From 18d7dd2696e0a72447a4bc1320f4ddb268493607 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Tue, 12 Oct 2021 20:15:49 +0800 Subject: [PATCH 01/20] Update train.py --- egs/librispeech/ASR/conformer_ctc/train.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/egs/librispeech/ASR/conformer_ctc/train.py b/egs/librispeech/ASR/conformer_ctc/train.py index 3e1049fbf..5554aaa7c 100755 --- a/egs/librispeech/ASR/conformer_ctc/train.py +++ b/egs/librispeech/ASR/conformer_ctc/train.py @@ -485,7 +485,7 @@ def train_one_epoch( f"tot_loss[{tot_loss}], batch size: {batch_size}" ) - if batch_idx % 10 == 0: + if batch_idx % params.log_interval == 0: if tb_writer is not None: loss_info.write_summary( From 906d0ad6f821d9e2fc933eb8ab6977a7e635505a Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Tue, 12 Oct 2021 20:16:51 +0800 Subject: [PATCH 02/20] Update train.py --- egs/librispeech/ASR/tdnn_lstm_ctc/train.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/train.py b/egs/librispeech/ASR/tdnn_lstm_ctc/train.py index 51a486e07..4a8574019 100755 --- a/egs/librispeech/ASR/tdnn_lstm_ctc/train.py +++ b/egs/librispeech/ASR/tdnn_lstm_ctc/train.py @@ -435,7 +435,7 @@ def train_one_epoch( f"batch {batch_idx}, loss[{loss_info}], " f"tot_loss[{tot_loss}], batch size: {batch_size}" ) - if batch_idx % 10 == 0: + if batch_idx % params.log_interval == 0: if tb_writer is not None: loss_info.write_summary( From e5feabb2326b3d07856e7cb2c9cdf9851680bf03 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Tue, 12 Oct 2021 20:18:15 +0800 Subject: [PATCH 03/20] Update train.py --- egs/yesno/ASR/tdnn/train.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/egs/yesno/ASR/tdnn/train.py b/egs/yesno/ASR/tdnn/train.py index 6cc511a28..d414962ca 100755 --- a/egs/yesno/ASR/tdnn/train.py +++ b/egs/yesno/ASR/tdnn/train.py @@ -416,7 +416,7 @@ def train_one_epoch( f"batch {batch_idx}, loss[{loss_info}], " f"tot_loss[{tot_loss}], batch size: {batch_size}" ) - if batch_idx % 10 == 0: + if batch_idx % params.log_interval == 0: if tb_writer is not None: loss_info.write_summary( From 5b777f9fef354ac753f2082054a093dbb0c4dbb6 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Wed, 17 Nov 2021 14:37:55 +0800 Subject: [PATCH 04/20] Update tdnn_ligru_ctc.rst --- docs/source/recipes/timit/tdnn_ligru_ctc.rst | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/source/recipes/timit/tdnn_ligru_ctc.rst b/docs/source/recipes/timit/tdnn_ligru_ctc.rst index 45724bc0e..30877505f 100644 --- a/docs/source/recipes/timit/tdnn_ligru_ctc.rst +++ b/docs/source/recipes/timit/tdnn_ligru_ctc.rst @@ -357,10 +357,10 @@ To decode with ``whole-lattice-rescoring`` methond, you can use ./tdnn_ligru_ctc/pretrained.py \ --method whole-lattice-rescoring \ - --checkpoint ./tmp-ligru/icefall_asr_timit_tdnn-ligru_ctc/exp/pretrained_average_9_25.pt \ - --words-file ./tmp-ligru/icefall_asr_timit_tdnn-ligru_ctc/data/lang_phone/words.txt \ - --HLG ./tmp-ligru/icefall_asr_timit_tdnn-ligru_ctc/data/lang_phone/HLG.pt \ - --G ./tmp-ligru/icefall_asr_timit_tdnn-ligru_ctc/data/lm/G_4_gram.pt \ + --checkpoint ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/exp/pretrained_average_9_25.pt \ + --words-file ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/data/lang_phone/words.txt \ + --HLG ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/data/lang_phone/HLG.pt \ + --G ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/data/lm/G_4_gram.pt \ --ngram-lm-scale 0.1 \ ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FDHC0_SI1559.WAV ./tmp-ligru/icefall_asr_timit_tdnn_ligru_ctc/test_waves/FELC0_SI756.WAV From c4c8d029348ba025edab675b0e8b09c8f45d53cb Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Wed, 15 Dec 2021 22:11:57 +0800 Subject: [PATCH 05/20] [WIP] A lip reading recipe (GRID recipe) based on icefall --- egs/grid/AVSR/lipnet_ctc_vsr/__init__.py | 0 egs/grid/AVSR/lipnet_ctc_vsr/decode.py | 497 +++++++++++++++++++ egs/grid/AVSR/lipnet_ctc_vsr/model.py | 62 +++ egs/grid/AVSR/lipnet_ctc_vsr/train.py | 606 +++++++++++++++++++++++ egs/grid/AVSR/lipnet_ctc_vsr/utils.py | 45 ++ egs/grid/AVSR/local/compile_hlg.py | 166 +++++++ egs/grid/AVSR/local/cvtransforms.py | 14 + egs/grid/AVSR/local/dataset.py | 83 ++++ egs/grid/AVSR/local/prepare_lang.py | 370 ++++++++++++++ egs/grid/AVSR/local/prepare_lexicon.py | 136 +++++ egs/grid/AVSR/prepare.sh | 135 +++++ egs/grid/AVSR/shared | 1 + 12 files changed, 2115 insertions(+) create mode 100644 egs/grid/AVSR/lipnet_ctc_vsr/__init__.py create mode 100644 egs/grid/AVSR/lipnet_ctc_vsr/decode.py create mode 100644 egs/grid/AVSR/lipnet_ctc_vsr/model.py create mode 100644 egs/grid/AVSR/lipnet_ctc_vsr/train.py create mode 100644 egs/grid/AVSR/lipnet_ctc_vsr/utils.py create mode 100644 egs/grid/AVSR/local/compile_hlg.py create mode 100644 egs/grid/AVSR/local/cvtransforms.py create mode 100644 egs/grid/AVSR/local/dataset.py create mode 100644 egs/grid/AVSR/local/prepare_lang.py create mode 100644 egs/grid/AVSR/local/prepare_lexicon.py create mode 100644 egs/grid/AVSR/prepare.sh create mode 100644 egs/grid/AVSR/shared diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/__init__.py b/egs/grid/AVSR/lipnet_ctc_vsr/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/decode.py b/egs/grid/AVSR/lipnet_ctc_vsr/decode.py new file mode 100644 index 000000000..5b8e5f972 --- /dev/null +++ b/egs/grid/AVSR/lipnet_ctc_vsr/decode.py @@ -0,0 +1,497 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang +# Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +from utils import encode_supervisions + +import k2 +import torch +import torch.nn as nn + +from torch.utils.data import DataLoader +from local.dataset import dataset_GRID +from model import LipNet + +from icefall.checkpoint import average_checkpoints, load_checkpoint +from icefall.decode import ( + get_lattice, + nbest_decoding, + one_best_decoding, + rescore_with_n_best_list, + rescore_with_whole_lattice, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + get_texts, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=19, + help="It specifies the checkpoint to use for decoding." + "Note: Epoch counts from 0.", + ) + parser.add_argument( + "--avg", + type=int, + default=5, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch'. ", + ) + parser.add_argument( + "--method", + type=str, + default="whole-lattice-rescoring", + help="""Decoding method. + Supported values are: + - (1) 1best. Extract the best path from the decoding lattice as the + decoding result. + - (2) nbest. Extract n paths from the decoding lattice; the path + with the highest score is the decoding result. + - (3) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an n-gram LM (e.g., a 4-gram LM), the path with + the highest score is the decoding result. + - (4) whole-lattice-rescoring. Rescore the decoding lattice with an + n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice + is the decoding result. