from local

This commit is contained in:
dohe0342 2023-02-21 14:35:18 +09:00
parent e5f0439ec3
commit 3d43832c4f
2 changed files with 64 additions and 91 deletions

Binary file not shown.

View File

@ -5,7 +5,6 @@ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=15
stage=0
stop_stage=100
@ -13,7 +12,7 @@ stop_stage=100
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/tedlium2
# - $dl_dir/tedlium3
# You can find data, doc, legacy, LM, etc, inside it.
# You can download them from https://www.openslr.org/51
#
@ -24,7 +23,7 @@ stop_stage=100
# - music
# - noise
# - speech
dl_dir=/DB/LibriSpeech_tar
dl_dir=/home/work/workspace/tedlium3
. shared/parse_options.sh || exit 1
@ -58,10 +57,17 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
#
# ln -sfv /path/to/tedlium3 $dl_dir/tedlium3
#
#if [ ! -d $dl_dir/tedlium2 ]; then
# lhotse download tedlium $dl_dir
# mv $dl_dir/TEDLIUM_release-2 $dl_dir/tedlium2
#fi
if [ ! -d $dl_dir/tedlium3 ]; then
lhotse download tedlium $dl_dir
mv $dl_dir/TEDLIUM_release-3 $dl_dir/tedlium3
fi
# Download big and small 4 gram lanuage models
if [ ! -d $dl_dir/lm ]; then
wget --continue http://kaldi-asr.org/models/5/4gram_small.arpa.gz -P $dl_dir/lm
wget --continue http://kaldi-asr.org/models/5/4gram_big.arpa.gz -P $dl_dir/lm
gzip -d $dl_dir/lm/4gram_small.arpa.gz $dl_dir/lm/4gram_big.arpa.gz
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
@ -74,13 +80,13 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare tedlium2 manifests"
if [ ! -f data/manifests/.tedlium2.done ]; then
log "Stage 1: Prepare tedlium3 manifests"
if [ ! -f data/manifests/.tedlium3.done ]; then
# We assume that you have downloaded the tedlium3 corpus
# to $dl_dir/tedlium3
mkdir -p data/manifests
lhotse prepare tedlium $dl_dir/tedlium2 data/manifests
touch data/manifests/.tedlium2.done
lhotse prepare tedlium $dl_dir/tedlium3 data/manifests
touch data/manifests/.tedlium3.done
fi
fi
@ -96,12 +102,19 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for tedlium2"
log "Stage 3: Compute fbank for tedlium3"
if [ ! -e data/fbank/.tedlium2.done ]; then
if [ ! -e data/fbank/.tedlium3.done ]; then
mkdir -p data/fbank
python3 ./local/compute_fbank_tedlium.py
touch data/fbank/.tedlium2.done
gunzip -c data/fbank/tedlium_cuts_train.jsonl.gz | shuf | \
gzip -c > data/fbank/tedlium_cuts_train-shuf.jsonl.gz
mv data/fbank/tedlium_cuts_train-shuf.jsonl.gz \
data/fbank/tedlium_cuts_train.jsonl.gz
touch data/fbank/.tedlium3.done
fi
fi
@ -115,28 +128,24 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare phone based lang"
lang_dir=data/lang_phone
log "Stage 5: Prepare BPE train data and set of words"
lang_dir=data/lang
mkdir -p $lang_dir
if [ ! -f $lang_dir/train.text ]; then
if [ ! -f $lang_dir/train.txt ]; then
gunzip -c $dl_dir/tedlium3/LM/*.en.gz | sed 's: <\/s>::g' > $lang_dir/train_orig.txt
./local/prepare_transcripts.py \
--lang-dir $lang_dir \
--manifests-dir data/manifests
--input-text-path $lang_dir/train_orig.txt \
--output-text-path $lang_dir/train.txt
fi
if [ ! -f $lang_dir/lexicon_words.txt ]; then
./local/prepare_lexicon.py \
--lang-dir $lang_dir \
--manifests-dir data/manifests
fi
if [ ! -f $lang_dir/words.txt ]; then
(echo '!SIL SIL'; echo '<UNK> <UNK>'; ) |
cat - $lang_dir/lexicon_words.txt |
sort | uniq > $lang_dir/lexicon.txt
awk '{print $1}' $dl_dir/tedlium3/TEDLIUM.152k.dic |
sed 's:([0-9])::g' | sort | uniq > $lang_dir/words_orig.txt
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang.py --lang-dir $lang_dir
./local/prepare_words.py --lang-dir $lang_dir
fi
fi
@ -148,92 +157,56 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
mkdir -p $lang_dir
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
cp data/lang_phone/words.txt $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for BPE training"
cat data/lang_phone/train.text |
cut -d " " -f 2- > $lang_dir/transcript_words.txt
# remove the <unk> for transcript_words.txt
sed -i 's/ <unk>//g' $lang_dir/transcript_words.txt
sed -i 's/<unk> //g' $lang_dir/transcript_words.txt
sed -i 's/<unk>//g' $lang_dir/transcript_words.txt
fi
cp data/lang/words.txt $lang_dir
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
--transcript data/lang/train.txt
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
./local/prepare_lang_bpe.py --lang-dir $lang_dir --oov "<unk>"
fi
done
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Prepare bigram P"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
if [ ! -f $lang_dir/transcript_tokens.txt ]; then
./local/convert_transcript_words_to_tokens.py \
--lexicon $lang_dir/lexicon.txt \
--transcript $lang_dir/transcript_words.txt \
--oov "<UNK>" \
> $lang_dir/transcript_tokens.txt
fi
if [ ! -f $lang_dir/P.arpa ]; then
./shared/make_kn_lm.py \
-ngram-order 2 \
-text $lang_dir/transcript_tokens.txt \
-lm $lang_dir/P.arpa
fi
if [ ! -f $lang_dir/P.fst.txt ]; then
python3 -m kaldilm \
--read-symbol-table="$lang_dir/tokens.txt" \
--disambig-symbol='#0' \
--max-order=2 \
$lang_dir/P.arpa > $lang_dir/P.fst.txt
fi
done
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Prepare G"
log "Stage 7: Prepare G"
# We assume you have install kaldilm, if not, please install
# it using: pip install kaldilm
mkdir -p data/lm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
if [ ! -f data/lm/G_4_gram_small.fst.txt ]; then
# It is used in building HLG
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
$dl_dir/lm/3-gram.pruned.1e-7.arpa > data/lm/G_3_gram.fst.txt
fi
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
# It is used for LM rescoring
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--read-symbol-table="data/lang/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
$dl_dir/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt
--max-arpa-warnings=-1 \
$dl_dir/lm/4gram_small.arpa > data/lm/G_4_gram_small.fst.txt
fi
if [ ! -f data/lm/G_4_gram_big.fst.txt ]; then
# It is used for LM rescoring
python3 -m kaldilm \
--read-symbol-table="data/lang/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
--max-arpa-warnings=-1 \
$dl_dir/lm/4gram_big.arpa > data/lm/G_4_gram_big.fst.txt
fi
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Compile HLG"
./local/compile_hlg.py --lang-dir data/lang_phone
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Compile HLG"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_hlg.py --lang-dir $lang_dir
if [ ! -f $lang_dir/HLG.pt ]; then
./local/compile_hlg.py \
--lang-dir $lang_dir \
--lm G_4_gram_small
fi
done
fi