i, cer_d, cer_n = 0, 0, 0, 0
|
||||
sen_err = 0
|
||||
|
||||
for n in range(len(ref)):
|
||||
# update CER statistics
|
||||
_, (s, i, d) = levenshtein(hyp[n], ref[n])
|
||||
cer_s += s
|
||||
cer_i += i
|
||||
cer_d += d
|
||||
cer_n += len(ref[n])
|
||||
|
||||
# update SER statistics
|
||||
if s + i + d > 0:
|
||||
sen_err += 1
|
||||
|
||||
|
||||
|
||||
'''
|
||||
print("reference : ",reference)
|
||||
print("cer S : ", cer_s)
|
||||
print("cer I : ", cer_i)
|
||||
print("cer D : ", cer_d)
|
||||
print("cer_n : ", cer_n)
|
||||
|
||||
|
||||
if cer_n > 0:
|
||||
print('CER: %g%%, SER: %g%%' % (
|
||||
(100.0 * (cer_s + cer_i + cer_d)) / cer_n,
|
||||
(100.0 * sen_err) / len(ref)))
|
||||
'''
|
||||
substitutions = cer_s
|
||||
deletions = cer_d
|
||||
insertions = cer_i
|
||||
hits = len(reference) - (substitutions + deletions) #correct characters
|
||||
|
||||
return hits, substitutions, deletions, insertions
|
||||
|
||||
def _measure_wer(
|
||||
reference : str, transcription : str
|
||||
) -> Tuple[int, int, int, int]:
|
||||
"""
|
||||
소스 문자열을 대상 문자열로 변환하는 데 필요한 편집 작업(삭제, 삽입, 바꾸기)의 수를 확인합니다.
|
||||
hints 횟수는 소스 문자열의 전체 길이에서 삭제 및 대체 횟수를 빼서 제공할 수 있습니다.
|
||||
|
||||
:param transcription: 대상 단어
|
||||
:param reference: 소스 단어
|
||||
:return: a tuple of #hits, #substitutions, #deletions, #insertions
|
||||
"""
|
||||
|
||||
ref, hyp = [], []
|
||||
|
||||
ref.append(reference)
|
||||
hyp.append(transcription)
|
||||
|
||||
#print("? : ", ref)
|
||||
|
||||
wer_s, wer_i, wer_d, wer_n = 0, 0, 0, 0
|
||||
sen_err = 0
|
||||
|
||||
for n in range(len(ref)):
|
||||
# update WER statistics
|
||||
_, (s, i, d) = levenshtein(hyp[n].split(), ref[n].split())
|
||||
wer_s += s
|
||||
wer_i += i
|
||||
wer_d += d
|
||||
wer_n += len(ref[n].split())
|
||||
# update SER statistics
|
||||
if s + i + d > 0:
|
||||
sen_err += 1
|
||||
|
||||
|
||||
|
||||
#print("reference : ",reference)
|
||||
#print("reference cnt : ", reference.split())
|
||||
#print("wer S : ", wer_s)
|
||||
#print("wer I : ", wer_i)
|
||||
#print("wer D : ", wer_d)
|
||||
#print("wer_n : ", wer_n)
|
||||
|
||||
|
||||
if wer_n > 0:
|
||||
print('WER: %g%%, SER: %g%%' % (
|
||||
(100.0 * (wer_s + wer_i + wer_d)) / wer_n,
|
||||
(100.0 * sen_err) / len(ref)))
|
||||
|
||||
substitutions = wer_s
|
||||
deletions = wer_d
|
||||
insertions = wer_i
|
||||
hits = len(reference.split()) - (substitutions + deletions) #correct words between refs and trans
|
||||
|
||||
return hits, substitutions, deletions, insertions
|
||||
|
||||
|
||||
|
||||
|
||||
def _measure_er(
|
||||
reference : str, transcription : str
|
||||
) -> Tuple[int, int]:
|
||||
"""
|
||||
TBD
|
||||
:param transcription: 대상 문자열로 변환할 소스 문자열
|
||||
:param reference:
|
||||
:return: a tuple of #
|
||||
"""
|
||||
TBD1 =""
|
||||
TBD2 =""
|
||||
return TBD1, TBD2
|
||||
|
||||
|
||||
def get_cer(reference, transcription, rm_punctuation = True
|
||||
) -> Tuple[int, int, int, int]:
|
||||
|
||||
# 문자 오류율(CER)은 자동 음성 인식 시스템의 성능에 대한 일반적인 메트릭입니다.
|
||||
# CER은 WER(단어 오류율)과 유사하지만 단어 대신 문자에 대해 작동합니다.
|
||||
# 이 코드에서는 문제는 사람들이 띄어쓰기를 지키지 않고 작성한 텍스트를 컴퓨터가 정확하게 인식하는 것이 매우 어렵기 때문에 인식에러에서 생략합니다.
|
||||
# CER의 출력은 특히 삽입 수가 많은 경우 항상 0과 1 사이의 숫자가 아닙니다. 이 값은 종종 잘못 예측된 문자의 백분율과 연관됩니다. 값이 낮을수록 좋습니다.
|
||||
# CER이 0인 ASR 시스템의 성능은 완벽한 점수입니다.
|
||||
|
||||
# CER = (S + D + I) / N = (S + D + I) / (S + D + C)
|
||||
# S is the number of the substitutions,
|
||||
# D is the number of the deletions,
|
||||
# I is the number of the insertions,
|
||||
# C is the number of the correct characters,
|
||||
# N is the number of the characters in the reference (N=S+D+C).
|
||||
|
||||
refs = jiwer.RemoveWhiteSpace(replace_by_space=False)(reference)
|
||||
trans = jiwer.RemoveWhiteSpace(replace_by_space=False)(transcription)
|
||||
|
||||
if rm_punctuation == True:
|
||||
refs = jiwer.RemovePunctuation()(refs)
|
||||
trans = jiwer.RemovePunctuation()(trans)
|
||||
else:
|
||||
refs = reference
|
||||
trans = transcription
|
||||
|
||||
#print("refs : ", refs)
|
||||
|
||||
[hits ,cer_s, cer_d, cer_i] = _measure_cer(refs, trans)
|
||||
|
||||
substitutions = cer_s
|
||||
deletions = cer_d
|
||||
insertions = cer_i
|
||||
#print("tmp hits : ", hits)
|
||||
incorrect = substitutions + deletions + insertions
|
||||
total = substitutions + deletions + hits + insertions
|
||||
|
||||
cer = incorrect / total
|
||||
return cer, substitutions, deletions, insertions
|
||||
|
||||
|
||||
def get_wer(reference, transcription, rm_punctuation = True
|
||||
)-> Tuple[int, int, int, int]:
|
||||
|
||||
# WER = (S + D + I) / N = (S + D + I) / (S + D + C)
|
||||
# S is the number of the substitutions,
|
||||
# D is the number of the deletions,
|
||||
# I is the number of the insertions,
|
||||
# C is the number of the correct words,
|
||||
# N is the number of the words in the reference (N=S+D+C).
|
||||
if rm_punctuation == True:
|
||||
refs = jiwer.RemovePunctuation()(reference)
|
||||
trans = jiwer.RemovePunctuation()(transcription)
|
||||
else:
|
||||
refs = reference
|
||||
trans = transcription
|
||||
[hits, wer_s, wer_d, wer_i] = _measure_wer(refs, trans)
|
||||
|
||||
substitutions = wer_s
|
||||
deletions = wer_d
|
||||
insertions = wer_i
|
||||
#print("tmp hits : ", hits)
|
||||
incorrect = substitutions + deletions + insertions
|
||||
total = substitutions + deletions + hits + insertions
|
||||
|
||||
wer = incorrect / total
|
||||
return wer, substitutions, deletions, insertions
|
||||
243
egs/tedlium2/ASR/conformer_ctc2/attention.py
Normal file
243
egs/tedlium2/ASR/conformer_ctc2/attention.py
Normal file
@ -0,0 +1,243 @@
|
||||
# Copyright 2022 Xiaomi Corp. (author: Quandong Wang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from scaling import ScaledLinear
|
||||
from torch import Tensor
|
||||
from torch.nn.init import xavier_normal_
|
||||
|
||||
|
||||
class MultiheadAttention(nn.Module):
|
||||
r"""Allows the model to jointly attend to information
|
||||
from different representation subspaces.
|
||||
See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
|
||||
|
||||
.. math::
|
||||
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
||||
|
||||
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
|
||||
|
||||
Args:
|
||||
embed_dim: Total dimension of the model.
|
||||
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
|
||||
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
|
||||
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
|
||||
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
|
||||
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
|
||||
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
|
||||
Default: ``False``.
|
||||
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
|
||||
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
|
||||
batch_first: If ``True``, then the input and output tensors are provided
|
||||
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
||||
|
||||
Examples::
|
||||
|
||||
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
||||
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
||||
"""
|
||||
__constants__ = ["batch_first"]
|
||||
bias_k: Optional[torch.Tensor]
|
||||
bias_v: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim,
|
||||
num_heads,
|
||||
dropout=0.0,
|
||||
bias=True,
|
||||
add_bias_kv=False,
|
||||
add_zero_attn=False,
|
||||
kdim=None,
|
||||
vdim=None,
|
||||
batch_first=False,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(MultiheadAttention, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.kdim = kdim if kdim is not None else embed_dim
|
||||
self.vdim = vdim if vdim is not None else embed_dim
|
||||
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.batch_first = batch_first
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert (
|
||||
self.head_dim * num_heads == self.embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
|
||||
if self._qkv_same_embed_dim is False:
|
||||
self.q_proj_weight = ScaledLinear(embed_dim, embed_dim, bias=bias)
|
||||
self.k_proj_weight = ScaledLinear(self.kdim, embed_dim, bias=bias)
|
||||
self.v_proj_weight = ScaledLinear(self.vdim, embed_dim, bias=bias)
|
||||
self.register_parameter("in_proj_weight", None)
|
||||
else:
|
||||
self.in_proj_weight = ScaledLinear(embed_dim, 3 * embed_dim, bias=bias)
|
||||
self.register_parameter("q_proj_weight", None)
|
||||
self.register_parameter("k_proj_weight", None)
|
||||
self.register_parameter("v_proj_weight", None)
|
||||
|
||||
if not bias:
|
||||
self.register_parameter("in_proj_bias", None)
|
||||
|
||||
self.out_proj = ScaledLinear(embed_dim, embed_dim, bias=bias)
|
||||
|
||||
if add_bias_kv:
|
||||
self.bias_k = nn.Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||||
self.bias_v = nn.Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||||
else:
|
||||
self.bias_k = self.bias_v = None
|
||||
|
||||
self.add_zero_attn = add_zero_attn
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
def _reset_parameters(self):
|
||||
if self.bias_k is not None:
|
||||
xavier_normal_(self.bias_k)
|
||||
if self.bias_v is not None:
|
||||
xavier_normal_(self.bias_v)
|
||||
|
||||
def __setstate__(self, state):
|
||||
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
||||
if "_qkv_same_embed_dim" not in state:
|
||||
state["_qkv_same_embed_dim"] = True
|
||||
|
||||
super(MultiheadAttention, self).__setstate__(state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query: Query embeddings of shape :math:`(L, N, E_q)` when ``batch_first=False`` or :math:`(N, L, E_q)`
|
||||
when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is the batch size,
|
||||
and :math:`E_q` is the query embedding dimension ``embed_dim``. Queries are compared against
|
||||
key-value pairs to produce the output. See "Attention Is All You Need" for more details.
