mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
train with full libri
This commit is contained in:
parent
8985440ce1
commit
3b42f0347f
313
egs/librispeech/ASR/conformer_ctc/code_indices.py
Executable file
313
egs/librispeech/ASR/conformer_ctc/code_indices.py
Executable file
@ -0,0 +1,313 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (author: Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
from quantization import Quantizer
|
||||
|
||||
import torch
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
from lhotse.features.io import NumpyHdf5Writer
|
||||
from lhotse import CutSet
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.env import get_env_info
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=34,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_bpe_500",
|
||||
help="The lang dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="conformer_ctc/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--data-dir",
|
||||
type=Path,
|
||||
default="./data/",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--mem-dir",
|
||||
type=Path,
|
||||
default="conformer_ctc/exp/mem",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--quantizer-id",
|
||||
type=str,
|
||||
default=None,
|
||||
help="quantizer_id",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bytes-per-frame",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of bytes to use to quantize each memory embeddings",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--memory-embedding-dim",
|
||||
type=int,
|
||||
default=512,
|
||||
help="dim of memory embeddings to train quantizer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--pretrained-model",
|
||||
type=Path,
|
||||
default=None,
|
||||
help="use a pretrained model, e.g. a modle downloaded from model zoo",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--model-id",
|
||||
type=str,
|
||||
default=None,
|
||||
help="a short str to introduce which models the embeddings come from"
|
||||
"e.g. icefall or wav2vec2",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--mem-layer",
|
||||
type=int,
|
||||
default=None,
|
||||
help="which layer to extract memory embedding"
|
||||
"Set this manully to avoid mistake.",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"feature_dim": 80,
|
||||
"nhead": 8,
|
||||
"attention_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
"num_decoder_layers": 6,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
"output_beam": 10,
|
||||
"use_double_scores": True,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def compute_codeindices(
|
||||
model: torch.nn.Module,
|
||||
dl: torch.utils.data.DataLoader,
|
||||
quantizer: None,
|
||||
params: AttributeDict,
|
||||
writer: None,
|
||||
) -> List[Tuple[str, List[int]]]:
|
||||
"""Compute the framewise alignments of a dataset.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The neural network model.
|
||||
dl:
|
||||
Dataloader containing the dataset.
|
||||
params:
|
||||
Parameters for computing memory.
|
||||
Returns:
|
||||
Return a list of tuples. Each tuple contains two entries:
|
||||
- Utterance ID
|
||||
- memory embeddings
|
||||
"""
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
num_cuts = 0
|
||||
|
||||
device = params.device
|
||||
cuts = []
|
||||
total_frames = 0
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
feature = batch["inputs"]
|
||||
|
||||
# at entry, feature is [N, T, C]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
|
||||
_, encoder_memory, memory_mask = model(feature, supervisions)
|
||||
codebook_indices = quantizer.encode(encoder_memory, as_bytes=True)
|
||||
|
||||
# [T, N, C] --> [N, T, C]
|
||||
codebook_indices = codebook_indices.transpose(0, 1).to("cpu").numpy()
|
||||
|
||||
# for idx, cut in enumerate(cut_ids):
|
||||
cut_list = supervisions["cut"]
|
||||
assert len(cut_list) == codebook_indices.shape[0]
|
||||
num_cuts += len(cut_list)
|
||||
assert all(supervisions["start_frame"] == 0)
|
||||
for idx, cut in enumerate(cut_list):
|
||||
num_frames = (
|
||||
((supervisions["num_frames"][idx] - 3) // 2 + 1) - 3
|
||||
) // 2 + 1
|
||||
cut.codebook_indices = writer.store_array(
|
||||
key=cut.id,
|
||||
value=codebook_indices[idx][:num_frames],
|
||||
frame_shift=0.04,
|
||||
temporal_dim=0,
|
||||
start=0,
|
||||
)
|
||||
total_frames += num_frames
|
