Implement max-eig-proportion..
This commit is contained in:
parent
5f27cbdb44
commit
3d72a65de8
@ -249,8 +249,6 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
|
|
||||||
# multi-headed self-attention module
|
# multi-headed self-attention module
|
||||||
src_att = self.self_attn(
|
src_att = self.self_attn(
|
||||||
src,
|
|
||||||
src,
|
|
||||||
src,
|
src,
|
||||||
pos_emb=pos_emb,
|
pos_emb=pos_emb,
|
||||||
attn_mask=src_mask,
|
attn_mask=src_mask,
|
||||||
@ -490,9 +488,7 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
query: Tensor,
|
x: Tensor,
|
||||||
key: Tensor,
|
|
||||||
value: Tensor,
|
|
||||||
pos_emb: Tensor,
|
pos_emb: Tensor,
|
||||||
key_padding_mask: Optional[Tensor] = None,
|
key_padding_mask: Optional[Tensor] = None,
|
||||||
need_weights: bool = True,
|
need_weights: bool = True,
|
||||||
@ -500,7 +496,7 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||||
r"""
|
r"""
|
||||||
Args:
|
Args:
|
||||||
query, key, value: map a query and a set of key-value pairs to an output.
|
x: input to be projected to query, key, value
|
||||||
pos_emb: Positional embedding tensor
|
pos_emb: Positional embedding tensor
|
||||||
key_padding_mask: if provided, specified padding elements in the key will
|
key_padding_mask: if provided, specified padding elements in the key will
|
||||||
be ignored by the attention. When given a binary mask and a value is True,
|
be ignored by the attention. When given a binary mask and a value is True,
|
||||||
@ -513,11 +509,7 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
|
|
||||||
Shape:
|
Shape:
|
||||||
- Inputs:
|
- Inputs:
|
||||||
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
- x: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
the embedding dimension.
|
|
||||||
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
|
||||||
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
|
||||||
the embedding dimension.
|
the embedding dimension.
|
||||||
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
- pos_emb: :math:`(N, 2*L-1, E)` where L is the target sequence length, N is the batch size, E is
|
||||||
the embedding dimension.
|
the embedding dimension.
|
||||||
@ -540,9 +532,7 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
L is the target sequence length, S is the source sequence length.
|
L is the target sequence length, S is the source sequence length.
|
||||||
"""
|
"""
|
||||||
return self.multi_head_attention_forward(
|
return self.multi_head_attention_forward(
|
||||||
query,
|
self.in_balancer(self.in_proj(x)),
|
||||||
key,
|
|
||||||
value,
|
|
||||||
pos_emb,
|
pos_emb,
|
||||||
self.embed_dim,
|
self.embed_dim,
|
||||||
self.num_heads,
|
self.num_heads,
|
||||||
@ -584,11 +574,9 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
|
|
||||||
def multi_head_attention_forward(
|
def multi_head_attention_forward(
|
||||||
self,
|
self,
|
||||||
query: Tensor,
|
x: Tensor,
|
||||||
key: Tensor,
|
|
||||||
value: Tensor,
|
|
||||||
pos_emb: Tensor,
|
pos_emb: Tensor,
|
||||||
embed_dim_to_check: int,
|
embed_dim: int,
|
||||||
num_heads: int,
|
num_heads: int,
|
||||||
in_proj_weight: Tensor,
|
in_proj_weight: Tensor,
|
||||||
in_proj_bias: Tensor,
|
in_proj_bias: Tensor,
|
||||||
@ -604,7 +592,7 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
Args:
|
Args:
|
||||||
query, key, value: map a query and a set of key-value pairs to an output.
|
query, key, value: map a query and a set of key-value pairs to an output.
|
||||||
pos_emb: Positional embedding tensor
|
pos_emb: Positional embedding tensor
|
||||||
embed_dim_to_check: total dimension of the model.
|
embed_dim: total dimension of the model.
|
||||||
num_heads: parallel attention heads.
|
num_heads: parallel attention heads.
|
||||||
in_proj_weight, in_proj_bias: input projection weight and bias.
|
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||||||
dropout_p: probability of an element to be zeroed.
|
dropout_p: probability of an element to be zeroed.
|
||||||
@ -646,9 +634,7 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
L is the target sequence length, S is the source sequence length.
