mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-04 06:34:20 +00:00
Delete compute_fbank_gigaspeech.py
This commit is contained in:
parent
55e3019c5d
commit
3ddcc7939b
@ -1,289 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the GigaSpeech dataset.
|
||||
It looks for manifests in the directory data/manifests.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
LilcomHdf5Writer,
|
||||
SupervisionSegment,
|
||||
)
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
from icefall.utils import get_executor, str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
parser.add_argument(
|
||||
"--context-window",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Training cut duration in seconds. "
|
||||
"Use 0 to train on supervision segments without acoustic context, "
|
||||
"with variable cut lengths; number larger than zero will create "
|
||||
"multi-supervisions cuts with actual acoustic context. ",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--context-direction",
|
||||
type=str,
|
||||
default="center",
|
||||
help="If context-window is 0, does nothing. "
|
||||
"If it's larger than 0, determines in which direction "
|
||||
"(relative to the supervision) to seek for extra acoustic context. "
|
||||
"Available values: (left|right|center|random).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--precomputed-features",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Should we pre-compute features and store them on disk or not. "
|
||||
"It is recommended to disable it for L and XL splits as the "
|
||||
"pre-computation might currently consume excessive memory and time "
|
||||
"-- use on-the-fly feature extraction in the training script instead.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of dataloading workers used for reading the audio.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch-duration",
|
||||
type=float,
|
||||
default=600.0,
|
||||
help="The maximum number of audio seconds in a batch."
|
||||
"Determines batch size dynamically.",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
# Similar text filtering and normalization procedure as in:
|
||||
# https://github.com/SpeechColab/GigaSpeech/blob/main/toolkits/kaldi/gigaspeech_data_prep.sh
|
||||
|
||||
|
||||
def normalize_text(
|
||||
utt: str,
|
||||
punct_pattern=re.compile(r"<(COMMA|PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"),
|
||||
whitespace_pattern=re.compile(r"\s\s+"),
|
||||
) -> str:
|
||||
return whitespace_pattern.sub(" ", punct_pattern.sub("", utt))
|
||||
|
||||
|
||||
def has_no_oov(
|
||||
sup: SupervisionSegment,
|
||||
oov_pattern=re.compile(r"<(SIL|MUSIC|NOISE|OTHER)>"),
|
||||
) -> bool:
|
||||
return oov_pattern.search(sup.text) is None
|
||||
|
||||
|
||||
def get_context_suffix(args):
|
||||
if args.context_window is None or args.context_window <= 0.0:
|
||||
ctx_suffix = ""
|
||||
else:
|
||||
ctx_suffix = f"_{args.context_direction}{args.context_window}"
|
||||
return ctx_suffix
|
||||
|
||||
|
||||
def compute_fbank_gigaspeech(args):
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank")
|
||||
|
||||
dataset_parts = (
|
||||
"XL",
|
||||
"DEV",
|
||||
"TEST",
|
||||
)
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=dataset_parts,
|
||||
output_dir=src_dir,
|
||||
prefix="gigaspeech",
|
||||
suffix="jsonl.gz",
|
||||
)
|
||||
assert manifests is not None
|
||||
|
||||
if torch.cuda.is_available():
|
||||
extractor = KaldifeatFbank(
|
||||
KaldifeatFbankConfig(device="cuda"),
|
||||
)
|
||||
else:
|
||||
extractor = KaldifeatFbank(
|
||||
KaldifeatFbankConfig(device="cpu"),
|
||||
)
|
||||
ctx_suffix = get_context_suffix(args)
|
||||
|
||||
for partition, m in manifests.items():
|
||||
raw_cuts_path = output_dir / f"cuts_{partition}_raw.jsonl.gz"
|
||||
if raw_cuts_path.is_file():
|
||||
logging.info(
|
||||
f"{partition} already exists - skipping feature extraction."
|
||||
)
|
||||
else:
|
||||
# Note this step makes the recipe different than LibriSpeech:
|
||||
# We must filter out some utterances and remove punctuation
|
||||
# to be consistent with Kaldi.
|
||||
logging.info("Filtering OOV utterances from supervisions")
|
||||
m["supervisions"] = m["supervisions"].filter(has_no_oov)
|
||||
logging.info(f"Normalizing text in {partition}")
|
||||
for sup in m["supervisions"]:
|
||||
sup.text = normalize_text(sup.text)