||||
|
||||
cuts += cut_list
|
||||
logging.info(
|
||||
f"processed {total_frames} frames and {num_cuts} cuts; {batch_idx} of {num_batches}" # noqa: E501
|
||||
)
|
||||
return CutSet.from_cuts(cuts)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
assert args.return_cuts is True
|
||||
assert args.concatenate_cuts is False
|
||||
assert args.quantizer_id is not None
|
||||
assert args.model_id is not None
|
||||
assert args.mem_layer is not None
|
||||
assert args.pretrained_model is not None
|
||||
assert args.subset in ["clean-100", "clean-360", "other-500"]
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/mem")
|
||||
|
||||
logging.info("Computing memory embedings- started")
|
||||
logging.info(params)
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
logging.info("About to create model")
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.attention_dim,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
|
||||
quantizer_fn = (
|
||||
params.mem_dir
|
||||
/ f"{params.mem_layer}layer-{params.quantizer_id}-bytes_per_frame_{params.bytes_per_frame}-quantizer.pt" # noqa: E501
|
||||
)
|
||||
|
||||
quantizer = Quantizer(
|
||||
dim=params.memory_embedding_dim,
|
||||
num_codebooks=args.bytes_per_frame,
|
||||
codebook_size=256,
|
||||
)
|
||||
quantizer.load_state_dict(torch.load(quantizer_fn))
|
||||
quantizer = quantizer.to("cuda")
|
||||
|
||||
load_checkpoint(f"{params.pretrained_model}", model)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
params["device"] = device
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
train_dl = librispeech.train_dataloaders()
|
||||
|
||||
cdidx_dir = (
|
||||
Path(params.data_dir)
|
||||
/ f"{args.model_id}-{args.mem_layer}layer-{args.quantizer_id}-bytes_per_frame-{args.bytes_per_frame}" # noqa: E501
|
||||
)
|
||||
cdidx_dir.mkdir(exist_ok=True)
|
||||
|
||||
with NumpyHdf5Writer(
|
||||
cdidx_dir
|
||||
/ f"{args.model_id}-{args.mem_layer}layer-cdidx_train-{args.subset}"
|
||||
) as writer:
|
||||
cut_set = compute_codeindices(
|
||||
model=model,
|
||||
dl=train_dl,
|
||||
quantizer=quantizer,
|
||||
params=params,
|
||||
writer=writer,
|
||||
)
|
||||
cut_set.to_json(cdidx_dir / f"cuts_train-{args.subset}.json.gz")
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -23,6 +23,9 @@ from typing import Optional, Tuple
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from transformer import Supervisions, Transformer, encoder_padding_mask
|
||||
from prediction import JointCodebookPredictor
|
||||
from ckpnt_prediction import JointCodebookLoss
|
||||
from powerful_prediction import Powerful_JointCodebookLoss
|
||||
|
||||
|
||||
class CodeIndicesNet(nn.Module):
|
||||
@ -51,18 +54,9 @@ class CodeIndicesNet(nn.Module):
|
||||
self.num_codebooks = num_codebooks
|
||||
self.quantizer_dim = quantizer_dim
|
||||
|
||||
def forward(self, memory):
|
||||
"""
|
||||
Args:
|
||||
memory:
|
||||
memory embeddings, with shape[T, N, C]
|
||||
output:
|
||||
shape [N, T, num_codebooks*quantizer_dim]
|
||||
"""
|
||||
x = self.linear1(memory)
|
||||
return x
|
||||
|
||||
def loss(self, memory: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
||||
def forward(
|
||||
self, memory: torch.Tensor, target: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
memory:
|
||||
@ -75,12 +69,14 @@ class CodeIndicesNet(nn.Module):
|
||||
actually it's the sum of num_codebooks CE losses
|
||||
"""
|
||||
|
||||
memory = memory.transpose(0, 1) # T, N, C --> N, T, C
|
||||
x = self.forward(memory)
|
||||
x = self.linear1(memory)
|
||||
x = x.reshape(-1, self.quantizer_dim)
|
||||
target = target.reshape(-1)
|
||||
assert (
|
||||
x.shape[0] == target.shape[0]
|
||||
), f"x.shape: {x.shape} while target.shape: {target.shape}"
|
||||
ret = self.ce(x, target)
|
||||
return ret
|
||||
return -ret, None
|
||||
|
||||
|
||||
class Conformer(Transformer):
|
||||
@ -115,6 +111,9 @@ class Conformer(Transformer):
|
||||
normalize_before: bool = True,
|
||||
vgg_frontend: bool = False,
|
||||
use_feat_batchnorm: bool = False,
|
||||
use_codebook_loss: bool = False,
|
||||
num_codebooks: int = 4,
|
||||
predictor: str = "predictor", # "simple_linear", "predictor", "ckpnt_predictor, powerful"
|
||||
) -> None:
|
||||
super(Conformer, self).__init__(
|
||||
num_features=num_features,
|
||||
@ -150,7 +149,27 @@ class Conformer(Transformer):