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help="""Number of paths for n-best based decoding method. + Used only when "method" is one of the following values: + nbest, nbest-rescoring + """, + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""The scale to be applied to `lattice.scores`. + It's needed if you use any kinds of n-best based rescoring. + Used only when "method" is one of the following values: + nbest, nbest-rescoring + A smaller value results in more unique paths. + """, + ) + + parser.add_argument( + "--export", + type=str2bool, + default=False, + help="""When enabled, the averaged model is saved to + tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved. + pretrained.pt contains a dict {"model": model.state_dict()}, + which can be loaded by `icefall.checkpoint.load_checkpoint()`. + """, + ) + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + "exp_dir": Path("lipnet_ctc_vsr/exp"), + "lang_dir": Path("data/lang_character"), + "lm_dir": Path("data/lm"), + "search_beam": 20, + "output_beam": 5, + "min_active_states": 30, + "max_active_states": 10000, + "use_double_scores": True, + # parameters for dataset + "video_path": Path("download/GRID/lip/"), + "anno_path": Path("download/GRID/GRID_align_txt"), + "val_list": Path("download/GRID/unseen_val.txt"), + "vid_padding": 75, + "num_workers": 1, + "batch_size": 120, + } + ) + return params + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + HLG: k2.Fsa, + batch: dict, + lexicon: Lexicon, + G: Optional[k2.Fsa] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if no rescoring is used, the key is the string `no_rescore`. + If LM rescoring is used, the key is the string `lm_scale_xxx`, + where `xxx` is the value of `lm_scale`. An example key is + `lm_scale_0.7` + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + + - params.method is "1best", it uses 1best decoding without LM rescoring. + - params.method is "nbest", it uses nbest decoding without LM rescoring. + - params.method is "nbest-rescoring", it uses nbest LM rescoring. + - params.method is "whole-lattice-rescoring", it uses whole lattice LM + rescoring. + + model: + The neural model. + HLG: + The decoding graph. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + lexicon: + It contains word symbol table. + G: + An LM. It is not None when params.method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = HLG.device + feature = batch["vid"] + assert feature.ndim == 5 + feature = feature.to(device) + + nnet_output = model(feature) + nnet_output_shape = nnet_output.size() + supervision_segments, text = encode_supervisions(nnet_output_shape, batch) + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + ) + + if params.method in ["1best", "nbest"]: + if params.method == "1best": + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + key = "no_rescore" + else: + best_path = nbest_decoding( + lattice=lattice, + num_paths=params.num_paths, + use_double_scores=params.use_double_scores, + nbest_scale=params.nbest_scale, + ) + key = f"no_rescore-{params.num_paths}" + + hyps = get_texts(best_path) + hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps] + + return {key: hyps} + + assert params.method in ["nbest-rescoring", "whole-lattice-rescoring"] + + lm_scale_list = [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09] + lm_scale_list += [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] + lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3] + lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] + + if params.method == "nbest-rescoring": + best_path_dict = rescore_with_n_best_list( + lattice=lattice, + G=G, + num_paths=params.num_paths, + lm_scale_list=lm_scale_list, + nbest_scale=params.nbest_scale, + ) + else: + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=lm_scale_list, + ) + + ans = dict() + for lm_scale_str, best_path in best_path_dict.items(): + hyps = get_texts(best_path) + hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps] + ans[lm_scale_str] = hyps + return ans + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + HLG: k2.Fsa, + lexicon: Lexicon, + G: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + HLG: + The decoding graph. + lexicon: + It contains word symbol table. + G: + An LM. It is not None when params.method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return a dict, whose key may be "no-rescore" if no LM rescoring + is used, or it may be "lm_scale_0.7" if LM rescoring is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + results = [] + + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["txt"] + hyps_dict = decode_one_batch( + params=params, + model=model, + HLG=HLG, + batch=batch, + lexicon=lexicon, + G=G, + ) + + for lm_scale, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for hyp_words, ref_text in zip(hyps, texts): + ref_words = ref_text.split() + this_batch.append((ref_words, hyp_words)) + results[lm_scale].extend(this_batch) + + num_cuts += len(batch["txt"]) + + if batch_idx % 10 == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info( + f"batch {batch_str}, cuts processed until now is {num_cuts}" + ) + + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[List[int], List[int]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt" + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out PERs, per-phone error statistics and aligned + # ref/hyp pairs. + errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt" + with open(errs_filename, "w") as f: + wer = write_error_stats(f, f"{test_set_name}-{key}", results) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = params.exp_dir / f"per-summary-{test_set_name}.txt" + with open(errs_info, "w") as f: + print("settings\tPER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, PER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + params.update(vars(args)) + + setup_logger(f"{params.exp_dir}/log/log-decode") + logging.info("Decoding started") + logging.info(params) + + lexicon = Lexicon(params.lang_dir) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + HLG = k2.Fsa.from_dict( + torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu") + ) + + HLG = HLG.to(device) + assert HLG.requires_grad is False + + if not hasattr(HLG, "lm_scores"): + HLG.lm_scores = HLG.scores.clone() + + if params.method in ["nbest-rescoring", "whole-lattice-rescoring"]: + if not (params.lm_dir / "G_4_gram.pt").is_file(): + logging.info("Loading G_4_gram.fst.txt") + logging.warning("It may take 8 minutes.") + with open(params.lm_dir / "G_4_gram.fst.txt") as f: + first_word_disambig_id = lexicon.word_table["#0"] + + G = k2.Fsa.from_openfst(f.read(), acceptor=False) + # G.aux_labels is not needed in later computations, so + # remove it here. + del G.aux_labels + # CAUTION: The following line is crucial. + # Arcs entering the back-off state have label equal to #0. + # We have to change it to 0 here. + G.labels[G.labels >= first_word_disambig_id] = 0 + G = k2.Fsa.from_fsas([G]).to(device) + G = k2.arc_sort(G) + torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt") + else: + logging.info("Loading pre-compiled G_4_gram.pt") + d = torch.load(params.lm_dir / "G_4_gram.pt", map_location="cpu") + G = k2.Fsa.from_dict(d).to(device) + + if params.method == "whole-lattice-rescoring": + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + G = G.to(device) + + # G.lm_scores is used to replace HLG.lm_scores during + # LM rescoring. + G.lm_scores = G.scores.clone() + else: + G = None + + model = LipNet() + if params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if start >= 0: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.load_state_dict(average_checkpoints(filenames)) + + if params.export: + logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt") + torch.save( + {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt" + ) + return + + model.to(device) + model.eval() + + grid = dataset_GRID( + params.video_path, + params.anno_path, + params.val_list, + params.vid_padding, + "test", + ) + test_dl = DataLoader( + grid, + batch_size=params.batch_size, + shuffle=False, + num_workers=params.num_workers, + drop_last=False, + ) + test_set = "test" + + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + HLG=HLG, + lexicon=lexicon, + G=G, + ) + + save_results( + params=params, test_set_name=test_set, results_dict=results_dict + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/model.py b/egs/grid/AVSR/lipnet_ctc_vsr/model.py new file mode 100644 index 000000000..ce246899c --- /dev/null +++ b/egs/grid/AVSR/lipnet_ctc_vsr/model.py @@ -0,0 +1,62 @@ +#!