|
||||
|
||||
# Create long-recording cut manifests.
|
||||
logging.info(f"Processing {partition}")
|
||||
cut_set = CutSet.from_manifests(
|
||||
recordings=m["recordings"],
|
||||
supervisions=m["supervisions"],
|
||||
)
|
||||
# Run data augmentation that needs to be done in the
|
||||
# time domain.
|
||||
if partition not in ["DEV", "TEST"]:
|
||||
cut_set = (
|
||||
cut_set
|
||||
+ cut_set.perturb_speed(0.9)
|
||||
+ cut_set.perturb_speed(1.1)
|
||||
)
|
||||
cut_set.to_file(raw_cuts_path)
|
||||
|
||||
cuts_path = output_dir / f"cuts_{partition}{ctx_suffix}.jsonl.gz"
|
||||
if cuts_path.is_file():
|
||||
logging.info(
|
||||
f"{partition} already exists - skipping cutting into "
|
||||
f"sub-segments."
|
||||
)
|
||||
else:
|
||||
try:
|
||||
# If we skipped initializing `cut_set` because it exists
|
||||
# on disk, we'll load it. This helps us avoid re-computing
|
||||
# the features for different variants of context windows.
|
||||
cut_set
|
||||
except NameError:
|
||||
logging.info(f"Reading {partition} raw cuts from disk.")
|
||||
cut_set = CutSet.from_file(raw_cuts_path)
|
||||
# Note this step makes the recipe different than LibriSpeech:
|
||||
# Since recordings are long, the initial CutSet has very long
|
||||
# cuts with a plenty of supervisions. We cut these into smaller
|
||||
# chunks centered around each supervision, possibly adding
|
||||
# acoustic context.
|
||||
logging.info(
|
||||
f"About to split {partition} raw cuts into smaller chunks."
|
||||
)
|
||||
cut_set = cut_set.trim_to_supervisions(
|
||||
keep_overlapping=False,
|
||||
min_duration=None
|
||||
if args.context_window <= 0.0
|
||||
else args.context_window,
|
||||
context_direction=args.context_direction,
|
||||
)
|
||||
|
||||
if args.precomputed_features:
|
||||
# Extract the features after cutting large recordings into
|
||||
# smaller cuts.
|
||||
# Note:
|
||||
# we support very efficient "chunked" feature reads with
|
||||
# the argument `storage_type=ChunkedLilcomHdf5Writer`,
|
||||
# but we don't support efficient data augmentation and
|
||||
# feature computation for long recordings yet.
|
||||
# Therefore, we sacrifice some storage for the ability to
|
||||
# precompute features on shorter chunks,
|
||||
# without memory blow-ups.
|
||||
if torch.cuda.is_available():
|
||||
logging.info("GPU detected, do the CUDA extraction.")
|
||||
cut_set = cut_set.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/feats_{partition}",
|
||||
num_workers=args.num_workers,
|
||||
batch_duration=args.batch_duration,
|
||||
storage_type=LilcomHdf5Writer,
|
||||
)
|
||||
cut_set.to_file(cuts_path)
|
||||
|
||||
# Remove cut_set so the next iteration can correctly infer
|
||||
# whether it needs to load the raw cuts from disk or not.
|
||||
del cut_set
|
||||
|
||||
# In case the user insists on CPU extraction
|
||||
if not torch.cuda.is_available():
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for partition, m in manifests.items():
|
||||
cuts_path = (
|
||||
output_dir / f"cuts_{partition}{ctx_suffix}.jsonl.gz"
|
||||
)
|
||||
cut_set = CutSet.from_file(cuts_path)
|
||||
if args.precomputed_features:
|
||||
# Extract the features after cutting large recordings into
|
||||
# smaller cuts.
|
||||
# Note:
|
||||
# we support very efficient "chunked" feature reads with
|
||||
# the argument `storage_type=ChunkedLilcomHdf5Writer`,
|
||||
# but we don't support efficient data augmentation and
|
||||
# feature computation for long recordings yet.
|
||||
# Therefore, we sacrifice some storage for the ability to
|
||||
# precompute features on shorter chunks,
|
||||
# without memory blow-ups.
|
||||
logging.info(
|
||||
"GPU not detected, we recommend you skip the "
|
||||
"extraction and do on-the-fly extraction "
|
||||
"while training."
|
||||
)
|
||||
cut_set = cut_set.compute_and_store_features(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/feats_{partition}",
|
||||
# when an executor is specified, make more partitions
|
||||
num_jobs=min(15, os.cpu_count()) if ex is None else 80,
|
||||
executor=ex,
|
||||
storage_type=LilcomHdf5Writer,
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
compute_fbank_gigaspeech(args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user