|
||||
# and throws an error without this change.
|
||||
self.after_norm = identity
|
||||
|
||||
self.cdidxnet = CodeIndicesNet()
|
||||
if use_codebook_loss:
|
||||
assert predictor in [
|
||||
"powerful",
|
||||
"predictor",
|
||||
"ckpnt_predictor",
|
||||
"simple_linear",
|
||||
]
|
||||
if predictor == "predictor":
|
||||
self.cdidxnet = JointCodebookPredictor(
|
||||
predictor_dim=512, num_codebooks=num_codebooks
|
||||
)
|
||||
elif predictor == "ckpnt_predictor":
|
||||
self.cdidxnet = JointCodebookLoss(
|
||||
predictor_channels=512, num_codebooks=num_codebooks
|
||||
)
|
||||
elif predictor == "simple_linear":
|
||||
self.cdidxnet = CodeIndicesNet(num_codebooks=num_codebooks)
|
||||
elif predictor == "powerful":
|
||||
self.cdidxnet = Powerful_JointCodebookLoss(
|
||||
predictor_channels=512, num_codebooks=num_codebooks
|
||||
)
|
||||
|
||||
def run_encoder(
|
||||
self, x: Tensor, supervisions: Optional[Supervisions] = None
|
||||
|
@ -499,10 +499,10 @@ def save_results(
|
||||
enable_log = True
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
result_file_prefix = f"epoch-{params.epoch}-avg-{params.avg}-"
|
||||
recog_path = (
|
||||
params.exp_dir
|
||||
/ f"epoch-{params.epoch}-avg-{params.avg}- \
|
||||
recogs-{test_set_name}-{key}.txt"
|
||||
/ f"{result_file_prefix}recogs-{test_set_name}-{key}.txt"
|
||||
)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
if enable_log:
|
||||
@ -512,8 +512,7 @@ def save_results(
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.exp_dir
|
||||
/ f"epoch-{params.epoch}-avg-{params.avg}- \
|
||||
errs-{test_set_name}-{key}.txt"
|
||||
/ f"{result_file_prefix}errs-{test_set_name}-{key}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
@ -528,9 +527,7 @@ def save_results(
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.exp_dir
|
||||
/ f"epoch-{params.epoch}-avg-{params.avg}- \
|
||||
wer-summary-{test_set_name}.txt"
|
||||
params.exp_dir / f"{result_file_prefix}wer-summary-{test_set_name}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
|
250
egs/librispeech/ASR/conformer_ctc/memory_embedding.py
Executable file
250
egs/librispeech/ASR/conformer_ctc/memory_embedding.py
Executable file
@ -0,0 +1,250 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (author: Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
from lhotse.features.io import NumpyHdf5Writer
|
||||
from lhotse import CutSet
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.env import get_env_info
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=34,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_bpe_500",
|
||||
help="The lang dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="conformer_ctc/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--mem-dir",
|
||||
type=str,
|
||||
default="conformer_ctc/exp/mem",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-utts",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="number of utts to extract memory embeddings",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--mem-layer",
|
||||
type=int,
|
||||
default=None,
|
||||
help="which layer to extract memory embedding",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--pretrained-model",
|
||||
type=Path,
|
||||
default=None,
|
||||
help="use a pretrained model, e.g. a modle downloaded from model zoo",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"feature_dim": 80,
|
||||
"nhead": 8,
|
||||
"attention_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
"num_decoder_layers": 6,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
"output_beam": 10,
|
||||
"use_double_scores": True,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def compute_memory(
|
||||
model: torch.nn.Module,
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
writer: None,
|
||||
) -> List[Tuple[str, List[int]]]:
|
||||
"""Compute the framewise alignments of a dataset.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The neural network model.
|
||||
dl:
|
||||
Dataloader containing the dataset.
|
||||
params:
|
||||
Parameters for computing memory.