|
L is the target sequence length, S is the source sequence length.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
tgt_len, bsz, embed_dim = query.size()
|
tgt_len, bsz, _ = x.size()
|
||||||
assert embed_dim == embed_dim_to_check
|
|
||||||
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
|
||||||
|
|
||||||
head_dim = embed_dim // num_heads
|
head_dim = embed_dim // num_heads
|
||||||
assert (
|
assert (
|
||||||
@ -657,62 +643,10 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
|
|
||||||
scaling = float(head_dim) ** -0.5
|
scaling = float(head_dim) ** -0.5
|
||||||
|
|
||||||
def linear(x, w, b):
|
|
||||||
return self.in_balancer(nn.functional.linear(x, w, b))
|
|
||||||
|
|
||||||
if torch.equal(query, key) and torch.equal(key, value):
|
# self-attention
|
||||||
# self-attention
|
q, k, v = x.chunk(3, dim=-1)
|
||||||
q, k, v = linear(
|
|
||||||
query, in_proj_weight, in_proj_bias
|
|
||||||
).chunk(3, dim=-1)
|
|
||||||
|
|
||||||
elif torch.equal(key, value):
|
|
||||||
# encoder-decoder attention
|
|
||||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
||||||
_b = in_proj_bias
|
|
||||||
_start = 0
|
|
||||||
_end = embed_dim
|
|
||||||
_w = in_proj_weight[_start:_end, :]
|
|
||||||
if _b is not None:
|
|
||||||
_b = _b[_start:_end]
|
|
||||||
q = linear(query, _w, _b)
|
|
||||||
|
|
||||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
||||||
_b = in_proj_bias
|
|
||||||
_start = embed_dim
|
|
||||||
_end = None
|
|
||||||
_w = in_proj_weight[_start:, :]
|
|
||||||
if _b is not None:
|
|
||||||
_b = _b[_start:]
|
|
||||||
k, v = linear(key, _w, _b).chunk(2, dim=-1)
|
|
||||||
|
|
||||||
else:
|
|
||||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
||||||
_b = in_proj_bias
|
|
||||||
_start = 0
|
|
||||||
_end = embed_dim
|
|
||||||
_w = in_proj_weight[_start:_end, :]
|
|
||||||
if _b is not None:
|
|
||||||
_b = _b[_start:_end]
|
|
||||||
q = linear(query, _w, _b)
|
|
||||||
|
|
||||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
||||||
_b = in_proj_bias
|
|
||||||
_start = embed_dim
|
|
||||||
_end = embed_dim * 2
|
|
||||||
_w = in_proj_weight[_start:_end, :]
|
|
||||||
if _b is not None:
|
|
||||||
_b = _b[_start:_end]
|
|
||||||
k = linear(key, _w, _b)
|
|
||||||
|
|
||||||
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
||||||
_b = in_proj_bias
|
|
||||||
_start = embed_dim * 2
|
|
||||||
_end = None
|
|
||||||
_w = in_proj_weight[_start:, :]
|
|
||||||
if _b is not None:
|
|
||||||
_b = _b[_start:]
|
|
||||||
v = linear(value, _w, _b)
|
|
||||||
|
|
||||||
if attn_mask is not None:
|
if attn_mask is not None:
|
||||||
assert (
|
assert (
|
||||||
@ -732,15 +666,15 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
|
|
||||||
if attn_mask.dim() == 2:
|
if attn_mask.dim() == 2:
|
||||||
attn_mask = attn_mask.unsqueeze(0)
|
attn_mask = attn_mask.unsqueeze(0)
|
||||||
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
if list(attn_mask.size()) != [1, tgt_len, tgt_len]:
|
||||||
raise RuntimeError(
|
raise RuntimeError(
|
||||||
"The size of the 2D attn_mask is not correct."
|
"The size of the 2D attn_mask is not correct."
|
||||||
)
|
)
|
||||||
elif attn_mask.dim() == 3:
|
elif attn_mask.dim() == 3:
|
||||||
if list(attn_mask.size()) != [
|
if list(attn_mask.size()) != [
|
||||||
bsz * num_heads,
|
bsz * num_heads,
|
||||||
query.size(0),
|
tgt_len,
|
||||||
key.size(0),
|
tgt_len,
|
||||||
]:
|
]:
|
||||||
raise RuntimeError(
|
raise RuntimeError(
|
||||||
"The size of the 3D attn_mask is not correct."