|
||||
key: Key embeddings of shape :math:`(S, N, E_k)` when ``batch_first=False`` or :math:`(N, S, E_k)` when
|
||||
``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and
|
||||
:math:`E_k` is the key embedding dimension ``kdim``. See "Attention Is All You Need" for more details.
|
||||
value: Value embeddings of shape :math:`(S, N, E_v)` when ``batch_first=False`` or :math:`(N, S, E_v)` when
|
||||
``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and
|
||||
:math:`E_v` is the value embedding dimension ``vdim``. See "Attention Is All You Need" for more details.
|
||||
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
|
||||
to ignore for the purpose of attention (i.e. treat as "padding"). Binary and byte masks are supported.
|
||||
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
|
||||
the purpose of attention. For a byte mask, a non-zero value indicates that the corresponding ``key``
|
||||
value will be ignored.
|
||||
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
|
||||
Default: ``True``.
|
||||
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
|
||||
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
|
||||
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
|
||||
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
|
||||
Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
|
||||
corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
|
||||
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
|
||||
the attention weight.
|
||||
|
||||
Outputs:
|
||||
- **attn_output** - Attention outputs of shape :math:`(L, N, E)` when ``batch_first=False`` or
|
||||
:math:`(N, L, E)` when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is
|
||||
the batch size, and :math:`E` is the embedding dimension ``embed_dim``.
|
||||
- **attn_output_weights** - Attention output weights of shape :math:`(N, L, S)`, where :math:`N` is the batch
|
||||
size, :math:`L` is the target sequence length, and :math:`S` is the source sequence length. Only returned
|
||||
when ``need_weights=True``.
|
||||
"""
|
||||
if self.batch_first:
|
||||
query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
|
||||
|
||||
if not self._qkv_same_embed_dim:
|
||||
q_proj_weight = (
|
||||
self.q_proj_weight.get_weight()
|
||||
if self.q_proj_weight is not None
|
||||
else None
|
||||
)
|
||||
k_proj_weight = (
|
||||
self.k_proj_weight.get_weight()
|
||||
if self.k_proj_weight is not None
|
||||
else None
|
||||
)
|
||||
v_proj_weight = (
|
||||
self.v_proj_weight.get_weight()
|
||||
if self.v_proj_weight is not None
|
||||
else None
|
||||
)
|
||||
(
|
||||
attn_output,
|
||||
attn_output_weights,
|
||||
) = nn.functional.multi_head_attention_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj_weight.get_weight(),
|
||||
self.in_proj_weight.get_bias(),
|
||||
self.bias_k,
|
||||
self.bias_v,
|
||||
self.add_zero_attn,
|
||||
self.dropout,
|
||||
self.out_proj.get_weight(),
|
||||
self.out_proj.get_bias(),
|
||||
training=self.training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
use_separate_proj_weight=True,
|
||||
q_proj_weight=q_proj_weight,
|
||||
k_proj_weight=k_proj_weight,
|
||||
v_proj_weight=v_proj_weight,
|
||||
)
|
||||
else:
|
||||
(
|
||||
attn_output,
|
||||
attn_output_weights,
|
||||
) = nn.functional.multi_head_attention_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj_weight.get_weight(),
|
||||
self.in_proj_weight.get_bias(),
|
||||
self.bias_k,
|
||||
self.bias_v,
|
||||
self.add_zero_attn,
|
||||
self.dropout,
|
||||
self.out_proj.get_weight(),
|
||||
self.out_proj.get_bias(),
|
||||
training=self.training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
)
|
||||
if self.batch_first:
|
||||
return attn_output.transpose(1, 0), attn_output_weights
|
||||
else:
|
||||
return attn_output, attn_output_weights
|
||||
961
egs/tedlium2/ASR/conformer_ctc2/conformer.py
Normal file
961
egs/tedlium2/ASR/conformer_ctc2/conformer.py
Normal file
@ -0,0 +1,961 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||
# 2022 Xiaomi Corp. (author: Quandong Wang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import copy
|
||||
import math
|
||||
import warnings
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from scaling import (
|
||||
ActivationBalancer,
|
||||
BasicNorm,
|
||||
DoubleSwish,
|
||||
ScaledConv1d,
|
||||
ScaledLinear,
|
||||
)
|
||||
from subsampling import Conv2dSubsampling
|
||||
from torch import Tensor, nn
|
||||
from transformer import Supervisions, Transformer, encoder_padding_mask, TransformerEncoder, TransformerEncoder
|
||||
|
||||
|
||||
class Conformer(Transformer):
|
||||
"""
|
||||
Args:
|
||||
num_features (int): Number of input features
|
||||
num_classes (int): Number of output classes
|
||||
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||
d_model (int): attention dimension, also the output dimension
|
||||
nhead (int): number of head
|
||||
dim_feedforward (int): feedforward dimention
|
||||
num_encoder_layers (int): number of encoder layers
|
||||
num_decoder_layers (int): number of decoder layers
|
||||
dropout (float): dropout rate
|
||||
layer_dropout (float): layer-dropout rate.
|
||||
cnn_module_kernel (int): Kernel size of convolution module
|
||||
vgg_frontend (bool): whether to use vgg frontend.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_features: int,
|
||||
num_classes: int,
|
||||
subsampling_factor: int = 4,
|
||||
d_model: int = 256,
|
||||
nhead: int = 4,
|
||||
dim_feedforward: int = 2048,
|
||||
num_encoder_layers: int = 12,
|
||||
num_decoder_layers: int = 6,
|
||||
dropout: float = 0.1,
|
||||
layer_dropout: float = 0.075,
|
||||
cnn_module_kernel: int = 31,
|
||||
group_num: int = 0,
|
||||
) -> None:
|
||||
super(Conformer, self).__init__(
|
||||
num_features=num_features,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=subsampling_factor,
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=dim_feedforward,
|
||||
num_encoder_layers=num_encoder_layers,
|
||||
num_decoder_layers=num_decoder_layers,
|
||||
dropout=dropout,
|
||||
layer_dropout=layer_dropout,
|
||||
)
|
||||
|
||||
self.num_features = num_features
|
||||
self.subsampling_factor = subsampling_factor
|
||||
if subsampling_factor != 4:
|
||||
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
||||
|
||||
# self.encoder_embed converts the input of shape (N, T, num_features)
|
||||
# to the shape (N, T//subsampling_factor, d_model).
|
||||
# That is, it does two things simultaneously:
|
||||
# (1) subsampling: T -> T//subsampling_factor
|
||||
# (2) embedding: num_features -> d_model
|
||||
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
||||
|
||||
self.encoder_pos = RelPositionalEncoding(d_model, dropout)
|
||||
|
||||
encoder_layer = ConformerEncoderLayer(
|
||||
d_model,
|
||||
nhead,
|
||||
dim_feedforward,
|
||||
dropout,
|
||||
layer_dropout,
|
||||
cnn_module_kernel,
|
||||
)
|
||||
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
||||
|
||||
self.group_num = group_num
|
||||
if self.group_num != 0:
|
||||
self.group_layer_num = int(num_encoder_layers // self.group_num)
|
||||
self.alpha = nn.Parameter(torch.rand(self.group_num))
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
self.layer_norm = nn.LayerNorm(d_model)
|
||||
|
||||
def run_encoder(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
supervisions: Optional[Supervisions] = None,
|
||||
warmup: float = 1.0,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
"""
|
||||
Args:
|
||||
x:
|
||||
The input tensor. Its shape is (batch_size, seq_len, feature_dim).
|
||||
supervisions:
|
||||
Supervision in lhotse format.
|
||||
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||
CAUTION: It contains length information, i.e., start and number of
|
||||
frames, before subsampling
|
||||
It is read directly from the batch, without any sorting. It is used
|
||||
to compute encoder padding mask, which is used as memory key padding
|
||||
mask for the decoder.
|
||||
warmup:
|
||||
A floating point value that gradually increases from 0 throughout
|
||||
training; when it is >= 1.0 we are "fully warmed up". It is used
|
||||
to turn modules on sequentially.
|
||||
Returns:
|
||||
Tensor: Predictor tensor of dimension (input_length, batch_size, d_model).
|
||||
Tensor: Mask tensor of dimension (batch_size, input_length)
|
||||
"""
|
||||
x = self.encoder_embed(x)
|
||||
x, pos_emb = self.encoder_pos(x)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
mask = encoder_padding_mask(x.size(0), supervisions)
|
||||
if mask is not None:
|
||||
mask = mask.to(x.device)
|
||||
|
||||
# Caution: We assume the subsampling factor is 4!
|
||||
|
||||
x, layer_outputs = self.encoder(
|
||||
x, pos_emb, src_key_padding_mask=mask, warmup=warmup
|
||||
) # (T, N, C)
|
||||
|
||||
if self.group_num != 0:
|
||||
x = 0
|
||||
for enum, alpha in enumerate(self.alpha):
|
||||
x += self.sigmoid(alpha) * layer_outputs[(enum+1)*self.group_layer_num-1]
|
||||
x = self.layer_norm(x/self.group_num)
|
||||
# x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
# return x, lengths
|
||||
return x, mask
|
||||
|
||||
|
||||
class ConformerEncoderLayer(nn.Module):
|
||||
"""
|
||||
ConformerEncoderLayer is made up of self-attn, feedforward and convolution networks.
|
||||
See: "Conformer: Convolution-augmented Transformer for Speech Recognition"
|
||||
|
||||
Args:
|
||||
d_model: the number of expected features in the input (required).
|
||||
nhead: the number of heads in the multiheadattention models (required).
|
||||
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
||||
dropout: the dropout value (default=0.1).
|
||||
cnn_module_kernel (int): Kernel size of convolution module.
