mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 10:16:14 +00:00
Generate LM training data for the LibriSpeech recipe.
This commit is contained in:
parent
2213154c69
commit
3c65ee11f4
@ -23,6 +23,7 @@ This file downloads the following LibriSpeech LM files:
|
||||
- 4-gram.arpa.gz
|
||||
- librispeech-vocab.txt
|
||||
- librispeech-lexicon.txt
|
||||
- librispeech-lm-norm.txt.gz
|
||||
|
||||
from http://www.openslr.org/resources/11
|
||||
and save them in the user provided directory.
|
||||
@ -61,6 +62,7 @@ def main(out_dir: str):
|
||||
"4-gram.arpa.gz",
|
||||
"librispeech-vocab.txt",
|
||||
"librispeech-lexicon.txt",
|
||||
"librispeech-lm-norm.txt.gz",
|
||||
)
|
||||
|
||||
for f in tqdm(files_to_download, desc="Downloading LibriSpeech LM files"):
|
||||
|
172
egs/librispeech/ASR/local/prepare_lm_training_data.py
Executable file
172
egs/librispeech/ASR/local/prepare_lm_training_data.py
Executable file
@ -0,0 +1,172 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2021 Xiaomi Corporation (authors: Daniel Povey
|
||||
# Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script takes a `bpe.model` and a text file such as
|
||||
./download/lm/librispeech-lm-norm.txt
|
||||
and outputs the LM training data to a supplied directory such
|
||||
as data/lm_training_bpe_500. The format is as follows:
|
||||
|
||||
It creates a PyTorch archive (.pt file), say data/lm_training.pt, which is a
|
||||
representation of a dict with the following format:
|
||||
|
||||
'words' -> a k2.RaggedTensor of two axes [word][token] with dtype torch.int32
|
||||
containing the BPE representations of each word, indexed by
|
||||
integer word ID. (These integer word IDS are present in
|
||||
'lm_data'). The sentencepiece object can be used to turn the
|
||||
words and BPE units into string form.
|
||||
'sentences' -> a k2.RaggedTensor of two axes [sentence][word] with dtype
|
||||
torch.int32 containing all the sentences, as word-ids (we don't
|
||||
output the string form of this directly but it can be worked out
|
||||
together with 'words' and the bpe.model).
|
||||
'sentence_lengths' -> a 1-D torch.Tensor of dtype torch.int32, containing
|
||||
number of BPE tokens of each sentence.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
help="Input BPE model, e.g. data/bpe_500/bpe.model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lm-data",
|
||||
type=str,
|
||||
help="""Input LM training data as text, e.g.
|
||||
download/pb.train.txt""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lm-archive",
|
||||
type=str,
|
||||
help="""Path to output archive, e.g. data/bpe_500/lm_data.pt;
|
||||
look at the source of this script to see the format.""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
|
||||
if Path(args.lm_archive).exists():
|
||||
logging.warning(f"{args.lm_archive} exists - skipping")
|
||||
return
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(args.bpe_model)
|
||||
|
||||
# word2index is a dictionary from words to integer ids. No need to reserve
|
||||
# space for epsilon, etc.; the words are just used as a convenient way to
|
||||
# compress the sequences of BPE pieces.
|
||||
word2index = dict()
|
||||
|
||||
word2bpe = [] # Will be a list-of-list-of-int, representing BPE pieces.
|
||||
sentences = [] # Will be a list-of-list-of-int, representing word-ids.
|
||||
|
||||
if "librispeech-lm-norm" in args.lm_data:
|
||||
num_lines_in_total = 40418261.0
|
||||
step = 5000000
|
||||
elif "valid" in args.lm_data:
|
||||
num_lines_in_total = 5567.0
|
||||
step = 3000
|
||||
elif "test" in args.lm_data:
|
||||
num_lines_in_total = 5559.0
|
||||
step = 3000
|
||||
else:
|
||||
num_lines_in_total = None
|
||||
step = None
|
||||
|
||||
processed = 0
|
||||
|
||||
with open(args.lm_data) as f:
|
||||
while True:
|
||||
line = f.readline()
|
||||
if line == "":
|
||||
break
|
||||
|
||||
if step and processed % step == 0:
|
||||
logging.info(
|
||||
f"Processed number of lines: {processed} "
|
||||
f"({processed/num_lines_in_total*100: .3f}%)"
|
||||
)
|
||||
processed += 1
|
||||
|
||||
line_words = line.split()
|
||||
for w in line_words:
|
||||
if w not in word2index:
|
||||
w_bpe = sp.encode(w)
|
||||
word2index[w] = len(word2bpe)
|
||||
word2bpe.append(w_bpe)
|
||||
sentences.append([word2index[w] for w in line_words])
|
||||
|
||||
logging.info("Constructing ragged tensors")
|
||||
words = k2.ragged.RaggedTensor(word2bpe)
|
||||
sentences = k2.ragged.RaggedTensor(sentences)
|
||||
|
||||
output = dict(words=words, sentences=sentences)
|
||||
|
||||
num_sentences = sentences.dim0
|
||||
logging.info(f"Computing sentence lengths, num_sentences: {num_sentences}")
|
||||
sentence_lengths = [0] * num_sentences
|