|
"The size of the 3D attn_mask is not correct."
|
||||||
|
|||||||
@ -254,7 +254,7 @@ class ScaledAdam(Optimizer):
|
|||||||
if ans < 1.0:
|
if ans < 1.0:
|
||||||
state["num_clipped"] += 1
|
state["num_clipped"] += 1
|
||||||
if ans < 0.1:
|
if ans < 0.1:
|
||||||
logging.warn("Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}")
|
logging.warn(f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}")
|
||||||
return ans
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -145,71 +145,6 @@ def find_direction_coeffs(x: Tensor,
|
|||||||
return cur_direction, coeffs
|
return cur_direction, coeffs
|
||||||
|
|
||||||
|
|
||||||
def get_max_eig_proportion(x: Tensor,
|
|
||||||
prev_direction: Tensor,
|
|
||||||
subtract_mean: bool) -> Tuple[Tensor, Tensor]:
|
|
||||||
"""
|
|
||||||
Figure out (an approximation to) the proportion of the variance of a set of
|
|
||||||
feature vectors that can be attributed to the top eigen-direction.
|
|
||||||
Args:
|
|
||||||
x: a Tensor of shape (*, num_channels). There must be more than one frame,
|
|
||||||
i.e. x.numel() // num_channels > 1.
|
|
||||||
prev_direction: a Tensor of shape (num_channels,), that is our previous estimate
|
|
||||||
of the top eigen-direction, or a random direction if this is the first
|
|
||||||
iteration. Expected to be without gradient. Does not have to be
|
|
||||||
normalized.
|
|
||||||
subtract_mean: if True, we will first subtract the mean of x, over the
|
|
||||||
frames. Suggest to make this true in most circumstances.
|
|
||||||
|
|
||||||
Returns: (cur_direction, max_proportion), where:
|
|
||||||
cur_direction: a Tensor of shape (num_channels,) that is the current
|
|
||||||
estimate of the top eigen-direction. Detached / not intended to be
|
|
||||||
differentiable.
|
|
||||||
proportion: a scalar Tensor containing the proportion of the variance
|
|
||||||
of the input that is in direction `cur_direction`. This is with
|
|
||||||
gradient, that can be propagated back to x.
|
|
||||||
"""
|
|
||||||
num_channels = x.shape[-1]
|
|
||||||
assert prev_direction.shape == (num_channels,)
|
|
||||||
x = x.reshape(-1, num_channels)
|
|
||||||
if subtract_mean:
|
|
||||||
x = x - x.mean(dim=0)
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
cur_norm = prev_direction.norm()
|
|
||||||
|
|
||||||
prev_direction = prev_direction / cur_norm
|
|
||||||
is_ok = (cur_norm / cur_norm == 1.0)
|
|
||||||
# if there was a problem like NaN or inf, restart. this should be very rare.
|
|
||||||
prev_direction = torch.where(is_ok.unsqueeze(-1).expand(prev_direction.shape),
|
|
||||||
prev_direction,
|
|
||||||
torch.randn_like(prev_direction) * (num_channels ** -0.5))
|
|
||||||
|
|
||||||
# `coeffs` are the coefficients of `prev_direction` in x.
|
|
||||||
coeffs = (x * prev_direction).sum(dim=1, keepdim=True)
|
|
||||||
|
|
||||||
x_norm = x.norm()
|
|
||||||
x_coeffs1_norm = (x - coeffs * prev_direction).norm()
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
cur_direction = (x * coeffs).sum(dim=0) / ((coeffs ** 2).sum() + 1.0e-20)
|
|
||||||
|
|
||||||
x_coeffs2_norm = (x - coeffs * cur_direction).norm()