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> pos_emb = torch.rand(32, 19, 512)
|
||||
>>> out = encoder_layer(src, pos_emb)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
layer_dropout: float = 0.075,
|
||||
cnn_module_kernel: int = 31,
|
||||
) -> None:
|
||||
super(ConformerEncoderLayer, self).__init__()
|
||||
|
||||
self.layer_dropout = layer_dropout
|
||||
|
||||
self.d_model = d_model
|
||||
|
||||
self.self_attn = RelPositionMultiheadAttention(d_model, nhead, dropout=0.0)
|
||||
|
||||
self.feed_forward = nn.Sequential(
|
||||
ScaledLinear(d_model, dim_feedforward),
|
||||
ActivationBalancer(channel_dim=-1),
|
||||
DoubleSwish(),
|
||||
nn.Dropout(dropout),
|
||||
ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
|
||||
)
|
||||
|
||||
self.feed_forward_macaron = nn.Sequential(
|
||||
ScaledLinear(d_model, dim_feedforward),
|
||||
ActivationBalancer(channel_dim=-1),
|
||||
DoubleSwish(),
|
||||
nn.Dropout(dropout),
|
||||
ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
|
||||
)
|
||||
|
||||
self.conv_module = ConvolutionModule(d_model, cnn_module_kernel)
|
||||
|
||||
self.norm_final = BasicNorm(d_model)
|
||||
|
||||
# try to ensure the output is close to zero-mean (or at least, zero-median).
|
||||
self.balancer = ActivationBalancer(
|
||||
channel_dim=-1, min_positive=0.45, max_positive=0.55, max_abs=6.0
|
||||
)
|
||||
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
pos_emb: Tensor,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
warmup: float = 1.0,
|
||||
) -> Tensor:
|
||||
"""
|
||||
Pass the input through the encoder layer.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder layer (required).
|
||||
pos_emb: Positional embedding tensor (required).
|
||||
src_mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
warmup: controls selective bypass of of layers; if < 1.0, we will
|
||||
bypass layers more frequently.
|
||||
|
||||
Shape:
|
||||
src: (S, N, E).
|
||||
pos_emb: (N, 2*S-1, E)
|
||||
src_mask: (S, S).
|
||||
src_key_padding_mask: (N, S).
|
||||
S is the source sequence length, N is the batch size, E is the feature number
|
||||
"""
|
||||
src_orig = src
|
||||
|
||||
warmup_scale = min(0.1 + warmup, 1.0)
|
||||
# alpha = 1.0 means fully use this encoder layer, 0.0 would mean
|
||||
# completely bypass it.
|
||||
if self.training:
|
||||
alpha = (
|
||||
warmup_scale
|
||||
if torch.rand(()).item() <= (1.0 - self.layer_dropout)
|
||||
else 0.1
|
||||
)
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
# macaron style feed forward module
|
||||
src = src + self.dropout(self.feed_forward_macaron(src))
|
||||
|
||||
# multi-headed self-attention module
|
||||
src_att = self.self_attn(
|
||||
src,
|
||||
src,
|
||||
src,
|
||||
pos_emb=pos_emb,
|
||||
attn_mask=src_mask,
|
||||
key_padding_mask=src_key_padding_mask,
|
||||
)[0]
|
||||
src = src + self.dropout(src_att)
|
||||
|
||||
# convolution module
|
||||
src = src + self.dropout(
|
||||
self.conv_module(src, src_key_padding_mask=src_key_padding_mask)
|
||||
)
|
||||
|
||||
# feed forward module
|
||||
src = src + self.dropout(self.feed_forward(src))
|
||||
|
||||
src = self.norm_final(self.balancer(src))
|
||||
|
||||
if alpha != 1.0:
|
||||
src = alpha * src + (1 - alpha) * src_orig
|
||||
|
||||
return src
|
||||
|
||||
|
||||
class ConformerEncoder(nn.Module):
|
||||
r"""ConformerEncoder is a stack of N encoder layers
|
||||
|
||||
Args:
|
||||
encoder_layer: an instance of the ConformerEncoderLayer() class (required).
|
||||
num_layers: the number of sub-encoder-layers in the encoder (required).
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> conformer_encoder = ConformerEncoder(encoder_layer, num_layers=6)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> pos_emb = torch.rand(32, 19, 512)
|
||||
>>> out = conformer_encoder(src, pos_emb)
|
||||
"""
|
||||
|
||||
def __init__(self, encoder_layer: nn.Module, num_layers: int) -> None:
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList(
|
||||
[copy.deepcopy(encoder_layer) for i in range(num_layers)]
|
||||
)
|
||||
self.num_layers = num_layers
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
pos_emb: Tensor,
|
||||
mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
warmup: float = 1.0,
|
||||
) -> Tensor:
|
||||
r"""Pass the input through the encoder layers in turn.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder (required).
|
||||
pos_emb: Positional embedding tensor (required).
|
||||
mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
src: (S, N, E).
|
||||
pos_emb: (N, 2*S-1, E)
|
||||
mask: (S, S).
|
||||
src_key_padding_mask: (N, S).
|
||||
S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number
|
||||
|
||||
"""
|
||||
output = src
|
||||
|
||||
layer_outputs = []
|
||||
|
||||
for i, mod in enumerate(self.layers):
|
||||
output = mod(
|
||||
output,
|
||||
pos_emb,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
warmup=warmup,
|
||||
)
|
||||
|
||||
layer_outputs.append(output)
|
||||
|
||||
return output, layer_outputs
|
||||
|
||||
|
||||
class RelPositionalEncoding(torch.nn.Module):
|
||||
"""Relative positional encoding module.
|
||||
|
||||
See : Appendix B in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/embedding.py
|
||||
|
||||
Args:
|
||||
d_model: Embedding dimension.
|
||||
dropout_rate: Dropout rate.
|
||||
max_len: Maximum input length.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000) -> None:
|
||||
"""Construct an PositionalEncoding object."""
|
||||
super(RelPositionalEncoding, self).__init__()
|
||||
self.d_model = d_model
|
||||
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||
self.pe = None
|
||||
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||
|
||||
def extend_pe(self, x: Tensor) -> None:
|
||||
"""Reset the positional encodings."""
|
||||
if self.pe is not None:
|
||||
# self.pe contains both positive and negative parts
|
||||
# the length of self.pe is 2 * input_len - 1
|
||||
if self.pe.size(1) >= x.size(1) * 2 - 1:
|
||||
# Note: TorchScript doesn't implement operator== for torch.Device
|
||||
if self.pe.dtype != x.dtype or str(self.pe.device) != str(x.device):
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
# Suppose `i` means to the position of query vecotr and `j` means the
|
||||
# position of key vector. We use position relative positions when keys
|
||||
# are to the left (i>j) and negative relative positions otherwise (i<j).
|
||||
pe_positive = torch.zeros(x.size(1), self.d_model)
|
||||
pe_negative = torch.zeros(x.size(1), self.d_model)
|
||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||
* -(math.log(10000.0) / self.d_model)
|
||||
)
|
||||
pe_positive[:, 0::2] = torch.sin(position * div_term)
|
||||
pe_positive[:, 1::2] = torch.cos(position * div_term)
|
||||
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
|
||||
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
|
||||
|
||||
# Reserve the order of positive indices and concat both positive and
|
||||
# negative indices. This is used to support the shifting trick
|
||||
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
|
||||
pe_negative = pe_negative[1:].unsqueeze(0)
|
||||
pe = torch.cat([pe_positive, pe_negative], dim=1)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> Tuple[Tensor, Tensor]:
|
||||
"""Add positional encoding.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor (batch, time, `*`).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Encoded tensor (batch, time, `*`).
|
||||
torch.Tensor: Encoded tensor (batch, 2*time-1, `*`).
|
||||
|
||||
"""
|
||||
self.extend_pe(x)
|
||||
pos_emb = self.pe[
|
||||
:,
|
||||
self.pe.size(1) // 2
|
||||
- x.size(1)
|
||||
+ 1 : self.pe.size(1) // 2 # noqa E203
|
||||
+ x.size(1),
|
||||
]
|
||||
return self.dropout(x), self.dropout(pos_emb)
|
||||
|
||||
|
||||
class RelPositionMultiheadAttention(nn.Module):
|
||||
r"""Multi-Head Attention layer with relative position encoding
|
||||
|
||||
See reference: "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
|
||||
|
||||
Args:
|
||||
embed_dim: total dimension of the model.
|
||||
num_heads: parallel attention heads.
|
||||
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
||||
|
||||
Examples::
|
||||
|
||||
>>> rel_pos_multihead_attn = RelPositionMultiheadAttention(embed_dim, num_heads)
|
||||
>>> attn_output, attn_output_weights = multihead_attn(query, key, value, pos_emb)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
num_heads: int,
|
||||
dropout: float = 0.0,
|
||||
) -> None:
|
||||
super(RelPositionMultiheadAttention, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert (
|
||||
self.head_dim * num_heads == self.embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
|
||||
self.in_proj = ScaledLinear(embed_dim, 3 * embed_dim, bias=True)
|
||||
self.out_proj = ScaledLinear(
|
||||
embed_dim, embed_dim, bias=True, initial_scale=0.25
|
||||
)
|
||||
|
||||
# linear transformation for positional encoding.
|
||||
self.linear_pos = ScaledLinear(embed_dim, embed_dim, bias=False)
|
||||
# these two learnable bias are used in matrix c and matrix d
|
||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||
self.pos_bias_u_scale = nn.Parameter(torch.zeros(()).detach())
|
||||
self.pos_bias_v_scale = nn.Parameter(torch.zeros(()).detach())
|
||||
self._reset_parameters()
|
||||
|
||||
def _pos_bias_u(self):
|
||||
return self.pos_bias_u * self.pos_bias_u_scale.exp()
|
||||
|
||||
def _pos_bias_v(self):
|
||||
return self.pos_bias_v * self.pos_bias_v_scale.exp()
|
||||
|
||||
def _reset_parameters(self) -> None:
|
||||
nn.init.normal_(self.pos_bias_u, std=0.01)
|
||||
nn.init.normal_(self.pos_bias_v, std=0.01)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
pos_emb: Tensor,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query, key, value: map a query and a set of key-value pairs to an output.
|
||||
pos_emb: Positional embedding tensor
|
||||
key_padding_mask: if provided, specified padding elements in the key will
|
||||
be ignored by the attention. When given a binary mask and a value is True,
|
||||
the corresponding value on the attention layer will be ignored. When given
|
||||
a byte mask and a value is non-zero, the corresponding value on the attention
|
||||
layer will be ignored
|
||||
need_weights: output attn_output_weights.
|
||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||
|
||||
Shape:
|
||||
- Inputs:
|
||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
||||
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||
is provided, it will be added to the attention weight.
|
||||
|
||||
- Outputs:
|
||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||
E is the embedding dimension.
|
||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||
L is the target sequence length, S is the source sequence length.