|
||||
Returns:
|
||||
Return a list of tuples. Each tuple contains two entries:
|
||||
- Utterance ID
|
||||
- memory embeddings
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
device = params.device
|
||||
cuts = []
|
||||
total_frames = 0
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
feature = batch["inputs"]
|
||||
|
||||
# at entry, feature is [N, T, C]
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
|
||||
_, encoder_memory, memory_mask = model(feature, supervisions)
|
||||
|
||||
# [T, N, C] --> [N, T, C]
|
||||
encoder_memory = encoder_memory.transpose(0, 1).to("cpu").numpy()
|
||||
|
||||
cut_list = supervisions["cut"]
|
||||
assert len(cut_list) == encoder_memory.shape[0]
|
||||
assert all(supervisions["start_frame"] == 0)
|
||||
for idx, cut in enumerate(cut_list):
|
||||
num_frames = supervisions["num_frames"][idx]
|
||||
cut.encoder_memory = writer.store_array(
|
||||
key=cut.id,
|
||||
value=encoder_memory[idx][:num_frames],
|
||||
)
|
||||
total_frames += num_frames
|
||||
|
||||
cuts += cut_list
|
||||
num_cuts += len(cut_list)
|
||||
logging.info(f"processed {total_frames} frames and {num_cuts} cuts.")
|
||||
if len(cuts) > params.num_utts:
|
||||
break
|
||||
return CutSet.from_cuts(cuts)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
assert args.return_cuts is True
|
||||
assert args.concatenate_cuts is False
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
setup_logger(f"{params.exp_dir}/log/mem")
|
||||
|
||||
logging.info("Computing memory embedings- started")
|
||||
logging.info(params)
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
num_classes = max_token_id + 1 # +1 for the blank
|
||||
|
||||
logging.info("About to create model")
|
||||
model = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
nhead=params.nhead,
|
||||
d_model=params.attention_dim,
|
||||
num_classes=num_classes,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
assert params.pretrained_model is not None
|
||||
load_checkpoint(f"{params.pretrained_model}", model)
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
params["device"] = device
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
librispeech = LibriSpeechAsrDataModule(args)
|
||||
|
||||
test_dl = librispeech.test_dataloaders() # a list
|
||||
|
||||
mem_dir = Path(params.mem_dir)
|
||||
mem_dir.mkdir(exist_ok=True)
|
||||
|
||||
enabled_datasets = {
|
||||
"test_clean": test_dl[0],
|
||||
}
|
||||
|
||||
mem_storage = mem_dir / f"{args.mem_layer}layer-memory_embeddings"
|
||||
mem_manifest = mem_dir / f"{args.mem_layer}layer-memory_manifest.json"
|
||||
with NumpyHdf5Writer(mem_storage) as writer:
|
||||
for name, dl in enabled_datasets.items():
|
||||
cut_set = compute_memory(
|
||||
model=model,
|
||||
dl=dl,
|
||||
params=params,
|
||||
writer=writer,
|
||||
)
|
||||
cut_set.to_json(mem_manifest)
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
143
egs/librispeech/ASR/conformer_ctc/quantizer_train.py
Executable file
143
egs/librispeech/ASR/conformer_ctc/quantizer_train.py
Executable file
@ -0,0 +1,143 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (author: Liyong Guo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from lhotse import load_manifest
|
||||
from lhotse.dataset import (
|
||||
BucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
)
|
||||
from torch.utils.data import DataLoader
|
||||
from icefall.utils import setup_logger
|
||||
import torch
|
||||
import quantization
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bytes-per-frame",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of bytes to use to quantize each memory embeddings"
|
||||
"Usually, it's equal to number codebooks",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--memory-embedding-dim",
|
||||
type=int,
|
||||
default=1024,
|
||||
help="dim of memory embeddings to train quantizer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--mem-dir",
|
||||
type=Path,
|
||||
default="conformer_ctc/exp/mem",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--output-layer-index",
|
||||
type=int,
|
||||
default=None,
|
||||
help="which layer to extract memory embedding"
|
||||
"Specify this manully every time incase of mistakes",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def initialize_memory_dataloader(
|
||||
mem_dir: Path = None, output_layer_index: int = None
|
||||
):
|
||||
assert mem_dir is not None
|
||||
assert output_layer_index is not None
|
||||
mem_manifest_file = (
|
||||
mem_dir / f"{output_layer_index}layer-memory_manifest.json"
|
||||
)
|
||||
assert os.path.isfile(
|
||||
mem_manifest_file
|
||||
), f"{mem_manifest_file} does not exist."