|
|
||||||
|
|
||||||
# for the returned direction interpolate with prev_direction so that
|
|
||||||
# even if x == 0, we get a nonzero new direction.
|
|
||||||
ans_direction = 0.5 * (prev_direction + cur_direction)
|
|
||||||
|
|
||||||
x_sumsq = (x**2).sum() + 1.0e-20
|
|
||||||
x_remaining_sumsq = ((x - coeffs * cur_direction) ** 2).sum() + 1.0e-20
|
|
||||||
|
|
||||||
proportion = (x - x_remaining_sumsq) / x_sumsq
|
|
||||||
|
|
||||||
return (ans_direction, proportion)
|
|
||||||
|
|
||||||
print(f"x_norm={x_norm}, x_coeffs1_norm={x_coeffs1_norm}, x_coeffs2_norm={x_coeffs2_norm}")
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class MaxEigLimiterFunction(torch.autograd.Function):
|
class MaxEigLimiterFunction(torch.autograd.Function):
|
||||||
@ -233,17 +168,18 @@ class MaxEigLimiterFunction(torch.autograd.Function):
|
|||||||
if subtract_mean:
|
if subtract_mean:
|
||||||
x = x - x.mean(dim=0)
|
x = x - x.mean(dim=0)
|
||||||
new_direction, coeffs = find_direction_coeffs(x, direction)
|
new_direction, coeffs = find_direction_coeffs(x, direction)
|
||||||
x_var = (x**2).sum()
|
x_var = (x**2).mean()
|
||||||
x_residual = x - coeffs * new_direction
|
x_residual = x - coeffs * new_direction
|
||||||
x_residual_var = (x_residual**2).sum()
|
x_residual_var = (x_residual**2).mean()
|
||||||
# `variance_proportion` is the proportion of the variance accounted for
|
# `variance_proportion` is the proportion of the variance accounted for
|
||||||
# by the top eigen-direction.
|
# by the top eigen-direction.
|
||||||
variance_proportion = (x_var - x_residual_var) / x_var
|
variance_proportion = (x_var - x_residual_var) / (x_var + 1.0e-20)
|
||||||
|
|
||||||
ans_direction = direction + new_direction # ensure nonzero even if x == 0
|
ans_direction = direction + new_direction # ensure nonzero even if x == 0
|
||||||
ans_direction = ans_direction / ans_direction.norm()
|
ans_direction = ans_direction / ans_direction.norm()
|
||||||
|
|
||||||
logging.info(f"variance_proportion = {variance_proportion.item()}")
|
if random.random() < 0.01:
|
||||||
|
logging.info(f"variance_proportion = {variance_proportion.item()}")
|
||||||
|
|
||||||
# Caution: this causes a CUDA sync, which is not ideal.
|
# Caution: this causes a CUDA sync, which is not ideal.
|
||||||
if variance_proportion >= max_variance_proportion:
|
if variance_proportion >= max_variance_proportion:
|
||||||
@ -262,7 +198,6 @@ class MaxEigLimiterFunction(torch.autograd.Function):
|
|||||||
if not hasattr(ctx, 'channel_dim'):
|
if not hasattr(ctx, 'channel_dim'):
|
||||||
# the top eig's proportion of the variance was below the threshold.
|
# the top eig's proportion of the variance was below the threshold.
|
||||||
return x_grad, None, None, None, None, None, None
|
return x_grad, None, None, None, None, None, None
|
||||||
|
|
||||||
with torch.enable_grad():
|
with torch.enable_grad():
|
||||||
(x_orig, coeffs, new_direction) = ctx.saved_tensors
|
(x_orig, coeffs, new_direction) = ctx.saved_tensors
|
||||||
x_orig.requires_grad = True
|
x_orig.requires_grad = True
|
||||||
@ -271,16 +206,16 @@ class MaxEigLimiterFunction(torch.autograd.Function):
|
|||||||
new_direction.requires_grad = False
|
new_direction.requires_grad = False
|
||||||
if ctx.subtract_mean:
|
if ctx.subtract_mean:
|
||||||
x = x - x.mean(dim=0)
|
x = x - x.mean(dim=0)
|
||||||
x_var = (x**2).sum()
|
x_var = (x ** 2).mean()
|
||||||
x_residual = x - coeffs * new_direction
|
x_residual = x - coeffs * new_direction
|
||||||
x_residual_var = (x_residual**2).sum()
|
x_residual_var = (x_residual ** 2).mean()