|
||||
"""
|
||||
return self.multi_head_attention_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
pos_emb,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj.get_weight(),
|
||||
self.in_proj.get_bias(),
|
||||
self.dropout,
|
||||
self.out_proj.get_weight(),
|
||||
self.out_proj.get_bias(),
|
||||
training=self.training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
)
|
||||
|
||||
def rel_shift(self, x: Tensor) -> Tensor:
|
||||
"""Compute relative positional encoding.
|
||||
|
||||
Args:
|
||||
x: Input tensor (batch, head, time1, 2*time1-1).
|
||||
time1 means the length of query vector.
|
||||
|
||||
Returns:
|
||||
Tensor: tensor of shape (batch, head, time1, time2)
|
||||
(note: time2 has the same value as time1, but it is for
|
||||
the key, while time1 is for the query).
|
||||
"""
|
||||
(batch_size, num_heads, time1, n) = x.shape
|
||||
assert n == 2 * time1 - 1
|
||||
# Note: TorchScript requires explicit arg for stride()
|
||||
batch_stride = x.stride(0)
|
||||
head_stride = x.stride(1)
|
||||
time1_stride = x.stride(2)
|
||||
n_stride = x.stride(3)
|
||||
return x.as_strided(
|
||||
(batch_size, num_heads, time1, time1),
|
||||
(batch_stride, head_stride, time1_stride - n_stride, n_stride),
|
||||
storage_offset=n_stride * (time1 - 1),
|
||||
)
|
||||
|
||||
def multi_head_attention_forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
pos_emb: Tensor,
|
||||
embed_dim_to_check: int,
|
||||
num_heads: int,
|
||||
in_proj_weight: Tensor,
|
||||
in_proj_bias: Tensor,
|
||||
dropout_p: float,
|
||||
out_proj_weight: Tensor,
|
||||
out_proj_bias: Tensor,
|
||||
training: bool = True,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query, key, value: map a query and a set of key-value pairs to an output.
|
||||
pos_emb: Positional embedding tensor
|
||||
embed_dim_to_check: total dimension of the model.
|
||||
num_heads: parallel attention heads.
|
||||
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||||
dropout_p: probability of an element to be zeroed.
|
||||
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
||||
training: apply dropout if is ``True``.
|
||||
key_padding_mask: if provided, specified padding elements in the key will
|
||||
be ignored by the attention. This is an binary mask. When the value is True,
|
||||
the corresponding value on the attention layer will be filled with -inf.
|
||||
need_weights: output attn_output_weights.
|
||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||
|
||||
Shape:
|
||||
Inputs:
|
||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- pos_emb: :math:`(N, 2*L-1, E)` or :math:`(1, 2*L-1, E)` where L is the target sequence
|
||||
length, N is the batch size, E is the embedding dimension.
|
||||
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
||||
will be unchanged. If a BoolTensor is provided, the positions with the
|
||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
||||
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
||||
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
||||
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||
is provided, it will be added to the attention weight.
|
||||
|
||||
Outputs:
|
||||
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||
E is the embedding dimension.
|
||||
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
||||
L is the target sequence length, S is the source sequence length.
|
||||
"""
|
||||
|
||||
tgt_len, bsz, embed_dim = query.size()
|
||||
assert embed_dim == embed_dim_to_check
|
||||
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
||||
|
||||
head_dim = embed_dim // num_heads
|
||||
assert (
|
||||
head_dim * num_heads == embed_dim
|
||||
), "embed_dim must be divisible by num_heads"
|
||||
|
||||
scaling = float(head_dim) ** -0.5
|
||||
|
||||
if torch.equal(query, key) and torch.equal(key, value):
|
||||
# self-attention
|
||||
q, k, v = nn.functional.linear(query, in_proj_weight, in_proj_bias).chunk(
|
||||
3, dim=-1
|
||||
)
|
||||
|
||||
elif torch.equal(key, value):
|
||||
# encoder-decoder attention
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = 0
|
||||
_end = embed_dim
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
q = nn.functional.linear(query, _w, _b)
|
||||
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim
|
||||
_end = None
|
||||
_w = in_proj_weight[_start:, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:]
|
||||
k, v = nn.functional.linear(key, _w, _b).chunk(2, dim=-1)
|
||||
|
||||
else:
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = 0
|
||||
_end = embed_dim
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
q = nn.functional.linear(query, _w, _b)
|
||||
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim
|
||||
_end = embed_dim * 2
|
||||
_w = in_proj_weight[_start:_end, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:_end]
|
||||
k = nn.functional.linear(key, _w, _b)
|
||||
|
||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
||||
_b = in_proj_bias
|
||||
_start = embed_dim * 2
|
||||
_end = None
|
||||
_w = in_proj_weight[_start:, :]
|
||||
if _b is not None:
|
||||
_b = _b[_start:]
|
||||
v = nn.functional.linear(value, _w, _b)
|
||||
|
||||
if attn_mask is not None:
|
||||
assert (
|
||||
attn_mask.dtype == torch.float32
|
||||
or attn_mask.dtype == torch.float64
|
||||
or attn_mask.dtype == torch.float16
|
||||
or attn_mask.dtype == torch.uint8
|
||||
or attn_mask.dtype == torch.bool
|
||||
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
||||
attn_mask.dtype
|
||||
)
|
||||
if attn_mask.dtype == torch.uint8:
|
||||
warnings.warn(
|
||||
"Byte tensor for attn_mask is deprecated. Use bool tensor instead."
|
||||
)
|
||||
attn_mask = attn_mask.to(torch.bool)
|
||||
|
||||
if attn_mask.dim() == 2:
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
||||
raise RuntimeError("The size of the 2D attn_mask is not correct.")
|
||||
elif attn_mask.dim() == 3:
|
||||
if list(attn_mask.size()) != [
|
||||
bsz * num_heads,
|
||||
query.size(0),
|
||||
key.size(0),
|
||||
]:
|
||||
raise RuntimeError("The size of the 3D attn_mask is not correct.")
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"attn_mask's dimension {} is not supported".format(attn_mask.dim())
|
||||
)
|
||||
# attn_mask's dim is 3 now.
|
||||
|
||||
# convert ByteTensor key_padding_mask to bool
|
||||
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
|
||||
warnings.warn(
|
||||
"Byte tensor for key_padding_mask is deprecated. Use bool tensor instead."
|
||||
)
|
||||
key_padding_mask = key_padding_mask.to(torch.bool)
|
||||
|
||||
q = (q * scaling).contiguous().view(tgt_len, bsz, num_heads, head_dim)
|
||||
k = k.contiguous().view(-1, bsz, num_heads, head_dim)
|
||||
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
||||
|
||||
src_len = k.size(0)
|
||||
|
||||
if key_padding_mask is not None:
|
||||
assert key_padding_mask.size(0) == bsz, "{} == {}".format(
|
||||
key_padding_mask.size(0), bsz
|
||||
)
|
||||
assert key_padding_mask.size(1) == src_len, "{} == {}".format(
|
||||
key_padding_mask.size(1), src_len
|
||||
)
|
||||
|
||||
q = q.transpose(0, 1) # (batch, time1, head, d_k)
|
||||
|
||||
pos_emb_bsz = pos_emb.size(0)
|
||||
assert pos_emb_bsz in (1, bsz) # actually it is 1
|
||||
p = self.linear_pos(pos_emb).view(pos_emb_bsz, -1, num_heads, head_dim)
|
||||
p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k)
|
||||
|
||||
q_with_bias_u = (q + self._pos_bias_u()).transpose(
|
||||
1, 2
|
||||
) # (batch, head, time1, d_k)
|
||||
|
||||
q_with_bias_v = (q + self._pos_bias_v()).transpose(
|
||||
1, 2
|
||||
) # (batch, head, time1, d_k)
|
||||
|
||||
# compute attention score
|
||||
# first compute matrix a and matrix c
|
||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||
k = k.permute(1, 2, 3, 0) # (batch, head, d_k, time2)
|
||||
matrix_ac = torch.matmul(q_with_bias_u, k) # (batch, head, time1, time2)
|
||||
|
||||
# compute matrix b and matrix d
|
||||
matrix_bd = torch.matmul(
|
||||
q_with_bias_v, p.transpose(-2, -1)
|
||||
) # (batch, head, time1, 2*time1-1)
|
||||
matrix_bd = self.rel_shift(matrix_bd)
|
||||
|
||||
attn_output_weights = matrix_ac + matrix_bd # (batch, head, time1, time2)
|
||||
|
||||
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, -1)
|
||||
|
||||
assert list(attn_output_weights.size()) == [
|
||||
bsz * num_heads,
|
||||
tgt_len,
|
||||
src_len,
|
||||
]
|
||||
|
||||
if attn_mask is not None:
|
||||
if attn_mask.dtype == torch.bool:
|
||||
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
||||
else:
|
||||
attn_output_weights += attn_mask
|
||||
|
||||
if key_padding_mask is not None:
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz, num_heads, tgt_len, src_len
|
||||
)
|
||||
attn_output_weights = attn_output_weights.masked_fill(
|
||||
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
||||
float("-inf"),
|
||||
)
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz * num_heads, tgt_len, src_len
|
||||
)
|
||||
|
||||
attn_output_weights = nn.functional.softmax(attn_output_weights, dim=-1)
|
||||
attn_output_weights = nn.functional.dropout(
|
||||
attn_output_weights, p=dropout_p, training=training
|
||||
)
|
||||
|
||||
attn_output = torch.bmm(attn_output_weights, v)
|
||||
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
||||
attn_output = (
|
||||
attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
||||
)
|
||||
attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
|
||||
if need_weights:
|
||||
# average attention weights over heads
|
||||
attn_output_weights = attn_output_weights.view(
|
||||
bsz, num_heads, tgt_len, src_len
|
||||
)
|
||||
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
||||
else:
|
||||
return attn_output, None
|
||||
|
||||
|
||||
class ConvolutionModule(nn.Module):
|
||||
"""ConvolutionModule in Conformer model.
|
||||
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
|
||||
|
||||
Args:
|
||||
channels (int): The number of channels of conv layers.
|
||||
kernel_size (int): Kernerl size of conv layers.
|
||||
bias (bool): Whether to use bias in conv layers (default=True).