|
||||
cuts = load_manifest(mem_manifest_file)
|
||||
dataset = K2SpeechRecognitionDataset(return_cuts=True)
|
||||
max_duration = 1
|
||||
sampler = BucketingSampler(
|
||||
cuts,
|
||||
max_duration=max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
dl = DataLoader(dataset, batch_size=None, sampler=sampler, num_workers=4)
|
||||
return dl
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
assert args.output_layer_index is not None
|
||||
setup_logger(f"{args.mem_dir}/log/quantizer_train")
|
||||
trainer = quantization.QuantizerTrainer(
|
||||
dim=args.memory_embedding_dim,
|
||||
bytes_per_frame=args.bytes_per_frame,
|
||||
device=torch.device("cuda"),
|
||||
)
|
||||
dl = initialize_memory_dataloader(args.mem_dir, args.output_layer_index)
|
||||
num_cuts = 0
|
||||
done_flag = False
|
||||
epoch = 0
|
||||
while not trainer.done():
|
||||
for batch in dl:
|
||||
cuts = batch["supervisions"]["cut"]
|
||||
embeddings = torch.cat(
|
||||
[
|
||||
torch.from_numpy(c.load_custom("encoder_memory"))
|
||||
for c in cuts
|
||||
]
|
||||
)
|
||||
embeddings = embeddings.to("cuda")
|
||||
num_cuts += len(cuts)
|
||||
trainer.step(embeddings)
|
||||
if trainer.done():
|
||||
done_flag = True
|
||||
break
|
||||
if done_flag:
|
||||
break
|
||||
else:
|
||||
epoch += 1
|
||||
dl = initialize_memory_dataloader(
|
||||
args.mem_dir, args.output_layer_index
|
||||
)
|
||||
quantizer = trainer.get_quantizer()
|
||||
quantizer_fn = (
|
||||
f"{args.output_layer_index}layer-"
|
||||
+ quantizer.get_id()
|
||||
+ f"-bytes_per_frame_{args.bytes_per_frame}-quantizer.pt"
|
||||
)
|
||||
quantizer_fn = args.mem_dir / quantizer_fn
|
||||
torch.save(quantizer.state_dict(), quantizer_fn)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logging.getLogger().setLevel(logging.INFO)
|
||||
main()
|
@ -30,6 +30,7 @@ import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from conformer import Conformer
|
||||
from lhotse.cut import MonoCut
|
||||
from lhotse.utils import fix_random_seed
|
||||
from lhotse.dataset.collation import collate_custom_field
|
||||
from torch import Tensor
|
||||
@ -65,6 +66,13 @@ def get_parser():
|
||||
help="Number of GPUs for DDP training.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bytes-per-frame",
|
||||
type=int,
|
||||
default=4,
|
||||
help="number of code books",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--master-port",
|
||||
type=int,
|
||||
@ -79,6 +87,13 @@ def get_parser():
|
||||
help="Should various information be logged in tensorboard.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--predictor",
|
||||
type=str,
|
||||
default=None,
|
||||
help="simple_linear predictor ckpnt_predictor",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
@ -103,6 +118,7 @@ def get_parser():
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
Note: no tailing "/".
|
||||
""",
|
||||
)
|
||||
|
||||
@ -128,7 +144,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--codebook-weight",
|
||||
type=float,
|
||||
default=0.1,
|
||||
default=0.3,
|
||||
help="""The weight of code book loss.
|
||||
Note: Currently rate of ctc_loss + rate of att_loss = 1.0
|
||||
codebook_weight is independent with previous two.