/usr/bin/env python3 +import torch +import torch.nn as nn + + +class LipNet(torch.nn.Module): + def __init__(self, dropout_p=0.1): + super(LipNet, self).__init__() + self.conv1 = nn.Conv3d(3, 32, (3, 5, 5), (1, 2, 2), (1, 2, 2)) + self.pool1 = nn.MaxPool3d((1, 2, 2), (1, 2, 2)) + + self.conv2 = nn.Conv3d(32, 64, (3, 5, 5), (1, 1, 1), (1, 2, 2)) + self.pool2 = nn.MaxPool3d((1, 2, 2), (1, 2, 2)) + + self.conv3 = nn.Conv3d(64, 96, (3, 3, 3), (1, 1, 1), (1, 1, 1)) + self.pool3 = nn.MaxPool3d((1, 2, 2), (1, 2, 2)) + + self.gru1 = nn.GRU(96 * 4 * 8, 256, 1, bidirectional=True) + self.gru2 = nn.GRU(512, 256, 1, bidirectional=True) + + self.FC = nn.Linear(512, 28) + self.dropout_p = dropout_p + + self.relu = nn.ReLU(inplace=True) + self.dropout = nn.Dropout(self.dropout_p) + self.dropout3d = nn.Dropout3d(self.dropout_p) + + def forward(self, x): + + x = self.conv1(x) + x = self.relu(x) + x = self.dropout3d(x) + x = self.pool1(x) + + x = self.conv2(x) + x = self.relu(x) + x = self.dropout3d(x) + x = self.pool2(x) + + x = self.conv3(x) + x = self.relu(x) + x = self.dropout3d(x) + x = self.pool3(x) + + # (B, C, T, H, W)->(T, B, C, H, W) + x = x.permute(2, 0, 1, 3, 4).contiguous() + # (B, C, T, H, W)->(T, B, C*H*W) + x = x.view(x.size(0), x.size(1), -1) + + self.gru1.flatten_parameters() + self.gru2.flatten_parameters() + + x, h = self.gru1(x) + x = self.dropout(x) + x, h = self.gru2(x) + x = self.dropout(x) + + x = x.permute(1, 0, 2).contiguous() + x = self.FC(x) + x = nn.functional.log_softmax(x, dim=-1) + + return x diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/train.py b/egs/grid/AVSR/lipnet_ctc_vsr/train.py new file mode 100644 index 000000000..6a12c837f --- /dev/null +++ b/egs/grid/AVSR/lipnet_ctc_vsr/train.py @@ -0,0 +1,606 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang +# Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +from pathlib import Path +from shutil import copyfile +from typing import Optional, Tuple + +from utils import encode_supervisions + +import k2 +import torch +import torch.multiprocessing as mp +import torch.nn as nn +import torch.optim as optim +from torch.utils.data import DataLoader + +from local.dataset import dataset_GRID +from lhotse.utils import fix_random_seed +from model import LipNet +from torch import Tensor +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.nn.utils import clip_grad_norm_ +from torch.optim.lr_scheduler import StepLR +from torch.utils.tensorboard import SummaryWriter + +from icefall.checkpoint import load_checkpoint +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.dist import cleanup_dist, setup_dist +from icefall.graph_compiler import CtcTrainingGraphCompiler +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + MetricsTracker, + get_env_info, + setup_logger, + str2bool, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=0, + help="""Resume training from from this epoch. + If it is positive, it will load checkpoint from + tdnn_lstm_ctc/exp/epoch-{start_epoch-1}.pt + """, + ) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + is saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - exp_dir: It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + + - lang_dir: It contains language related input files such as + "lexicon.txt" + + - lr: It specifies the initial learning rate + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - weight_decay: The weight_decay for the optimizer. + + - subsampling_factor: The subsampling factor for the model. + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval` is 0 + + - beam_size: It is used in k2.ctc_loss + + - reduction: It is used in k2.ctc_loss + + - use_double_scores: It is used in k2.ctc_loss + """ + params = AttributeDict( + { + "exp_dir": Path("lipnet_ctc_vsr/exp"), + "lang_dir": Path("data/lang_character"), + "lr": 4e-4, + "feature_dim": 80, + "weight_decay": 5e-4, + "subsampling_factor": 3, + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 1, + "reset_interval": 200, + "valid_interval": 1000, + "beam_size": 10, + "reduction": "sum", + "use_double_scores": True, + "env_info": get_env_info(), + # parameters for dataset + "video_path": Path("download/GRID/lip/"), + "anno_path": Path("download/GRID/GRID_align_txt"), + "train_list": Path("download/GRID/unseen_train.txt"), + "vid_padding": 75, + "aud_padding": 200, + "num_workers": 1, + "batch_size": 120, + } + ) + + return params + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, +) -> None: + """Load checkpoint from file. + + If params.start_epoch is positive, it will load the checkpoint from + `params.start_epoch - 1`. Otherwise, this function does nothing. + + Apart from loading state dict for `model`, `optimizer` and `scheduler`, + it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + optimizer: + The optimizer that we are using. + scheduler: + The learning rate scheduler we are using. + Returns: + Return None. + """ + if params.start_epoch <= 0: + return + + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + saved_params = load_checkpoint( + filename, + model=model, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: nn.Module, + optimizer: torch.optim.Optimizer, + scheduler: torch.optim.lr_scheduler._LRScheduler, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + params=params, + optimizer=optimizer, + scheduler=scheduler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: nn.Module, + batch: dict, + graph_compiler: CtcTrainingGraphCompiler, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute CTC loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of TdnnLstm in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + graph_compiler: + It is used to build a decoding graph from a ctc topo and training + transcript. The training transcript is contained in the given `batch`, + while the ctc topo is built when this compiler is instantiated. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + """ + device = graph_compiler.device + feature = batch["vid"] + assert feature.ndim == 5 + feature = feature.to(device) + + with torch.set_grad_enabled(is_training): + nnet_output = model(feature) + + # NOTE: We need `encode_supervisions` to sort sequences with + # different duration in decreasing order, required by + # `k2.intersect_dense` called in `k2.ctc_loss` + supervision_segments, texts = encode_supervisions(nnet_output.size(), batch) + decoding_graph = graph_compiler.compile(texts) + dense_fsa_vec = k2.DenseFsaVec( + nnet_output, + supervision_segments, + ) + + loss = k2.ctc_loss( + decoding_graph=decoding_graph, + dense_fsa_vec=dense_fsa_vec, + output_beam=params.beam_size, + reduction=params.reduction, + use_double_scores=params.use_double_scores, + ) + + assert loss.requires_grad == is_training + + info = MetricsTracker() + info["frames"] = supervision_segments[:, 2].sum().item() + info["loss"] = loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: nn.Module, + graph_compiler: CtcTrainingGraphCompiler, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process. The validation loss + is saved in `params.valid_loss`. + """ + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + batch=batch, + graph_compiler=graph_compiler, + is_training=False, + ) + assert loss.requires_grad is False + + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: nn.Module, + optimizer: torch.optim.Optimizer, + graph_compiler: CtcTrainingGraphCompiler, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + graph_compiler: + It is used to convert transcripts to FSAs. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + """ + model.train() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(train_dl): + params.batch_idx_train += 1 + batch_size = len(batch["txt"]) + + loss, loss_info = compute_loss( + params=params, + model=model, + batch=batch, + graph_compiler=graph_compiler, + is_training=True, + ) + # summary stats. + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + optimizer.zero_grad() + loss.backward() + clip_grad_norm_(model.parameters(), 5.0, 2.0) + optimizer.step() + + if batch_idx % params.log_interval == 0: + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}" + ) + if batch_idx % params.log_interval == 0: + + if tb_writer is not None: + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary( + tb_writer, "train/tot_", params.batch_idx_train + ) + + if batch_idx > 0 and batch_idx % params.valid_interval == 0: + valid_info = compute_validation_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation {valid_info}") + if tb_writer is not None: + valid_info.write_summary( + tb_writer, + "train/valid_", + params.batch_idx_train, + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + + fix_random_seed(42) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + logging.info(params) + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + lexicon = Lexicon(params.lang_dir) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + + graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device) + model = LipNet() + + checkpoints = load_checkpoint_if_available(params=params, model=model) + + model.to(device) + if world_size > 1: + model = DDP(model, device_ids=[rank]) + + optimizer = optim.AdamW( + model.parameters(), + lr=params.lr, + weight_decay=params.weight_decay, + ) + scheduler = StepLR(optimizer, step_size=10, gamma=0.8) + + if checkpoints: + optimizer.load_state_dict(checkpoints["optimizer"]) + scheduler.load_state_dict(checkpoints["scheduler"]) + + grid = dataset_GRID( + params.video_path, + params.anno_path, + params.train_list, + params.vid_padding, + params.txt_padding, + "train", + ) + + train_dl = DataLoader( + grid, + batch_size=params.batch_size, + shuffle=True, + num_workers=params.num_workers, + drop_last=False, + ) + # Here, we use train_dl as valid_dl because we don't have extra valid data. + valid_dl = train_dl + + for epoch in range(params.start_epoch, params.num_epochs): + + if epoch > params.start_epoch: + logging.info(f"epoch {epoch}, lr: {scheduler.get_last_lr()[0]}") + + if tb_writer is not None: + tb_writer.add_scalar( + "train/lr", + scheduler.get_last_lr()[0], + params.batch_idx_train, + ) + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + optimizer=optimizer, + graph_compiler=graph_compiler, + train_dl=train_dl, + valid_dl=valid_dl, + tb_writer=tb_writer, + world_size=world_size, + ) + + scheduler.step() + + if epoch % 1 == 0: + save_checkpoint( + params=params, + model=model, + optimizer=optimizer, + scheduler=scheduler, + rank=rank, + ) + + logging.info("Done!") + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def main(): + parser = get_parser() + args = parser.parse_args() + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +if __name__ == "__main__": + main() diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/utils.py b/egs/grid/AVSR/lipnet_ctc_vsr/utils.py new file mode 100644 index 000000000..cf68944bf --- /dev/null +++ b/egs/grid/AVSR/lipnet_ctc_vsr/utils.py @@ -0,0 +1,45 @@ +# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo) +# +# See ../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch + + +def encode_supervisions(nnet_output_shape, batch): + """ + In GRID, the lengths of all samples are same. + And here, we don't deploy cut operation on it. + So, the start frame is always 0 among all samples. + """ + N, T, D = nnet_output_shape + + supervisions_idx = torch.arange(0, N).to(torch.int32) + start_frames = [0 for _ in range(N)] + supervisions_start_frame = torch.tensor(start_frames).to(torch.int32) + num_frames = [T for _ in range(N)] + supervisions_num_frames = torch.tensor(num_frames).to(torch.int32) + + supervision_segments = torch.stack( + ( + supervisions_idx, + supervisions_start_frame, + supervisions_num_frames, + ), + 1, + ).to(torch.int32) + + texts = batch["txt"] + + return supervision_segments, texts diff --git a/egs/grid/AVSR/local/compile_hlg.py b/egs/grid/AVSR/local/compile_hlg.py new file mode 100644 index 000000000..a94a9ac8c --- /dev/null +++ b/egs/grid/AVSR/local/compile_hlg.py @@ -0,0 +1,166 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This script takes as input lang_dir and generates HLG from + + - H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt + - L, the lexicon, built from lang_dir/L_disambig.pt + + Caution: We use a lexicon that contains disambiguation symbols + + - G, the LM, built from data/lm/G_3_gram.fst.txt + +The generated HLG is saved in $lang_dir/HLG.pt +""" +import argparse +import logging +from pathlib import Path + +import k2 +import torch + +from icefall.lexicon import Lexicon + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--lang-dir", + type=str, + help="""Input and output directory. + """, + ) + + return parser.parse_args() + + +def compile_HLG(lang_dir: str) -> k2.Fsa: + """ + Args: + lang_dir: + The language directory, e.g., data/lang_phone or data/lang_bpe_5000. + + Return: + An FSA representing HLG. + """ + lexicon = Lexicon(lang_dir) + max_token_id = max(lexicon.tokens) + logging.info(f"Building ctc_topo. max_token_id: {max_token_id}") + H = k2.ctc_topo(max_token_id) + + if Path(lang_dir / "L_disambig.pt").is_file(): + logging.info("Loading L_disambig.pt") + d = torch.load(Path(lang_dir / "L_disambig.pt")) + L = k2.Fsa.from_dict(d) + else: + logging.info("Loading L_disambig.fst.txt") + with open(Path(lang_dir / "L_disambig.fst.txt")) as f: + L = k2.Fsa.from_openfst(f.read(), acceptor=False) + torch.save(L.as_dict(), Path(lang_dir / "L_disambig.pt")) + + # L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt")) + + if Path("data/lm/G.pt").is_file(): + logging.info("Loading pre-compiled G") + d = torch.load("data/lm/G.pt") + G = k2.Fsa.from_dict(d) + else: + logging.info("Loading G_3_gram.fst.txt") + with open("data/lm/G_3_gram.fst.txt") as f: + G = k2.Fsa.from_openfst(f.read(), acceptor=False) + torch.save(G.as_dict(), "data/lm/G.pt") + + first_token_disambig_id = lexicon.token_table["#0"] + first_word_disambig_id = lexicon.word_table["#0"] + + L = k2.arc_sort(L) + G = k2.arc_sort(G) + + logging.info("Intersecting L