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, channels: int, kernel_size: int, bias: bool = True) -> None:
|
||||
"""Construct an ConvolutionModule object."""
|
||||
super(ConvolutionModule, self).__init__()
|
||||
# kernerl_size should be a odd number for 'SAME' padding
|
||||
assert (kernel_size - 1) % 2 == 0
|
||||
|
||||
self.pointwise_conv1 = ScaledConv1d(
|
||||
channels,
|
||||
2 * channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
# after pointwise_conv1 we put x through a gated linear unit (nn.functional.glu).
|
||||
# For most layers the normal rms value of channels of x seems to be in the range 1 to 4,
|
||||
# but sometimes, for some reason, for layer 0 the rms ends up being very large,
|
||||
# between 50 and 100 for different channels. This will cause very peaky and
|
||||
# sparse derivatives for the sigmoid gating function, which will tend to make
|
||||
# the loss function not learn effectively. (for most layers the average absolute values
|
||||
# are in the range 0.5..9.0, and the average p(x>0), i.e. positive proportion,
|
||||
# at the output of pointwise_conv1.output is around 0.35 to 0.45 for different
|
||||
# layers, which likely breaks down as 0.5 for the "linear" half and
|
||||
# 0.2 to 0.3 for the part that goes into the sigmoid. The idea is that if we
|
||||
# constrain the rms values to a reasonable range via a constraint of max_abs=10.0,
|
||||
# it will be in a better position to start learning something, i.e. to latch onto
|
||||
# the correct range.
|
||||
self.deriv_balancer1 = ActivationBalancer(
|
||||
channel_dim=1, max_abs=10.0, min_positive=0.05, max_positive=1.0
|
||||
)
|
||||
|
||||
self.depthwise_conv = ScaledConv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=(kernel_size - 1) // 2,
|
||||
groups=channels,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
self.deriv_balancer2 = ActivationBalancer(
|
||||
channel_dim=1, min_positive=0.05, max_positive=1.0
|
||||
)
|
||||
|
||||
self.activation = DoubleSwish()
|
||||
|
||||
self.pointwise_conv2 = ScaledConv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=bias,
|
||||
initial_scale=0.25,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: Tensor,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
"""Compute convolution module.
|
||||
|
||||
Args:
|
||||
x: Input tensor (#time, batch, channels).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Returns:
|
||||
Tensor: Output tensor (#time, batch, channels).
|
||||
|
||||
"""
|
||||
# exchange the temporal dimension and the feature dimension
|
||||
x = x.permute(1, 2, 0) # (#batch, channels, time).
|
||||
|
||||
# GLU mechanism
|
||||
x = self.pointwise_conv1(x) # (batch, 2*channels, time)
|
||||
|
||||
x = self.deriv_balancer1(x)
|
||||
x = nn.functional.glu(x, dim=1) # (batch, channels, time)
|
||||
|
||||
# 1D Depthwise Conv
|
||||
if src_key_padding_mask is not None:
|
||||
x.masked_fill_(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0)
|
||||
x = self.depthwise_conv(x)
|
||||
|
||||
x = self.deriv_balancer2(x)
|
||||
x = self.activation(x)
|
||||
|
||||
x = self.pointwise_conv2(x) # (batch, channel, time)
|
||||
|
||||
return x.permute(2, 0, 1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
feature_dim = 50
|
||||
c = Conformer(num_features=feature_dim, d_model=128, nhead=4)
|
||||
batch_size = 5
|
||||
seq_len = 20
|
||||
# Just make sure the forward pass runs.
|
||||
f = c(
|
||||
torch.randn(batch_size, seq_len, feature_dim),
|
||||
torch.full((batch_size,), seq_len, dtype=torch.int64),
|
||||
warmup=0.5,
|
||||
)
|
||||
998
egs/tedlium2/ASR/conformer_ctc2/decode.py
Executable file
998
egs/tedlium2/ASR/conformer_ctc2/decode.py
Executable file
@ -0,0 +1,998 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo,
|
||||
# Fangjun Kuang,
|
||||
# Quandong Wang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
|
||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.decode import (
|
||||
get_lattice,
|
||||
nbest_decoding,
|
||||
nbest_oracle,
|
||||
one_best_decoding,
|
||||
rescore_with_attention_decoder,
|
||||
rescore_with_n_best_list,
|
||||
rescore_with_rnn_lm,
|
||||
rescore_with_whole_lattice,
|
||||
)
|
||||
from icefall.env import get_env_info
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.rnn_lm.model import RnnLmModel
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
get_texts,
|
||||
load_averaged_model,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--group-num",
|
||||
type=int,
|
||||
default=0,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=77,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="attention-decoder",
|
||||
help="""Decoding method.
|
||||
Supported values are:
|
||||
- (0) ctc-decoding. Use CTC decoding. It uses a sentence piece
|
||||
model, i.e., lang_dir/bpe.model, to convert word pieces to words.
|
||||
It needs neither a lexicon nor an n-gram LM.
|
||||
- (1) ctc-greedy-search. It only use CTC output and a sentence piece
|
||||
model for decoding. It produces the same results with ctc-decoding.
|
||||
- (2) 1best. Extract the best path from the decoding lattice as the
|
||||
decoding result.
|
||||
- (3) nbest. Extract n paths from the decoding lattice; the path
|
||||
with the highest score is the decoding result.
|
||||
- (4) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
||||
the highest score is the decoding result.
|
||||
- (5) whole-lattice-rescoring. Rescore the decoding lattice with an
|
||||
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
|
||||
is the decoding result.
|
||||
- (6) attention-decoder. Extract n paths from the LM rescored
|
||||
lattice, the path with the highest score is the decoding result.
|
||||
- (7) rnn-lm. Rescoring with attention-decoder and RNN LM. We assume
|
||||
you have trained an RNN LM using ./rnn_lm/train.py
|
||||
- (8) nbest-oracle. Its WER is the lower bound of any n-best
|
||||
rescoring method can achieve. Useful for debugging n-best
|
||||
rescoring method.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-decoder-layers",
|
||||
type=int,
|
||||
default=6,
|
||||
help="""Number of decoder layer of transformer decoder.
|
||||
Setting this to 0 will not create the decoder at all (pure CTC model)
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=100,
|
||||
help="""Number of paths for n-best based decoding method.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, attention-decoder, rnn-lm, and nbest-oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""The scale to be applied to `lattice.scores`.
|
||||
It's needed if you use any kinds of n-best based rescoring.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, attention-decoder, rnn-lm, and nbest-oracle
|
||||
A smaller value results in more unique paths.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="conformer_ctc2/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_bpe_500",
|
||||
help="The lang dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lm-dir",
|
||||
type=str,
|
||||
default="data/lm",
|
||||
help="""The n-gram LM dir.
|
||||
It should contain either G_4_gram.pt or G_4_gram.fst.txt
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the path to RNN LM exp dir.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-epoch",
|
||||
type=int,
|
||||
default=7,
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the checkpoint to use.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-avg",
|
||||
type=int,
|
||||
default=2,
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the number of checkpoints to average.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-num-layers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rnn-lm-tie-weights",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
# parameters for conformer
|
||||
"subsampling_factor": 4,
|
||||
"feature_dim": 80,
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"encoder_dim": 512,
|
||||
"num_encoder_layers": 18,
|
||||
# parameters for decoding
|
||||
"search_beam": 20,
|
||||
"output_beam": 8,
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def ctc_greedy_search(
|
||||
nnet_output: torch.Tensor,
|
||||
memory: torch.Tensor,
|
||||
memory_key_padding_mask: torch.Tensor,
|
||||
) -> List[List[int]]:
|
||||
"""Apply CTC greedy search
|
||||
|
||||
Args:
|
||||
speech (torch.Tensor): (batch, max_len, feat_dim)
|
||||
speech_length (torch.Tensor): (batch, )
|
||||
Returns:
|
||||
List[List[int]]: best path result
|
||||
"""
|
||||
batch_size = memory.shape[1]
|
||||
# Let's assume B = batch_size
|
||||
encoder_out = memory
|
||||
encoder_mask = memory_key_padding_mask
|
||||
maxlen = encoder_out.size(0)
|
||||
|
||||
ctc_probs = nnet_output # (B, maxlen, vocab_size)
|
||||
topk_prob, topk_index = ctc_probs.topk(1, dim=2) # (B, maxlen, 1)
|
||||
topk_index = topk_index.view(batch_size, maxlen) # (B, maxlen)
|
||||
topk_index = topk_index.masked_fill_(encoder_mask, 0) # (B, maxlen)
|
||||
hyps = [hyp.tolist() for hyp in topk_index]
|
||||
scores = topk_prob.max(1)
|
||||
hyps = [remove_duplicates_and_blank(hyp) for hyp in hyps]
|
||||
return hyps, scores
|
||||
|
||||
|
||||
def remove_duplicates_and_blank(hyp: List[int]) -> List[int]:
|
||||
# from https://github.com/wenet-e2e/wenet/blob/main/wenet/utils/common.py
|
||||
new_hyp: List[int] = []
|
||||
cur = 0
|
||||
while cur < len(hyp):
|
||||
if hyp[cur] != 0:
|
||||
new_hyp.append(hyp[cur])
|
||||
prev = cur
|
||||
while cur < len(hyp) and hyp[cur] == hyp[prev]:
|
||||
cur += 1
|
||||
return new_hyp
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
rnn_lm_model: Optional[nn.Module],
|
||||
HLG: Optional[k2.Fsa],
|
||||
H: Optional[k2.Fsa],
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
batch: dict,
|
||||
word_table: k2.SymbolTable,
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if no rescoring is used, the key is the string `no_rescore`.
|
||||
If LM rescoring is used, the key is the string `lm_scale_xxx`,
|
||||
where `xxx` is the value of `lm_scale`. An example key is
|
||||
`lm_scale_0.7`
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
|
||||
- params.method is "1best", it uses 1best decoding without LM rescoring.
|
||||
- params.method is "nbest", it uses nbest decoding without LM rescoring.
|
||||
- params.method is "nbest-rescoring", it uses nbest LM rescoring.
|
||||
- params.method is "whole-lattice-rescoring", it uses whole lattice LM
|
||||
rescoring.
|
||||
|
||||
model:
|
||||
The neural model.
|
||||
rnn_lm_model:
|
||||
The neural model for RNN LM.
|
||||
HLG:
|
||||
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||
H:
|
||||
The ctc topo. Used only when params.method is ctc-decoding.
|
||||
bpe_model:
|
||||
The BPE model. Used only when params.method is ctc-decoding.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
sos_id:
|
||||
The token ID of the SOS.
|
||||
eos_id:
|
||||
The token ID of the EOS.
|
||||
G:
|
||||
An LM. It is not None when params.method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict. Note: If it decodes to nothing, then return None.