|
||||
@ -142,6 +158,14 @@ def get_parser():
|
||||
help="The lr_factor for Noam optimizer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--model-id",
|
||||
type=str,
|
||||
default=None,
|
||||
help="a short str to introduce which models the embeddings come from"
|
||||
"e.g. icefall or wav2vec2",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@ -406,27 +430,42 @@ def compute_loss(
|
||||
)
|
||||
loss = (1.0 - params.att_rate) * ctc_loss + params.att_rate * att_loss
|
||||
|
||||
if params.codebook_weight != 0.0:
|
||||
if params.codebook_weight > 0.0 and is_training:
|
||||
|
||||
cuts = batch["supervisions"]["cut"]
|
||||
# -100 is identical to ignore_value in CE loss computation.
|
||||
cuts_pre_mixed = [
|
||||
c if isinstance(c, MonoCut) else c.tracks[0].cut for c in cuts
|
||||
]
|
||||
codebook_indices, codebook_indices_lens = collate_custom_field(
|
||||
cuts, "codebook_indices", pad_value=-100
|
||||
cuts_pre_mixed, "codebook_indices", pad_value=-100
|
||||
)
|
||||
|
||||
# import pdb; pdb.set_trace()
|
||||
assert (
|
||||
codebook_indices.shape[0] == encoder_memory.shape[1]
|
||||
) # N: batch_size
|
||||
assert (
|
||||
codebook_indices.shape[1] == encoder_memory.shape[0]
|
||||
) # T: num frames
|
||||
|
||||
if "wav2vec" == params.model_id:
|
||||
# frame rate of wav2vec codebooks_indices is 50
|
||||
# while for conformer is 25
|
||||
t_expected = encoder_memory.shape[0] * 2
|
||||
assert codebook_indices.shape[1] >= t_expected
|
||||
codebook_indices = codebook_indices[:, 0:t_expected:2, :]
|
||||
encoder_memory = encoder_memory.transpose(0, 1) # T, N, C --> N, T, C
|
||||
codebook_indices = codebook_indices.to(encoder_memory.device).long()
|
||||
codebook_loss = mmodel.cdidxnet.loss(
|
||||
encoder_memory, target=codebook_indices
|
||||
)
|
||||
if (
|
||||
params.predictor == "ckpnt_predictor"
|
||||
or params.predictor == "powerful"
|
||||
):
|
||||
codebook_loss = mmodel.cdidxnet(encoder_memory, codebook_indices)
|
||||
else:
|
||||
total_logprob, _ = mmodel.cdidxnet(encoder_memory, codebook_indices)
|
||||
codebook_loss = -total_logprob
|
||||
|
||||
loss += params.codebook_weight * codebook_loss
|
||||
else:
|
||||
|
||||
if params.codebook_weight == 0.0 and params.att_rate == 0.0:
|
||||
loss = ctc_loss
|
||||
att_loss = torch.tensor([0])
|
||||
|
||||
@ -438,7 +477,7 @@ def compute_loss(
|
||||
if params.att_rate != 0.0:
|
||||
info["att_loss"] = att_loss.detach().cpu().item()
|
||||
|
||||
if params.codebook_weight != 0.0:
|
||||
if params.codebook_weight > 0.0 and is_training:
|
||||
info["codebook_loss"] = codebook_loss.detach().cpu().item()
|
||||
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
@ -633,6 +672,9 @@ def run(rank, world_size, args):
|
||||
num_decoder_layers=params.num_decoder_layers,
|
||||
vgg_frontend=False,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
use_codebook_loss=True if params.codebook_weight > 0.0 else False,
|
||||
num_codebooks=params.bytes_per_frame,
|
||||
predictor=params.predictor,
|
||||
)
|
||||
|
||||
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||
@ -747,7 +789,12 @@ def main():
|
||||
parser = get_parser()
|
||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
if 0.0 != args.codebook_weight:
|
||||
assert -1 == args.time_warp_factor
|
||||
assert not args.exp_dir.endswith("/")
|
||||
args.exp_dir = Path(
|
||||
f"{args.exp_dir}-time_warp_factor{args.time_warp_factor}-bytes_per_frame{args.bytes_per_frame}-cdweight{args.codebook_weight}-predictor{args.predictor}-maxduration{args.max_duration}" # noqa: E501
|
||||
)
|
||||
args.lang_dir = Path(args.lang_dir)
|
||||
|
||||
world_size = args.world_size
|
||||
|
@ -31,7 +31,7 @@ from lhotse.dataset import (
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from lhotse.dataset.input_strategies import AudioSamples, OnTheFlyFeatures
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.dataset.datamodule import DataModule
|
||||
@ -73,6 +73,21 @@ class LibriSpeechAsrDataModule(DataModule):
|
||||
help="When enabled, use 960h LibriSpeech. "
|
||||
"Otherwise, use 100h subset.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--subset",
|
||||
type=Path,
|
||||
default=None,
|
||||
help="which subset to extract codebook index"
|
||||
"clean-100, clean-360, other-500",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-augmentation",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Set to False to disable all augmentaion."