and G") + LG = k2.compose(L, G) + logging.info(f"LG shape: {LG.shape}") + + logging.info("Connecting LG") + LG = k2.connect(LG) + logging.info(f"LG shape after k2.connect: {LG.shape}") + + logging.info(type(LG.aux_labels)) + logging.info("Determinizing LG") + + LG = k2.determinize(LG) + logging.info(type(LG.aux_labels)) + + logging.info("Connecting LG after k2.determinize") + LG = k2.connect(LG) + + logging.info("Removing disambiguation symbols on LG") + + LG.labels[LG.labels >= first_token_disambig_id] = 0 + + LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0 + + LG = k2.remove_epsilon(LG) + logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}") + + LG = k2.connect(LG) + LG.aux_labels = LG.aux_labels.remove_values_eq(0) + + logging.info("Arc sorting LG") + LG = k2.arc_sort(LG) + + logging.info("Composing H and LG") + # CAUTION: The name of the inner_labels is fixed + # to `tokens`. If you want to change it, please + # also change other places in icefall that are using + # it. + HLG = k2.compose(H, LG, inner_labels="tokens") + + logging.info("Connecting LG") + HLG = k2.connect(HLG) + + logging.info("Arc sorting LG") + HLG = k2.arc_sort(HLG) + logging.info(f"HLG.shape: {HLG.shape}") + + return HLG + + +def main(): + args = get_args() + lang_dir = Path(args.lang_dir) + + if (lang_dir / "HLG.pt").is_file(): + logging.info(f"{lang_dir}/HLG.pt already exists - skipping") + return + + logging.info(f"Processing {lang_dir}") + + HLG = compile_HLG(lang_dir) + logging.info(f"Saving HLG.pt to {lang_dir}") + torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt") + + +if __name__ == "__main__": + formatter = ( + "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + ) + + logging.basicConfig(format=formatter, level=logging.INFO) + + main() diff --git a/egs/grid/AVSR/local/cvtransforms.py b/egs/grid/AVSR/local/cvtransforms.py new file mode 100644 index 000000000..07361dac8 --- /dev/null +++ b/egs/grid/AVSR/local/cvtransforms.py @@ -0,0 +1,14 @@ +# coding: utf-8 +import random + + +def HorizontalFlip(batch_img, p=0.5): + # (T, H, W, C) + if random.random() > p: + batch_img = batch_img[:, :, ::-1, ...] + return batch_img + + +def ColorNormalize(batch_img): + batch_img = batch_img / 255.0 + return batch_img diff --git a/egs/grid/AVSR/local/dataset.py b/egs/grid/AVSR/local/dataset.py new file mode 100644 index 000000000..3c344ddf9 --- /dev/null +++ b/egs/grid/AVSR/local/dataset.py @@ -0,0 +1,83 @@ +# encoding: utf-8 +import cv2 +import os +import numpy as np +import torch +from torch.utils.data import Dataset +from cvtransforms import HorizontalFlip, ColorNormalize + + +class dataset_GRID(Dataset): + def __init__( + self, + video_path, + anno_path, + file_list, + vid_pad, + phase, + ): + self.anno_path = anno_path + self.vid_pad = vid_pad + self.phase = phase + with open(file_list, "r") as f: + self.videos = [ + os.path.join(video_path, line.strip()) for line in f.readlines() + ] + + self.data = [] + for vid in self.videos: + items = vid.split(os.path.sep) + aud = ( + vid.replace("lip", "audio_25k").replace("/video/mpg_6000", "") + + ".wav" + ) + self.data.append((vid, aud, items[-4], items[-1])) + + def __getitem__(self, idx): + (vid, aud, spk, name) = self.data[idx] + vid = self._load_vid(vid) + anno = self._load_anno( + os.path.join(self.anno_path, spk, "align", name + ".align") + ) + + if self.phase == "train": + vid = HorizontalFlip(vid) + vid = ColorNormalize(vid) + + vid = self._padding(vid, self.vid_pad) + + return { + "vid": torch.FloatTensor(vid.transpose(3, 0, 1, 2)), + "txt": anno.upper(), + } + + def __len__(self): + return len(self.data) + + def _load_vid(self, p): + files = os.listdir(p) + files = list(filter(lambda file: file.find(".jpg") != -1, files)) + files = sorted(files, key=lambda file: int(os.path.splitext(file)[0])) + array = [cv2.imread(os.path.join(p, file)) for file in files] + array = list(filter(lambda im: im is not None, array)) + array = [ + cv2.resize(im, (128, 64), interpolation=cv2.INTER_LANCZOS4) + for im in array + ] + array = np.stack(array, axis=0).astype(np.float32) + return array + + def _load_anno(self, name): + with open(name, "r") as f: + lines = [line.strip().split(" ") for line in f.readlines()] + txt = [line[2] for line in lines] + txt = list(filter(lambda s: not s.upper() in ["SIL", "SP"], txt)) + txt = " ".join(txt) + return txt + + def _padding(self, array, length): + array = [array[_] for _ in range(array.shape[0])] + size = array[0].shape + for i in range(length - len(array)): + array.append(np.zeros(size)) + return np.stack(array, axis=0) diff --git a/egs/grid/AVSR/local/prepare_lang.py b/egs/grid/AVSR/local/prepare_lang.py new file mode 100644 index 000000000..0fc82513b --- /dev/null +++ b/egs/grid/AVSR/local/prepare_lang.py @@ -0,0 +1,370 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This script takes as input a lexicon file "data/lang_phone/lexicon.txt" +consisting of words and tokens (i.e., phones) and does the following: +1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt +2. Generate tokens.txt, the token table mapping a token to a unique integer. +3. Generate words.txt, the word table mapping a word to a unique integer. +4. Generate L.pt, in k2 format. It can be loaded by + d = torch.load("L.pt") + lexicon = k2.Fsa.from_dict(d) +5. Generate L_disambig.pt, in k2 format. +""" +import argparse +import math +from collections import defaultdict +from pathlib import Path +from typing import Any, Dict, List, Tuple + +import k2 +import torch + +from icefall.lexicon import read_lexicon, write_lexicon +from icefall.utils import str2bool + +Lexicon = List[Tuple[str, List[str]]] + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--lang-dir", + type=str, + help="""Input and output directory. + It should contain a file lexicon.txt. + Generated files by this script are saved into this directory. + """, + ) + + parser.add_argument( + "--debug", + type=str2bool, + default=False, + help="""True for debugging, which will generate + a visualization of the lexicon FST. + Caution: If your lexicon contains hundreds of thousands + of lines, please set it to False! + """, + ) + + return parser.parse_args() + + +def write_mapping(filename: str, sym2id: Dict[str, int]) -> None: + """Write a symbol to ID mapping to a file. + Note: + No need to implement `read_mapping` as it can be done + through :func:`k2.SymbolTable.from_file`. + Args: + filename: + Filename to save the mapping. + sym2id: + A dict mapping symbols to IDs. + Returns: + Return None. + """ + with open(filename, "w", encoding="utf-8") as f: + for sym, i in sym2id.items(): + f.write(f"{sym} {i}\n") + + +def get_tokens(lexicon: Lexicon) -> List[str]: + """Get tokens from a lexicon. + Args: + lexicon: + It is the return value of :func:`read_lexicon`. + Returns: + Return a list of unique tokens. + """ + ans = set() + for _, tokens in lexicon: + ans.update(tokens) + + sorted_ans = list(ans) + return sorted_ans + + +def get_words(lexicon: Lexicon) -> List[str]: + """Get words from a lexicon. + Args: + lexicon: + It is the return value of :func:`read_lexicon`. + Returns: + Return a list of unique words. + """ + ans = set() + for word, _ in lexicon: + ans.add(word) + sorted_ans = sorted(list(ans)) + return sorted_ans + + +def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]: + """It adds pseudo-token disambiguation symbols #1, #2 and so on + at the ends of tokens to ensure that all pronunciations are different, + and that none is a prefix of another. + See also add_lex_disambig.pl from kaldi. + Args: + lexicon: + It is returned by :func:`read_lexicon`. + Returns: + Return a tuple with two elements: + - The output lexicon with disambiguation symbols + - The ID of the max disambiguation symbol that appears + in the lexicon + """ + + # (1) Work out the count of each token-sequence in the + # lexicon. + count = defaultdict(int) + for _, tokens in lexicon: + count[" ".join(tokens)] += 1 + + # (2) For each left sub-sequence of each token-sequence, note down + # that it exists (for identifying prefixes of longer strings). + issubseq = defaultdict(int) + for _, tokens in lexicon: + tokens = tokens.copy() + tokens.pop() + while tokens: + issubseq[" ".join(tokens)] = 1 + tokens.pop() + + # (3) For each entry in the lexicon: + # if the token sequence is unique and is not a + # prefix of another word, no disambig symbol. + # Else output #1, or #2, #3, ... if the same token-seq + # has already been assigned a disambig symbol. + ans = [] + + # We start with #1 since #0 has its own purpose + first_allowed_disambig = 1 + max_disambig = first_allowed_disambig - 1 + last_used_disambig_symbol_of = defaultdict(int) + + for word, tokens in lexicon: + tokenseq = " ".join(tokens) + assert tokenseq != "" + if issubseq[tokenseq] == 0 and count[tokenseq] == 1: + ans.append((word, tokens)) + continue + + cur_disambig = last_used_disambig_symbol_of[tokenseq] + if cur_disambig == 0: + cur_disambig = first_allowed_disambig + else: + cur_disambig += 1 + + if cur_disambig > max_disambig: + max_disambig = cur_disambig + last_used_disambig_symbol_of[tokenseq] = cur_disambig + tokenseq += f" #{cur_disambig}" + ans.append((word, tokenseq.split())) + return ans, max_disambig + + +def generate_id_map(symbols: List[str]) -> Dict[str, int]: + """Generate ID maps, i.e., map a symbol to a unique ID. + Args: + symbols: + A list of unique symbols. + Returns: + A dict containing the mapping between symbols and IDs. + """ + return {sym: i for i, sym in enumerate(symbols)} + + +def add_self_loops( + arcs: List[List[Any]], disambig_token: int, disambig_word: int +) -> List[List[Any]]: + """Adds self-loops to states of an FST to propagate disambiguation symbols + through it. They are added on each state with non-epsilon output symbols + on at least one arc out of the state. + See also fstaddselfloops.pl from Kaldi. One difference is that + Kaldi uses OpenFst style FSTs and it has multiple final states. + This function uses k2 style FSTs and it does not need to add self-loops + to the final state. + The input label of a self-loop is `disambig_token`, while the output + label is `disambig_word`. + Args: + arcs: + A list-of-list. The sublist contains + `[src_state, dest_state, label, aux_label, score]` + disambig_token: + It is the token ID of the symbol `#0`. + disambig_word: + It is the word ID of the symbol `#0`. + Return: + Return new `arcs` containing self-loops. + """ + states_needs_self_loops = set() + for arc in arcs: + src, dst, ilabel, olabel, score = arc + if olabel != 0: + states_needs_self_loops.add(src) + + ans = [] + for s in states_needs_self_loops: + ans.append([s, s, disambig_token, disambig_word, 0]) + + return arcs + ans + + +def lexicon_to_fst( + lexicon: Lexicon, + token2id: Dict[str, int], + word2id: Dict[str, int], + need_self_loops: bool = False, +) -> k2.Fsa: + """Convert a lexicon to an FST (in k2 format) with optional silence at + the beginning and end of each word. + Args: + lexicon: + The input lexicon. See also :func:`read_lexicon` + token2id: + A dict mapping tokens to IDs. + word2id: + A dict mapping words to IDs. + need_self_loops: + If True, add self-loop to states with non-epsilon output symbols + on at least one arc out of the state. The input label for this + self loop is `token2id["#0"]` and the output label is `word2id["#0"]`. + Returns: + Return an instance of `k2.Fsa` representing the given lexicon. + """ + pronprob = 1.0 + score = -math.log(pronprob) + + loop_state = 0 # words enter and leave from here + next_state = 1 # the next un-allocated state, will be incremented as we go. + arcs = [] + + assert token2id[""] == 0 + assert word2id[""] == 0 + + eps = 0 + print("token2id: ", token2id) + print("word2id: ", word2id) + for word, tokens in lexicon: + print(word, tokens) + assert len(tokens) > 0, f"{word} has no pronunciations" + cur_state = loop_state + + word = word2id[word] + tokens = [token2id[i] for i in tokens] + + for i in range(len(tokens) - 1): + w = word if i == 0 else eps + arcs.append([cur_state, next_state, tokens[i], w, score]) + + cur_state = next_state + next_state += 1 + + # now for the last token of this word + # It has two out-going arcs, one to the loop state, + # the other one to the sil_state. + i = len(tokens) - 1 + w = word if i == 0 else eps + tokens[i] = tokens[i] if i >= 0 else eps + arcs.append([cur_state, loop_state, tokens[i], w, score]) + + if need_self_loops: + disambig_token = token2id["#0"] + disambig_word = word2id["#0"] + arcs = add_self_loops( + arcs, + disambig_token=disambig_token, + disambig_word=disambig_word, + ) + + final_state = next_state + arcs.append([loop_state, final_state, -1, -1, 0]) + arcs.append([final_state]) + + arcs = sorted(arcs, key=lambda arc: arc[0]) + arcs = [[str(i) for i in arc] for arc in arcs] + arcs = [" ".join(arc) for arc in arcs] + arcs = "\n".join(arcs) + print(arcs) + fsa = k2.Fsa.from_str(arcs, acceptor=False) + return fsa + + +def main(): + args = get_args() + lang_dir = Path(args.lang_dir) + lexicon_filename = lang_dir / "lexicon.txt" + + lexicon = read_lexicon(lexicon_filename) + print("lexicon: ", lexicon) + tokens = get_tokens(lexicon) + + words = get_words(lexicon) + lexicon_disambig, max_disambig = add_disambig_symbols(lexicon) + + for i in range(max_disambig + 1): + disambig = f"#{i}" + assert disambig not in tokens + tokens.append(f"#{i}") + + assert "" not in tokens + tokens = [""] + tokens + + assert "" not in words + assert "#0" not in words + assert "" not in words + assert "" not in words + + words = [""] + words + ["#0", "", ""] + + token2id = generate_id_map(tokens) + word2id = generate_id_map(words) + + write_mapping(lang_dir / "tokens.txt", token2id) + write_mapping(lang_dir / "words.txt", word2id) + write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig) + + L = lexicon_to_fst( + lexicon, + token2id=token2id, + word2id=word2id, + ) + + L_disambig = lexicon_to_fst( + lexicon_disambig, + token2id=token2id, + word2id=word2id, + need_self_loops=True, + ) + torch.save(L.as_dict(), lang_dir / "L.pt") + torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt") + + if False: + # Just for debugging, will remove it + L.labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt") + L.aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt") + L_disambig.labels_sym = L.labels_sym + L_disambig.aux_labels_sym = L.aux_labels_sym + L.draw(lang_dir / "L.png", title="L") + L_disambig.draw(lang_dir / "L_disambig.png", title="L_disambig") + + +if __name__ == "__main__": + main() diff --git a/egs/grid/AVSR/local/prepare_lexicon.py b/egs/grid/AVSR/local/prepare_lexicon.py new file mode 100644 index 000000000..3b84863c2 --- /dev/null +++ b/egs/grid/AVSR/local/prepare_lexicon.py @@ -0,0 +1,136 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +""" +This script takes as input dir "download/GRID/GRID_align_txt" +consisting of all samples' text files and does the following: + +1. Generate lexicon.txt. + +2. Generate train.text. +""" +import argparse +import logging +from pathlib import Path + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--samples-txt", + type=str, + help="""The file listing training samples. + """, + ) + parser.add_argument( + "--align-dir", + type=str, + help="""The directory including training samples' + text files. + """, + ) + parser.add_argument( + "--lang-dir", + type=str, + help="""Output directory. + """, + ) + + return parser.parse_args() + + +def prepare_lexicon( + train_samples_txt: str, train_align_dir: str, lang_dir: str +): + """ + Args: + train_samples_txt: + The file listing training samples, e.g., download/GRID/unseen_train.txt. + train_align_dir: + The directory including training samples' text files, + e.g., download/GRID/GRID_align_txt. + lang_dir: + Output directory, e.g., data/lang_character + Return: + The lexicon.txt file and the train.text in lang_dir. + """ + words = set() + + train_text = Path(lang_dir) / "train.text" + lexicon = Path(lang_dir) / "lexicon.txt" + + if train_text.exists() is False: + texts = [] + train_samples_txts = [] + with open(train_samples_txt, "r") as f: + train_samples_txts = [line.strip() for line in f.readlines()] + + for sample_txt in train_samples_txts: + anno = sample_txt.replace("video/mpg_6000", "align") + ".align" + anno = Path(train_align_dir) / anno + with open(anno, "r") as f: + lines = [line.strip().split(" ") for line in f.readlines()] + txt = [line[2] for line in lines] + txt = list( + filter(lambda s: not s.upper() in ["SIL", "SP"], txt) + ) + txt = " ".join(txt) + texts.append(txt.upper()) + + with open(train_text, "w") as f: + for txt in texts: + f.write(txt) + f.write("\n") + + with open(train_text, "r") as load_f: + lines = load_f.readlines() + for line in lines: + words_list = list(filter(None, line.rstrip("\n").split(" "))) + for word in words_list: + if word not in words: + words.add(word) + + with open(lexicon, "w") as f: + for word in words: + chars = list(word) + char_str = " ".join(chars) + f.write((word + " " + char_str).upper()) + f.write("\n") + f.write(" ") + f.write("\n") + + +def main(): + args = get_args() + train_samples_txt = Path(args.samples_txt) + train_align_dir = Path(args.align_dir) + lang_dir = Path(args.lang_dir) + + logging.info("Generating lexicon.txt and train.text") + + prepare_lexicon(train_samples_txt, train_align_dir, lang_dir) + + +if __name__ == "__main__": + formatter = ( + "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + ) + + logging.basicConfig(format=formatter, level=logging.INFO) + + main() diff --git a/egs/grid/AVSR/prepare.sh b/egs/grid/AVSR/prepare.sh new file mode 100644 index 000000000..5e7f9ed74 --- /dev/null +++ b/egs/grid/AVSR/prepare.sh @@ -0,0 +1,135 @@ +#!/usr/bin/env bash + +set -eou pipefail + +stage=-1 +stop_stage=100 + +# We assume dl_dir (download dir) contains the following +# directories and files. If not, they will be downloaded +# by this script automatically. +# +# - $dl_dir/GRID +# You can find lip, audio, align_text inside it. +# +# - $dl_dir/lm +# This directory contains the language model(LM) downloaded from +# https://huggingface.co/luomingshuang/grid_lm. +# About how to get these LM files, you can know it +# from https://github.com/luomingshuang/Train_LM_with_kaldilm. +# +# - lm_3_gram.arpa +# - lm_4_gram.arpa +# + +dl_dir=$PWD/download + +. shared/parse_options.sh || exit 1 + +# All files generated by this script are saved in "data". +# You can safely remove "data" and rerun this script to regenerate it. +mkdir -p data + +log() { + # This function is from espnet + local fname=${BASH_SOURCE[1]##*/} + echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" +} + +log "dl_dir: $dl_dir" + +if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then + log "Stage -1: Download LM" + # We assume that you have installed the git-lfs, if not, you could install it + # using: `sudo apt-get install git-lfs && git-lfs install` + #[ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm + #git clone https://huggingface.co/luomingshuang/grid_lm $dl_dir/lm + #cd $dl_dir/lm && git lfs pull + + # You can also use the following commands to download the lm files + wget -P $dl_dir/lm https://huggingface.co/luomingshuang/grid_lm/resolve/main/lm_3_gram.arpa + wget -P $dl_dir/lm https://huggingface.co/luomingshuang/grid_lm/resolve/main/lm_4_gram.arpa + + # Because the texts among the samples in GRID are very similar, + # the lm_4_gram.arpa is nearly no use for decoding when use LM. +fi + +if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then + log "Stage 0: Download data" + # The process of extracting lip region takes much time. + # Here, we provide the processed data (lip region) for using. + # So you can run this recipe quickly and easily. + # + # If you want to know more details about getting lip region, + # You can have a look at https://github.com/Fengdalu/LipNet-PyTorch/tree/master/scripts + + [ ! -e $dl_dir/GRID ] && mkdir -p $dl_dir/GRID + + # Download the GRID lip region data and text + # You can use the following commands to download the processed lip region data and text + wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.00 + wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.01 + wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.02 + wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.03 + wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/grid_lip_160_80/resolve/main/GRID_LIP_160x80_TXT.zip.04 + + cat $dl_dir/GRID/GRID_LIP_160x80_TXT.zip.* > $dl_dir/GRID/GRID_LIP_160x80_TXT.zip + unzip $dl_dir/GRID/GRID_LIP_160x80_TXT.zip -d $dl_dir/GRID/ + rm -rf $dl_dir/GRID/GRID_LIP_160x80_TXT.zip + + # Download the GRID audio data + wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/GRID_audio/resolve/main/audio_25k.zip + unzip $dl_dir/GRID/audio_25k.zip -d $dl_dir/GRID/ + rm -rf $dl_dir/GRID/audio_25k.zip + + # Download the spliting files for train and val + # Here, we just consider the unseen case, which means + # that there is no common speakers among train and val. + wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/GRID_text/resolve/main/unseen_train.txt + wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/GRID_text/resolve/main/unseen_val.txt +fi + +if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then + log "Stage 2: Prepare character-based lang" + lang_dir=data/lang_character + mkdir -p $lang_dir + + ./local/prepare_lexicon.py \ + --samples-txt $dl_dir/GRID/unseen_train.txt \ + --align-dir $dl_dir/GRID/GRID_align_txt \ + --lang-dir $lang_dir + + if [ ! -f $lang_dir/L_disambig.pt ]; then + ./local/prepare_lang.py --lang-dir $lang_dir + fi +fi + +if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then + log "Stage 3: Prepare G" + # We assume you have installed kaldilm, if not, please install + # it using: pip install kaldilm + + mkdir -p data/lm + if [ ! -f data/lm/G_3_gram.fst.txt ]; then + # It is used in building HLG + python3 -m kaldilm \ + --read-symbol-table="data/lang_character/words.txt" \ + --disambig-symbol='#0' \ + --max-order=3 \ + $dl_dir/lm/lm_3_gram.arpa > data/lm/G_3_gram.fst.txt + fi + + if [ ! -f