|
||||
"""
|
||||
if HLG is not None:
|
||||
device = HLG.device
|
||||
else:
|
||||
device = H.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
|
||||
nnet_output, memory, memory_key_padding_mask = model(feature, supervisions)
|
||||
# nnet_output is (N, T, C)
|
||||
|
||||
supervision_segments = torch.stack(
|
||||
(
|
||||
supervisions["sequence_idx"],
|
||||
torch.div(
|
||||
supervisions["start_frame"],
|
||||
params.subsampling_factor,
|
||||
rounding_mode="trunc",
|
||||
),
|
||||
torch.div(
|
||||
supervisions["num_frames"],
|
||||
params.subsampling_factor,
|
||||
rounding_mode="trunc",
|
||||
),
|
||||
),
|
||||
1,
|
||||
).to(torch.int32)
|
||||
|
||||
if H is None:
|
||||
assert HLG is not None
|
||||
decoding_graph = HLG
|
||||
else:
|
||||
assert HLG is None
|
||||
assert bpe_model is not None
|
||||
decoding_graph = H
|
||||
|
||||
lattice = get_lattice(
|
||||
nnet_output=nnet_output,
|
||||
decoding_graph=decoding_graph,
|
||||
supervision_segments=supervision_segments,
|
||||
search_beam=params.search_beam,
|
||||
output_beam=params.output_beam,
|
||||
min_active_states=params.min_active_states,
|
||||
max_active_states=params.max_active_states,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
)
|
||||
|
||||
if params.method == "ctc-decoding":
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
# Note: `best_path.aux_labels` contains token IDs, not word IDs
|
||||
# since we are using H, not HLG here.
|
||||
#
|
||||
# token_ids is a lit-of-list of IDs
|
||||
token_ids = get_texts(best_path)
|
||||
|
||||
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||
hyps = bpe_model.decode(token_ids)
|
||||
|
||||
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||
hyps = [s.split() for s in hyps]
|
||||
key = "ctc-decoding"
|
||||
return {key: hyps}
|
||||
|
||||
if params.method == "ctc-greedy-search":
|
||||
hyps, _ = ctc_greedy_search(
|
||||
nnet_output,
|
||||
memory,
|
||||
memory_key_padding_mask,
|
||||
)
|
||||
|
||||
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||
hyps = bpe_model.decode(hyps)
|
||||
|
||||
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||
hyps = [s.split() for s in hyps]
|
||||
key = "ctc-greedy-search"
|
||||
return {key: hyps}
|
||||
|
||||
if params.method == "nbest-oracle":
|
||||
# Note: You can also pass rescored lattices to it.
|
||||
# We choose the HLG decoded lattice for speed reasons
|
||||
# as HLG decoding is faster and the oracle WER
|
||||
# is only slightly worse than that of rescored lattices.
|
||||
best_path = nbest_oracle(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=supervisions["text"],
|
||||
word_table=word_table,
|
||||
nbest_scale=params.nbest_scale,
|
||||
oov="<UNK>",
|
||||
)
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
|
||||
return {key: hyps}
|
||||
|
||||
if params.method in ["1best", "nbest"]:
|
||||
if params.method == "1best":
|
||||
best_path = one_best_decoding(
|
||||
lattice=lattice, use_double_scores=params.use_double_scores
|
||||
)
|
||||
key = "no_rescore"
|
||||
else:
|
||||
best_path = nbest_decoding(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
use_double_scores=params.use_double_scores,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
return {key: hyps}
|
||||
|
||||
assert params.method in [
|
||||
"nbest-rescoring",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
"rnn-lm",
|
||||
]
|
||||
|
||||
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
||||
lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
||||
|
||||
if params.method == "nbest-rescoring":
|
||||
best_path_dict = rescore_with_n_best_list(
|
||||
lattice=lattice,
|
||||
G=G,
|
||||
num_paths=params.num_paths,
|
||||
lm_scale_list=lm_scale_list,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
elif params.method == "whole-lattice-rescoring":
|
||||
best_path_dict = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=lm_scale_list,
|
||||
)
|
||||
elif params.method == "attention-decoder":
|
||||
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||
rescored_lattice = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=None,
|
||||
)
|
||||
# TODO: pass `lattice` instead of `rescored_lattice` to
|
||||
# `rescore_with_attention_decoder`
|
||||
|
||||
best_path_dict = rescore_with_attention_decoder(
|
||||
lattice=rescored_lattice,
|
||||
num_paths=params.num_paths,
|
||||
model=model,
|
||||
memory=memory,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
elif params.method == "rnn-lm":
|
||||
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||
rescored_lattice = rescore_with_whole_lattice(
|
||||
lattice=lattice,
|
||||
G_with_epsilon_loops=G,
|
||||
lm_scale_list=None,
|
||||
)
|
||||
|
||||
best_path_dict = rescore_with_rnn_lm(
|
||||
lattice=rescored_lattice,
|
||||
num_paths=params.num_paths,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
model=model,
|
||||
memory=memory,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
blank_id=0,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
else:
|
||||
assert False, f"Unsupported decoding method: {params.method}"
|
||||
|
||||
ans = dict()
|
||||
if best_path_dict is not None:
|
||||
for lm_scale_str, best_path in best_path_dict.items():
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
ans[lm_scale_str] = hyps
|
||||
else:
|
||||
ans = None
|
||||
return ans
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
rnn_lm_model: Optional[nn.Module],
|
||||
HLG: Optional[k2.Fsa],
|
||||
H: Optional[k2.Fsa],
|
||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||
word_table: k2.SymbolTable,
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
rnn_lm_model:
|
||||
The neural model for RNN LM.
|
||||
HLG:
|
||||
The decoding graph. Used only when params.method is NOT ctc-decoding.
|
||||
H:
|
||||
The ctc topo. Used only when params.method is ctc-decoding.
|
||||
bpe_model:
|
||||
The BPE model. Used only when params.method is ctc-decoding.
|
||||
word_table:
|
||||
It is the word symbol table.
|
||||
sos_id:
|
||||
The token ID for SOS.
|
||||
eos_id:
|
||||
The token ID for EOS.
|
||||
G:
|
||||
An LM. It is not None when params.method is "nbest-rescoring"
|
||||
or "whole-lattice-rescoring". In general, the G in HLG
|
||||
is a 3-gram LM, while this G is a 4-gram LM.
|
||||
Returns:
|
||||
Return a dict, whose key may be "no-rescore" if no LM rescoring
|
||||
is used, or it may be "lm_scale_0.7" if LM rescoring is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
bpe_model=bpe_model,
|
||||
batch=batch,
|
||||
word_table=word_table,
|
||||
G=G,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
)
|
||||
|
||||
if hyps_dict is not None:
|
||||
for lm_scale, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
|
||||
results[lm_scale].extend(this_batch)
|
||||
else:
|
||||
assert len(results) > 0, "It should not decode to empty in the first batch!"
|
||||
this_batch = []
|
||||
hyp_words = []
|
||||
for ref_text in texts:
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((ref_words, hyp_words))
|
||||
|
||||
for lm_scale in results.keys():
|
||||
results[lm_scale].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % 100 == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||
):
|
||||
if params.method in ("attention-decoder", "rnn-lm"):
|
||||
# Set it to False since there are too many logs.
|
||||
enable_log = False
|
||||
else:
|
||||
enable_log = True
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt"
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
if enable_log:
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=enable_log
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
if enable_log:
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
args.lm_dir = Path(args.lm_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode")
|
||||
logging.info("Decoding started")
|
||||
logging.info(params)
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
graph_compiler = BpeCtcTrainingGraphCompiler(
|
||||
params.lang_dir,
|
||||
device=device,
|
||||
sos_token="<sos/eos>",
|
||||
eos_token="<sos/eos>",
|
||||
)
|
||||
sos_id = graph_compiler.sos_id
|
||||
eos_id = graph_compiler.eos_id
|
||||
|
||||
params.num_classes = num_classes
|
||||
params.sos_id = sos_id
|
||||
params.eos_id = eos_id
|
||||
|
||||
if params.method == "ctc-decoding" or params.method == "ctc-greedy-search":
|
||||
HLG = None
|
||||
H = k2.ctc_topo(
|
||||
max_token=max_token_id,
|
||||
modified=False,
|
||||
device=device,
|
||||
)
|
||||
bpe_model = spm.SentencePieceProcessor()
|
||||
bpe_model.load(str(params.lang_dir / "bpe.model"))
|
||||
else:
|
||||
H = None
|
||||
bpe_model = None
|
||||
HLG = k2.Fsa.from_dict(
|
||||
torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
|
||||
)
|
||||
assert HLG.requires_grad is False
|
||||
|
||||
if not hasattr(HLG, "lm_scores"):
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
if params.method in (
|
||||
"nbest-rescoring",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
"rnn-lm",
|
||||
):
|
||||
if not (params.lm_dir / "G_4_gram.pt").is_file():
|
||||
logging.info("Loading G_4_gram.fst.txt")
|
||||
logging.warning("It may take 8 minutes.")
|
||||
with open(params.lm_dir / "G_4_gram.fst.txt") as f:
|
||||
first_word_disambig_id = lexicon.word_table["#0"]
|
||||
|
||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||
# G.aux_labels is not needed in later computations, so
|
||||
# remove it here.
|
||||
del G.aux_labels
|
||||
# CAUTION: The following line is crucial.
|
||||
# Arcs entering the back-off state have label equal to #0.
|
||||
# We have to change it to 0 here.
|
||||
G.labels[G.labels >= first_word_disambig_id] = 0
|
||||
# See https://github.com/k2-fsa/k2/issues/874
|
||||
# for why we need to set G.properties to None
|
||||
G.__dict__["_properties"] = None
|
||||
G = k2.Fsa.from_fsas([G]).to(device)
|
||||
G = k2.arc_sort(G)
|
||||
# Save a dummy value so that it can be loaded in C++.
|
||||
# See https://github.com/pytorch/pytorch/issues/67902
|
||||
# for why we need to do this.
|
||||
G.dummy = 1
|
||||
|
||||
torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
|
||||
else:
|
||||
logging.info("Loading pre-compiled G_4_gram.pt")
|
||||
d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
|
||||
G = k2.Fsa.from_dict(d)
|
||||
|
||||
if params.method in [
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
"rnn-lm",
|
||||
]:
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
# it with the whole lattice later
|
||||
G = k2.add_epsilon_self_loops(G)
|
||||
G = k2.arc_sort(G)
|
||||
G = G.to(device)