||||
for i in range(num_sentences):
|
||||
if step and i % step == 0:
|
||||
logging.info(
|
||||
f"Processed number of lines: {i} "
|
||||
f"({i/num_sentences*100: .3f}%)"
|
||||
)
|
||||
|
||||
word_ids = sentences[i]
|
||||
|
||||
# NOTE: If word_ids is a tensor with only 1 entry,
|
||||
# token_ids is a torch.Tensor
|
||||
token_ids = words[word_ids]
|
||||
if isinstance(token_ids, k2.RaggedTensor):
|
||||
token_ids = token_ids.values
|
||||
|
||||
# token_ids is a 1-D tensor containing the BPE tokens
|
||||
# of the current sentence
|
||||
|
||||
sentence_lengths[i] = token_ids.numel()
|
||||
|
||||
output["sentence_lengths"] = torch.tensor(
|
||||
sentence_lengths, dtype=torch.int32
|
||||
)
|
||||
|
||||
torch.save(output, args.lm_archive)
|
||||
logging.info(f"Saved to {args.lm_archive}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
main()
|
1
egs/librispeech/ASR/local/sort_lm_training_data.py
Symbolic link
1
egs/librispeech/ASR/local/sort_lm_training_data.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../ptb/LM/local/sort_lm_training_data.py
|
@ -24,6 +24,7 @@ stop_stage=100
|
||||
# - 4-gram.arpa
|
||||
# - librispeech-vocab.txt
|
||||
# - librispeech-lexicon.txt
|
||||
# - librispeech-lm-norm.txt.gz
|
||||
#
|
||||
# - $dl_dir/musan
|
||||
# This directory contains the following directories downloaded from
|
||||
@ -227,3 +228,100 @@ if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||
./local/compile_hlg.py --lang-dir $lang_dir
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
||||
log "Stage 10: Generate LM training data"
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
log "Processing vocab_size == ${vocab_size}"
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
out_dir=data/lm_training_bpe_${vocab_size}
|
||||
mkdir -p $out_dir
|
||||
|
||||
./local/prepare_lm_training_data.py \
|
||||
--bpe-model $lang_dir/bpe.model \
|
||||
--lm-data $dl_dir/lm/librispeech-lm-norm.txt \
|
||||
--lm-archive $out_dir/lm_data.pt
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
|
||||
log "Stage 11: Generate LM validation data"
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
log "Processing vocab_size == ${vocab_size}"
|
||||
out_dir=data/lm_training_bpe_${vocab_size}
|
||||
mkdir -p $out_dir
|
||||
|
||||
if [ ! -f $out_dir/valid.txt ]; then
|
||||
files=$(
|
||||
find "$dl_dir/LibriSpeech/dev-clean" -name "*.trans.txt"
|
||||
find "$dl_dir/LibriSpeech/dev-other" -name "*.trans.txt"
|
||||
)
|
||||
for f in ${files[@]}; do
|
||||
cat $f | cut -d " " -f 2-
|
||||
done > $out_dir/valid.txt
|
||||
fi
|
||||
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
./local/prepare_lm_training_data.py \
|
||||
--bpe-model $lang_dir/bpe.model \
|
||||
--lm-data $out_dir/valid.txt \
|
||||
--lm-archive $out_dir/lm_data-valid.pt
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
||||
log "Stage 12: Generate LM test data"
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
log "Processing vocab_size == ${vocab_size}"
|
||||
out_dir=data/lm_training_bpe_${vocab_size}
|
||||
mkdir -p $out_dir
|
||||
|
||||
if [ ! -f $out_dir/test.txt ]; then
|
||||
files=$(
|
||||
find "$dl_dir/LibriSpeech/test-clean" -name "*.trans.txt"
|
||||
find "$dl_dir/LibriSpeech/test-other" -name "*.trans.txt"
|
||||
)
|
||||
for f in ${files[@]}; do
|
||||
cat $f | cut -d " " -f 2-
|
||||
done > $out_dir/test.txt
|
||||
fi
|
||||
exit 0
|
||||
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
./local/prepare_lm_training_data.py \
|
||||
--bpe-model $lang_dir/bpe.model \
|
||||
--lm-data $out_dir/test.txt \
|
||||
--lm-archive $out_dir/lm_data-test.pt
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then
|
||||
log "Stage 13: Sort LM training data"
|
||||
# Sort LM training data by sentence length in descending order
|
||||
# for ease of training.
|
||||
#
|
||||
# Sentence length equals to the number of BPE tokens
|
||||
# in a sentence.
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
out_dir=data/lm_training_bpe_${vocab_size}
|
||||
mkdir -p $out_dir
|
||||
./local/sort_lm_training_data.py \
|
||||
--in-lm-data $out_dir/lm_data.pt \
|
||||
--out-lm-data $out_dir/sorted_lm_data.pt \
|
||||
--out-statistics $out_dir/statistics.txt
|
||||
|
||||
./local/sort_lm_training_data.py \
|
||||
--in-lm-data $out_dir/lm_data-valid.pt \
|
||||
--out-lm-data $out_dir/sorted_lm_data-valid.pt \
|
||||
--out-statistics $out_dir/statistics-valid.txt
|
||||
|
||||
./local/sort_lm_training_data.py \
|
||||
--in-lm-data $out_dir/lm_data-test.pt \
|
||||
--out-lm-data $out_dir/sorted_lm_data-test.pt \
|
||||
--out-statistics $out_dir/statistics-test.txt
|
||||
done
|
||||
fi
|
||||
|
Loading…
x
Reference in New Issue
Block a user