|
||||
"Used when extracting codebook_indexes.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--feature-dir",
|
||||
type=Path,
|
||||
@ -100,6 +115,13 @@ class LibriSpeechAsrDataModule(DataModule):
|
||||
help="The number of buckets for the BucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Set None or less than 1 to disable"
|
||||
"details in lhotse.lhotse.dataset.signal_transform",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
@ -154,7 +176,16 @@ class LibriSpeechAsrDataModule(DataModule):
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--input-strategy",
|
||||
type=str,
|
||||
default=PrecomputedFeatures,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
def train_dataloaders(self) -> DataLoader:
|
||||
logging.info(f"enable-augmentation: {self.args.enable_augmentation}")
|
||||
logging.info("About to get train cuts")
|
||||
cuts_train = self.train_cuts()
|
||||
|
||||
@ -181,6 +212,7 @@ class LibriSpeechAsrDataModule(DataModule):
|
||||
|
||||
input_transforms = [
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.time_warp_factor,
|
||||
num_frame_masks=2,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
@ -189,12 +221,21 @@ class LibriSpeechAsrDataModule(DataModule):
|
||||
]
|
||||
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
input_strategy=AudioSamples()
|
||||
if self.args.input_strategy == "AudioSamples"
|
||||
else PrecomputedFeatures(),
|
||||
cut_transforms=transforms
|
||||
if self.args.enable_augmentation
|
||||
else None,
|
||||
input_transforms=input_transforms
|
||||
if self.args.enable_augmentation
|
||||
else None,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
assert self.args.enable_aug_mentation
|
||||
# self.args.enable_aug_mentation==False is only tested with precomputed features. # noqa
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
@ -222,7 +263,7 @@ class LibriSpeechAsrDataModule(DataModule):
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
bucket_method="equal_duration",
|
||||
drop_last=True,
|
||||
drop_last=True if self.args.enable_augmentation else False,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SingleCutSampler.")
|
||||
@ -294,14 +335,20 @@ class LibriSpeechAsrDataModule(DataModule):
|
||||
|
||||
for cuts_test in cuts:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
if self.args.input_strategy == "AudioSamples":
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=AudioSamples(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
Fbank(FbankConfig(num_mel_bins=80))
|
||||
)
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = BucketingSampler(
|
||||
cuts_test, max_duration=self.args.max_duration, shuffle=False
|
||||
)
|
||||
@ -322,19 +369,26 @@ class LibriSpeechAsrDataModule(DataModule):
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
cuts_train = load_manifest(
|
||||
self.args.feature_dir / "cuts_train-clean-100.json.gz"
|
||||
)
|
||||
if self.args.full_libri:
|
||||
assert self.args.subset is None
|
||||
cuts_train = load_manifest(
|
||||
self.args.feature_dir / "cuts_train-clean-100.json"
|
||||
)
|
||||
cuts_train = (
|
||||
cuts_train
|
||||
+ load_manifest(
|
||||
self.args.feature_dir / "cuts_train-clean-360.json.gz"
|
||||
self.args.feature_dir / "cuts_train-clean-360.json"
|
||||
)
|
||||
+ load_manifest(
|
||||
self.args.feature_dir / "cuts_train-other-500.json.gz"
|
||||
self.args.feature_dir / "cuts_train-other-500.json"
|
||||
)
|
||||
)
|
||||
if self.args.subset is not None:
|
||||
assert not self.args.full_libri
|
||||
assert self.args.subset in ["clean-100", "clean-360", "other-500"]
|
||||
cuts_train = load_manifest(
|
||||
self.args.feature_dir / f"cuts_train-{self.args.subset}.json.gz"
|
||||
)
|
||||
return cuts_train
|
||||
|
||||
@lru_cache()
|
||||
|
Loading…
x
Reference in New Issue
Block a user