|
||||
|
||||
# G.lm_scores is used to replace HLG.lm_scores during
|
||||
# LM rescoring.
|
||||
G.lm_scores = G.scores.clone()
|
||||
else:
|
||||
G = None
|
||||
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.encoder_dim,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
group_num=params.group_num,
|
||||
)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
rnn_lm_model = None
|
||||
if params.method == "rnn-lm":
|
||||
rnn_lm_model = RnnLmModel(
|
||||
vocab_size=params.num_classes,
|
||||
embedding_dim=params.rnn_lm_embedding_dim,
|
||||
hidden_dim=params.rnn_lm_hidden_dim,
|
||||
num_layers=params.rnn_lm_num_layers,
|
||||
tie_weights=params.rnn_lm_tie_weights,
|
||||
)
|
||||
if params.rnn_lm_avg == 1:
|
||||
load_checkpoint(
|
||||
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
|
||||
rnn_lm_model,
|
||||
)
|
||||
rnn_lm_model.to(device)
|
||||
else:
|
||||
rnn_lm_model = load_averaged_model(
|
||||
params.rnn_lm_exp_dir,
|
||||
rnn_lm_model,
|
||||
params.rnn_lm_epoch,
|
||||
params.rnn_lm_avg,
|
||||
device,
|
||||
)
|
||||
rnn_lm_model.eval()
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
test_other_cuts = librispeech.test_other_cuts()
|
||||
|
||||
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
|
||||
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_dl = [test_clean_dl, test_other_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
HLG=HLG,
|
||||
H=H,
|
||||
bpe_model=bpe_model,
|
||||
word_table=lexicon.word_table,
|
||||
G=G,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
)
|
||||
|
||||
save_results(params=params, test_set_name=test_set, results_dict=results_dict)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
278
egs/tedlium2/ASR/conformer_ctc2/export.py
Executable file
278
egs/tedlium2/ASR/conformer_ctc2/export.py
Executable file
@ -0,0 +1,278 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Quandong Wang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
"""
|
||||
Usage:
|
||||
./conformer_ctc2/export.py \
|
||||
--exp-dir ./conformer_ctc2/exp \
|
||||
--epoch 20 \
|
||||
--avg 10
|
||||
|
||||
It will generate a file exp_dir/pretrained.pt
|
||||
|
||||
To use the generated file with `conformer_ctc2/decode.py`,
|
||||
you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/librispeech/ASR
|
||||
./conformer_ctc2/decode.py \
|
||||
--exp-dir ./conformer_ctc2/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 100
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from conformer import Conformer
|
||||
from decode import get_params
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for averaging.
|
||||
Note: Epoch counts from 0.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-decoder-layers",
|
||||
type=int,
|
||||
default=6,
|
||||
help="""Number of decoder layer of transformer decoder.
|
||||
Setting this to 0 will not create the decoder at all (pure CTC model)
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="conformer_ctc2/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_bpe_500",
|
||||
help="The lang dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.encoder_dim,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.eval()
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
||||
109
egs/tedlium2/ASR/conformer_ctc2/label_smoothing.py
Normal file
109
egs/tedlium2/ASR/conformer_ctc2/label_smoothing.py
Normal file
@ -0,0 +1,109 @@
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class LabelSmoothingLoss(torch.nn.Module):
|
||||
"""
|
||||
Implement the LabelSmoothingLoss proposed in the following paper
|
||||
https://arxiv.org/pdf/1512.00567.pdf
|
||||
(Rethinking the Inception Architecture for Computer Vision)
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ignore_index: int = -1,
|
||||
label_smoothing: float = 0.1,
|
||||
reduction: str = "sum",
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
ignore_index:
|
||||
ignored class id
|
||||
label_smoothing:
|
||||
smoothing rate (0.0 means the conventional cross entropy loss)
|
||||
reduction:
|
||||
It has the same meaning as the reduction in
|
||||
`torch.nn.CrossEntropyLoss`. It can be one of the following three
|
||||
values: (1) "none": No reduction will be applied. (2) "mean": the
|
||||
mean of the output is taken. (3) "sum": the output will be summed.
|
||||
"""
|
||||
super().__init__()
|
||||
assert 0.0 <= label_smoothing < 1.0, f"{label_smoothing}"
|
||||
assert reduction in ("none", "sum", "mean"), reduction
|
||||
self.ignore_index = ignore_index
|
||||
self.label_smoothing = label_smoothing
|
||||
self.reduction = reduction
|
||||
|
||||
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Compute loss between x and target.
|
||||
|
||||
Args:
|
||||
x:
|
||||
prediction of dimension
|
||||
(batch_size, input_length, number_of_classes).
|
||||
target:
|
||||
target masked with self.ignore_index of
|
||||
dimension (batch_size, input_length).
|
||||
|
||||
Returns:
|
||||
A scalar tensor containing the loss without normalization.
|
||||
"""
|
||||
assert x.ndim == 3
|
||||
assert target.ndim == 2
|
||||
assert x.shape[:2] == target.shape
|
||||
num_classes = x.size(-1)
|
||||
x = x.reshape(-1, num_classes)
|
||||
# Now x is of shape (N*T, C)
|
||||
|
||||
# We don't want to change target in-place below,
|
||||
# so we make a copy of it here
|
||||
target = target.clone().reshape(-1)
|
||||
|
||||
ignored = target == self.ignore_index
|
||||
|
||||
# See https://github.com/k2-fsa/icefall/issues/240
|
||||
# and https://github.com/k2-fsa/icefall/issues/297
|
||||
# for why we don't use target[ignored] = 0 here
|
||||
target = torch.where(ignored, torch.zeros_like(target), target)
|
||||
|
||||
true_dist = torch.nn.functional.one_hot(target, num_classes=num_classes).to(x)
|
||||
|
||||
true_dist = (
|
||||
true_dist * (1 - self.label_smoothing) + self.label_smoothing / num_classes
|
||||
)
|
||||
|
||||
# Set the value of ignored indexes to 0
|
||||
#
|
||||
# See https://github.com/k2-fsa/icefall/issues/240
|
||||
# and https://github.com/k2-fsa/icefall/issues/297
|
||||
# for why we don't use true_dist[ignored] = 0 here
|
||||
true_dist = torch.where(
|
||||
ignored.unsqueeze(1).repeat(1, true_dist.shape[1]),
|
||||
torch.zeros_like(true_dist),
|
||||
true_dist,
|
||||
)
|
||||
|
||||
loss = -1 * (torch.log_softmax(x, dim=1) * true_dist)
|
||||
if self.reduction == "sum":
|
||||
return loss.sum()
|
||||
elif self.reduction == "mean":
|
||||
return loss.sum() / (~ignored).sum()
|
||||
else:
|
||||
return loss.sum(dim=-1)
|
||||
320
egs/tedlium2/ASR/conformer_ctc2/optim.py
Normal file
320
egs/tedlium2/ASR/conformer_ctc2/optim.py
Normal file
@ -0,0 +1,320 @@
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
||||
#
|
||||
# See ../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch.optim import Optimizer
|
||||
|
||||
|
||||
class Eve(Optimizer):
|
||||
r"""
|
||||
Implements Eve algorithm. This is a modified version of AdamW with a special
|
||||
way of setting the weight-decay / shrinkage-factor, which is designed to make the
|
||||
rms of the parameters approach a particular target_rms (default: 0.1). This is
|
||||
for use with networks with 'scaled' versions of modules (see scaling.py), which
|
||||
will be close to invariant to the absolute scale on the parameter matrix.
|
||||
|
||||
The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_.
|
||||
The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_.
|
||||
Eve is unpublished so far.
|
||||
|
||||
Arguments:
|
||||
params (iterable): iterable of parameters to optimize or dicts defining
|
||||
parameter groups
|
||||
lr (float, optional): learning rate (default: 1e-3)
|
||||
betas (Tuple[float, float], optional): coefficients used for computing
|
||||
running averages of gradient and its square (default: (0.9, 0.999))
|
||||
eps (float, optional): term added to the denominator to improve
|
||||
numerical stability (default: 1e-8)
|
||||
weight_decay (float, optional): weight decay coefficient (default: 3e-4;
|
||||
this value means that the weight would decay significantly after
|
||||
about 3k minibatches. Is not multiplied by learning rate, but
|
||||
is conditional on RMS-value of parameter being > target_rms.
|
||||
target_rms (float, optional): target root-mean-square value of
|
||||
parameters, if they fall below this we will stop applying weight decay.
|
||||
|
||||
|
||||
.. _Adam\: A Method for Stochastic Optimization:
|
||||
https://arxiv.org/abs/1412.6980
|
||||
.. _Decoupled Weight Decay Regularization:
|
||||
https://arxiv.org/abs/1711.05101
|
||||
.. _On the Convergence of Adam and Beyond:
|
||||
https://openreview.net/forum?id=ryQu7f-RZ
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
lr=1e-3,
|
||||
betas=(0.9, 0.98),
|
||||
eps=1e-8,
|
||||
weight_decay=1e-3,
|
||||
target_rms=0.1,
|
||||
):
|
||||
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if not 0.0 <= eps:
|
||||
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||
if not 0.0 <= betas[0] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||||
if not 0.0 <= betas[1] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||||
if not 0 <= weight_decay <= 0.1:
|
||||
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
||||
if not 0 < target_rms <= 10.0:
|
||||
raise ValueError("Invalid target_rms value: {}".format(target_rms))
|
||||
defaults = dict(
|
||||
lr=lr,
|
||||
betas=betas,
|
||||
eps=eps,
|
||||
weight_decay=weight_decay,
|
||||
target_rms=target_rms,
|
||||
)
|
||||
super(Eve, self).__init__(params, defaults)
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(Eve, self).__setstate__(state)
|
||||
|
||||
@torch.no_grad()
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
|
||||
Arguments:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
with torch.enable_grad():
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
for p in group["params"]:
|
||||
if p.grad is None:
|
||||
continue
|
||||
|
||||
# Perform optimization step
|
||||
grad = p.grad
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError("AdamW does not support sparse gradients")
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
state["step"] = 0
|
||||
# Exponential moving average of gradient values
|
||||
state["exp_avg"] = torch.zeros_like(
|
||||
p, memory_format=torch.preserve_format
|
||||
)
|
||||
# Exponential moving average of squared gradient values
|
||||
state["exp_avg_sq"] = torch.zeros_like(
|
||||
p, memory_format=torch.preserve_format
|
||||
)
|
||||
|
||||
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
|
||||
|
||||
beta1, beta2 = group["betas"]
|
||||
|
||||
state["step"] += 1
|
||||
bias_correction1 = 1 - beta1 ** state["step"]
|
||||
bias_correction2 = 1 - beta2 ** state["step"]
|
||||
|
||||
# Decay the first and second moment running average coefficient
|
||||
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
||||
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
||||
denom = (exp_avg_sq.sqrt() * (bias_correction2**-0.5)).add_(
|
||||
group["eps"]
|
||||
)
|
||||
|
||||
step_size = group["lr"] / bias_correction1
|
||||
target_rms = group["target_rms"]
|
||||
weight_decay = group["weight_decay"]
|
||||
|
||||
if p.numel() > 1:
|
||||
# avoid applying this weight-decay on "scaling factors"
|
||||
# (which are scalar).
|
||||
is_above_target_rms = p.norm() > (target_rms * (p.numel() ** 0.5))
|
||||
p.mul_(1 - (weight_decay * is_above_target_rms))
|
||||
p.addcdiv_(exp_avg, denom, value=-step_size)
|
||||
|
||||
# Constrain the range of scalar weights
|
||||
if p.numel() == 1:
|
||||
p.clamp_(min=-10, max=2)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
class LRScheduler(object):
|
||||
"""
|
||||
Base-class for learning rate schedulers where the learning-rate depends on both the
|
||||
batch and the epoch.