|
||||||
# `variance_proportion` is the proportion of the variance accounted for
|
# `variance_proportion` is the proportion of the variance accounted for
|
||||||
# by the top eigen-direction. This is to be minimized.
|
# by the top eigen-direction. This is to be minimized.
|
||||||
variance_proportion = (x_var - x_residual_var) / x_var
|
variance_proportion = (x_var - x_residual_var) / (x_var + 1.0e-20)
|
||||||
variance_proportion.backward()
|
variance_proportion.backward()
|
||||||
x_orig_grad = x_orig.grad
|
x_orig_grad = x_orig.grad
|
||||||
x_extra_grad = x_orig.grad * x_orig.grad.norm() / (x_orig_grad.norm() + 1.0e-20)
|
x_extra_grad = x_orig.grad * ctx.grad_scale * x_grad.norm() / (x_orig_grad.norm() + 1.0e-20)
|
||||||
return x_grad + x_extra_grad, None, None, None, None, None, None
|
return x_grad + x_extra_grad.detach(), None, None, None, None, None, None
|
||||||
|
|
||||||
|
|
||||||
class BasicNorm(torch.nn.Module):
|
class BasicNorm(torch.nn.Module):
|
||||||
@ -448,7 +383,9 @@ class ActivationBalancer(torch.nn.Module):
|
|||||||
self.max_var_per_eig = max_var_per_eig
|
self.max_var_per_eig = max_var_per_eig
|
||||||
if max_var_per_eig > 0.0:
|
if max_var_per_eig > 0.0:
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
direction = torch.randn(num_channels)
|
# arbitrary.. would use randn() but want to leave the rest of the model's
|
||||||
|
# random parameters unchanged for comparison
|
||||||
|
direction = torch.arange(num_channels).to(torch.float)
|
||||||
direction = direction / direction.norm()
|
direction = direction / direction.norm()
|
||||||
self.register_buffer('max_eig_direction', direction)
|
self.register_buffer('max_eig_direction', direction)
|
||||||
else:
|
else:
|
||||||
@ -460,15 +397,16 @@ class ActivationBalancer(torch.nn.Module):
|
|||||||
return x
|
return x
|
||||||
|
|
||||||
if self.max_var_per_eig > 0:
|
if self.max_var_per_eig > 0:
|
||||||
x, new_direction = MaxEigLimiterFunction.apply(
|
with torch.cuda.amp.autocast(enabled=False):
|
||||||
x, self.max_eig_direction,
|
x, new_direction = MaxEigLimiterFunction.apply(
|
||||||
self.channel_dim,
|
x, self.max_eig_direction,
|
||||||
0.1, # prob
|
self.channel_dim,
|
||||||
True, # subtract_mean
|
0.25, # prob
|
||||||
self.max_var_per_eig,
|
True, # subtract_mean
|
||||||
self.max_factor,
|
self.max_var_per_eig,
|
||||||
)
|
self.max_factor,
|
||||||
self.max_eig_direction[:] = new_direction
|
)
|
||||||
|
self.max_eig_direction[:] = new_direction.detach()
|
||||||
|
|
||||||
return ActivationBalancerFunction.apply(
|
return ActivationBalancerFunction.apply(
|
||||||
x,
|
x,
|
||||||
@ -628,17 +566,12 @@ def _test_double_swish_deriv():
|
|||||||
torch.autograd.gradcheck(m, x)
|
torch.autograd.gradcheck(m, x)
|
||||||
|
|
||||||
|
|
||||||
def _test_get_max_eig_proportion():
|
|
||||||
x = torch.randn(100, 128)
|
|
||||||
d = torch.randn(128) * (128 ** -0.5)
|
|
||||||
get_max_eig_proportion(x, d, True)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
logging.getLogger().setLevel(logging.INFO)
|
logging.getLogger().setLevel(logging.INFO)
|
||||||
torch.set_num_threads(1)
|
torch.set_num_threads(1)
|
||||||
torch.set_num_interop_threads(1)
|
torch.set_num_interop_threads(1)
|
||||||
_test_max_eig_limiter()
|
_test_max_eig_limiter()
|
||||||
_test_get_max_eig_proportion()
|
|
||||||
_test_activation_balancer_sign()
|
_test_activation_balancer_sign()
|
||||||
_test_activation_balancer_magnitude()
|
_test_activation_balancer_magnitude()
|
||||||
_test_basic_norm()
|
_test_basic_norm()
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user