|
||||
"""
|
||||
|
||||
def __init__(self, optimizer: Optimizer, verbose: bool = False):
|
||||
# Attach optimizer
|
||||
if not isinstance(optimizer, Optimizer):
|
||||
raise TypeError("{} is not an Optimizer".format(type(optimizer).__name__))
|
||||
self.optimizer = optimizer
|
||||
self.verbose = verbose
|
||||
|
||||
for group in optimizer.param_groups:
|
||||
group.setdefault("initial_lr", group["lr"])
|
||||
|
||||
self.base_lrs = [group["initial_lr"] for group in optimizer.param_groups]
|
||||
|
||||
self.epoch = 0
|
||||
self.batch = 0
|
||||
|
||||
def state_dict(self):
|
||||
"""Returns the state of the scheduler as a :class:`dict`.
|
||||
|
||||
It contains an entry for every variable in self.__dict__ which
|
||||
is not the optimizer.
|
||||
"""
|
||||
return {
|
||||
"base_lrs": self.base_lrs,
|
||||
"epoch": self.epoch,
|
||||
"batch": self.batch,
|
||||
}
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""Loads the schedulers state.
|
||||
|
||||
Args:
|
||||
state_dict (dict): scheduler state. Should be an object returned
|
||||
from a call to :meth:`state_dict`.
|
||||
"""
|
||||
self.__dict__.update(state_dict)
|
||||
|
||||
def get_last_lr(self) -> List[float]:
|
||||
"""Return last computed learning rate by current scheduler. Will be a list of float."""
|
||||
return self._last_lr
|
||||
|
||||
def get_lr(self):
|
||||
# Compute list of learning rates from self.epoch and self.batch and
|
||||
# self.base_lrs; this must be overloaded by the user.
|
||||
# e.g. return [some_formula(self.batch, self.epoch, base_lr) for base_lr in self.base_lrs ]
|
||||
raise NotImplementedError
|
||||
|
||||
def step_batch(self, batch: Optional[int] = None) -> None:
|
||||
# Step the batch index, or just set it. If `batch` is specified, it
|
||||
# must be the batch index from the start of training, i.e. summed over
|
||||
# all epochs.
|
||||
# You can call this in any order; if you don't provide 'batch', it should
|
||||
# of course be called once per batch.
|
||||
if batch is not None:
|
||||
self.batch = batch
|
||||
else:
|
||||
self.batch = self.batch + 1
|
||||
self._set_lrs()
|
||||
|
||||
def step_epoch(self, epoch: Optional[int] = None):
|
||||
# Step the epoch index, or just set it. If you provide the 'epoch' arg,
|
||||
# you should call this at the start of the epoch; if you don't provide the 'epoch'
|
||||
# arg, you should call it at the end of the epoch.
|
||||
if epoch is not None:
|
||||
self.epoch = epoch
|
||||
else:
|
||||
self.epoch = self.epoch + 1
|
||||
self._set_lrs()
|
||||
|
||||
def _set_lrs(self):
|
||||
values = self.get_lr()
|
||||
assert len(values) == len(self.optimizer.param_groups)
|
||||
|
||||
for i, data in enumerate(zip(self.optimizer.param_groups, values)):
|
||||
param_group, lr = data
|
||||
param_group["lr"] = lr
|
||||
self.print_lr(self.verbose, i, lr)
|
||||
self._last_lr = [group["lr"] for group in self.optimizer.param_groups]
|
||||
|
||||
def print_lr(self, is_verbose, group, lr):
|
||||
"""Display the current learning rate."""
|
||||
if is_verbose:
|
||||
print(
|
||||
f"Epoch={self.epoch}, batch={self.batch}: adjusting learning rate"
|
||||
f" of group {group} to {lr:.4e}."
|
||||
)
|
||||
|
||||
|
||||
class Eden(LRScheduler):
|
||||
"""
|
||||
Eden scheduler.
|
||||
lr = initial_lr * (((batch**2 + lr_batches**2) / lr_batches**2) ** -0.25 *
|
||||
(((epoch**2 + lr_epochs**2) / lr_epochs**2) ** -0.25))
|
||||
|
||||
E.g. suggest initial-lr = 0.003 (passed to optimizer).
|
||||
|
||||
Args:
|
||||
optimizer: the optimizer to change the learning rates on
|
||||
lr_batches: the number of batches after which we start significantly
|
||||
decreasing the learning rate, suggest 5000.
|
||||
lr_epochs: the number of epochs after which we start significantly
|
||||
decreasing the learning rate, suggest 6 if you plan to do e.g.
|
||||
20 to 40 epochs, but may need smaller number if dataset is huge
|
||||
and you will do few epochs.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
lr_batches: Union[int, float],
|
||||
lr_epochs: Union[int, float],
|
||||
verbose: bool = False,
|
||||
):
|
||||
super(Eden, self).__init__(optimizer, verbose)
|
||||
self.lr_batches = lr_batches
|
||||
self.lr_epochs = lr_epochs
|
||||
|
||||
def get_lr(self):
|
||||
factor = (
|
||||
(self.batch**2 + self.lr_batches**2) / self.lr_batches**2
|
||||
) ** -0.25 * (
|
||||
((self.epoch**2 + self.lr_epochs**2) / self.lr_epochs**2) ** -0.25
|
||||
)
|
||||
return [x * factor for x in self.base_lrs]
|
||||
|
||||
|
||||
def _test_eden():
|
||||
m = torch.nn.Linear(100, 100)
|
||||
optim = Eve(m.parameters(), lr=0.003)
|
||||
|
||||
scheduler = Eden(optim, lr_batches=30, lr_epochs=2, verbose=True)
|
||||
|
||||
for epoch in range(10):
|
||||
scheduler.step_epoch(epoch) # sets epoch to `epoch`
|
||||
|
||||
for step in range(20):
|
||||
x = torch.randn(200, 100).detach()
|
||||
x.requires_grad = True
|
||||
y = m(x)
|
||||
dy = torch.randn(200, 100).detach()
|
||||
f = (y * dy).sum()
|
||||
f.backward()
|
||||
|
||||
optim.step()
|
||||
scheduler.step_batch()
|
||||
optim.zero_grad()
|
||||
print("last lr = ", scheduler.get_last_lr())
|
||||
print("state dict = ", scheduler.state_dict())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
_test_eden()
|
||||
1015
egs/tedlium2/ASR/conformer_ctc2/scaling.py
Normal file
1015
egs/tedlium2/ASR/conformer_ctc2/scaling.py
Normal file
File diff suppressed because it is too large
Load Diff
121
egs/tedlium2/ASR/conformer_ctc2/subsampling.py
Normal file
121
egs/tedlium2/ASR/conformer_ctc2/subsampling.py
Normal file
@ -0,0 +1,121 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2021 University of Chinese Academy of Sciences (author: Han Zhu)
|
||||
# 2022 Xiaomi Corporation (author: Quandong Wang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
from scaling import (
|
||||
ActivationBalancer,
|
||||
BasicNorm,
|
||||
DoubleSwish,
|
||||
ScaledConv2d,
|
||||
ScaledLinear,
|
||||
)
|
||||
from torch import nn
|
||||
|
||||
|
||||
class Conv2dSubsampling(nn.Module):
|
||||
"""Convolutional 2D subsampling (to 1/4 length).
|
||||
|
||||
Convert an input of shape (N, T, idim) to an output
|
||||
with shape (N, T', odim), where
|
||||
T' = ((T-1)//2 - 1)//2, which approximates T' == T//4
|
||||
|
||||
It is based on
|
||||
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
layer1_channels: int = 8,
|
||||
layer2_channels: int = 32,
|
||||
layer3_channels: int = 128,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
in_channels:
|
||||
Number of channels in. The input shape is (N, T, in_channels).
|
||||
Caution: It requires: T >=7, in_channels >=7
|
||||
out_channels
|
||||
Output dim. The output shape is (N, ((T-1)//2 - 1)//2, out_channels)
|
||||
layer1_channels:
|
||||
Number of channels in layer1
|
||||
layer1_channels:
|
||||
Number of channels in layer2
|
||||
"""
|
||||
assert in_channels >= 7
|
||||
super().__init__()
|
||||
|
||||
self.conv = nn.Sequential(
|
||||
ScaledConv2d(
|
||||
in_channels=1,
|
||||
out_channels=layer1_channels,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
),
|
||||
ActivationBalancer(channel_dim=1),
|
||||
DoubleSwish(),
|
||||
ScaledConv2d(
|
||||
in_channels=layer1_channels,
|
||||
out_channels=layer2_channels,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
),
|
||||
ActivationBalancer(channel_dim=1),
|
||||
DoubleSwish(),
|
||||
ScaledConv2d(
|
||||
in_channels=layer2_channels,
|
||||
out_channels=layer3_channels,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
),
|
||||
ActivationBalancer(channel_dim=1),
|
||||
DoubleSwish(),
|
||||
)
|
||||
self.out = ScaledLinear(
|
||||
layer3_channels * (((in_channels - 1) // 2 - 1) // 2), out_channels
|
||||
)
|
||||
# set learn_eps=False because out_norm is preceded by `out`, and `out`
|
||||
# itself has learned scale, so the extra degree of freedom is not
|
||||
# needed.
|
||||
self.out_norm = BasicNorm(out_channels, learn_eps=False)
|
||||
# constrain median of output to be close to zero.
|
||||
self.out_balancer = ActivationBalancer(
|
||||
channel_dim=-1, min_positive=0.45, max_positive=0.55
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Subsample x.
|
||||
|
||||
Args:
|
||||
x:
|
||||
Its shape is (N, T, idim).
|
||||
|
||||
Returns:
|
||||
Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim)
|
||||
"""
|
||||
# On entry, x is (N, T, idim)
|
||||
x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W)
|
||||
x = self.conv(x)
|
||||
# Now x is of shape (N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2)
|
||||
b, c, t, f = x.size()
|
||||
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||
# Now x is of shape (N, ((T-1)//2 - 1))//2, odim)
|
||||
x = self.out_norm(x)
|
||||
x = self.out_balancer(x)
|
||||
return x
|
||||
1108
egs/tedlium2/ASR/conformer_ctc2/train.py
Executable file
1108
egs/tedlium2/ASR/conformer_ctc2/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1049
egs/tedlium2/ASR/conformer_ctc2/transformer.py
Normal file
1049
egs/tedlium2/ASR/conformer_ctc2/transformer.py
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user