data/lm/G_4_gram.fst.txt ]; then + # It is used for LM rescoring + python3 -m kaldilm \ + --read-symbol-table="data/lang_character/words.txt" \ + --disambig-symbol='#0' \ + --max-order=4 \ + $dl_dir/lm/lm_4_gram.arpa > data/lm/G_4_gram.fst.txt + fi +fi + +if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then + log "Stage 4: Compile HLG" + ./local/compile_hlg.py --lang-dir data/lang_character +fi diff --git a/egs/grid/AVSR/shared b/egs/grid/AVSR/shared new file mode 100644 index 000000000..4c5e91438 --- /dev/null +++ b/egs/grid/AVSR/shared @@ -0,0 +1 @@ +../../../icefall/shared/ \ No newline at end of file From 85aacf481324e0ab9ffa233b543f67fd118b62f4 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Wed, 15 Dec 2021 22:26:54 +0800 Subject: [PATCH 06/20] Update prepare.sh --- egs/grid/AVSR/prepare.sh | 11 ++++++++++- 1 file changed, 10 insertions(+), 1 deletion(-) diff --git a/egs/grid/AVSR/prepare.sh b/egs/grid/AVSR/prepare.sh index 5e7f9ed74..1db26333f 100644 --- a/egs/grid/AVSR/prepare.sh +++ b/egs/grid/AVSR/prepare.sh @@ -11,7 +11,16 @@ stop_stage=100 # # - $dl_dir/GRID # You can find lip, audio, align_text inside it. -# +# Here, for using easily and running our recipe quickily, +# we provide the processed lip data. +# If you want to know more entails about the original GRID +# dataset, you can have a look about this paper: +# An audio-visual corpus for speech perception and automatic +# speech recognition. +# You can also download the GRID dataset form this url: +# https://zenodo.org/record/3625687#.Ybn7HagzY2w. +# +# # - $dl_dir/lm # This directory contains the language model(LM) downloaded from # https://huggingface.co/luomingshuang/grid_lm. From bdb46c2cd331d4912c0602b57730cdb63957d268 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Wed, 15 Dec 2021 22:39:41 +0800 Subject: [PATCH 07/20] Update prepare.sh --- egs/grid/AVSR/prepare.sh | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/egs/grid/AVSR/prepare.sh b/egs/grid/AVSR/prepare.sh index 1db26333f..97f9eba14 100644 --- a/egs/grid/AVSR/prepare.sh +++ b/egs/grid/AVSR/prepare.sh @@ -19,7 +19,12 @@ stop_stage=100 # speech recognition. # You can also download the GRID dataset form this url: # https://zenodo.org/record/3625687#.Ybn7HagzY2w. -# +# +# - audio_25k +# - lip +# - GRID_align_txt +# - unseen_train.txt +# - unseen_val.txt # # - $dl_dir/lm # This directory contains the language model(LM) downloaded from From e8ad083cf76a3058e1270062a108077a5224909c Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Wed, 15 Dec 2021 22:41:40 +0800 Subject: [PATCH 08/20] Update prepare.sh --- egs/grid/AVSR/prepare.sh | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/egs/grid/AVSR/prepare.sh b/egs/grid/AVSR/prepare.sh index 97f9eba14..671ddf0d7 100644 --- a/egs/grid/AVSR/prepare.sh +++ b/egs/grid/AVSR/prepare.sh @@ -11,7 +11,7 @@ stop_stage=100 # # - $dl_dir/GRID # You can find lip, audio, align_text inside it. -# Here, for using easily and running our recipe quickily, +# Here, for using easily and running our recipe quickly, # we provide the processed lip data. # If you want to know more entails about the original GRID # dataset, you can have a look about this paper: From a5c1bcd58ce701bea8e7c65c86cf477fbd9de391 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Wed, 15 Dec 2021 23:29:37 +0800 Subject: [PATCH 09/20] Update prepare.sh --- egs/grid/AVSR/prepare.sh | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/egs/grid/AVSR/prepare.sh b/egs/grid/AVSR/prepare.sh index 671ddf0d7..14f4f12d2 100644 --- a/egs/grid/AVSR/prepare.sh +++ b/egs/grid/AVSR/prepare.sh @@ -103,8 +103,8 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then wget -P $dl_dir/GRID https://huggingface.co/datasets/luomingshuang/GRID_text/resolve/main/unseen_val.txt fi -if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then - log "Stage 2: Prepare character-based lang" +if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then + log "Stage 1: Prepare character-based lang" lang_dir=data/lang_character mkdir -p $lang_dir @@ -118,8 +118,8 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then fi fi -if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then - log "Stage 3: Prepare G" +if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then + log "Stage 2: Prepare G" # We assume you have installed kaldilm, if not, please install # it using: pip install kaldilm @@ -143,7 +143,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then fi fi -if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then - log "Stage 4: Compile HLG" +if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then + log "Stage 3: Compile HLG" ./local/compile_hlg.py --lang-dir data/lang_character fi From 27bfcc4ea81914f94110bf02bb707e1c3432c9c9 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Mon, 20 Dec 2021 15:13:41 +0800 Subject: [PATCH 10/20] Add grid ASR task results --- egs/grid/AVSR/audionet_ctc_asr/__init__.py | 0 egs/grid/AVSR/audionet_ctc_asr/decode.py | 504 +++++++++++++++++ egs/grid/AVSR/audionet_ctc_asr/model.py | 111 ++++ egs/grid/AVSR/audionet_ctc_asr/train.py | 612 +++++++++++++++++++++ egs/grid/AVSR/audionet_ctc_asr/utils.py | 51 ++ egs/grid/AVSR/local/dataset_audio.py | 83 +++ 6 files changed, 1361 insertions(+) create mode 100644 egs/grid/AVSR/audionet_ctc_asr/__init__.py create mode 100644 egs/grid/AVSR/audionet_ctc_asr/decode.py create mode 100644 egs/grid/AVSR/audionet_ctc_asr/model.py create mode 100644 egs/grid/AVSR/audionet_ctc_asr/train.py create mode 100644 egs/grid/AVSR/audionet_ctc_asr/utils.py create mode 100644 egs/grid/AVSR/local/dataset_audio.py diff --git a/egs/grid/AVSR/audionet_ctc_asr/__init__.py b/egs/grid/AVSR/audionet_ctc_asr/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/egs/grid/AVSR/audionet_ctc_asr/decode.py b/egs/grid/AVSR/audionet_ctc_asr/decode.py new file mode 100644 index 000000000..3c0abf960 --- /dev/null +++ b/egs/grid/AVSR/audionet_ctc_asr/decode.py @@ -0,0 +1,504 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang +# Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +from utils import encode_supervisions + +import k2 +import torch +import torch.nn as nn + +from torch.utils.data import DataLoader +from local.dataset_audio import MyDataset +from model import TdnnLstm + +from icefall.checkpoint import average_checkpoints, load_checkpoint +from icefall.decode import ( + get_lattice, + nbest_decoding, + one_best_decoding, + rescore_with_n_best_list, + rescore_with_whole_lattice, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + get_texts, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=19, + help="It specifies the checkpoint to use for decoding." + "Note: Epoch counts from 0.", + ) + parser.add_argument( + "--avg", + type=int, + default=5, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch'. ", + ) + parser.add_argument( + "--method", + type=str, + default="whole-lattice-rescoring", + help="""Decoding method. + Supported values are: + - (1) 1best. Extract the best path from the decoding lattice as the + decoding result. + - (2) nbest. Extract n paths from the decoding lattice; the path + with the highest score is the decoding result. + - (3) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an n-gram LM (e.g., a 4-gram LM), the path with + the highest score is the decoding result. + - (4) whole-lattice-rescoring. Rescore the decoding lattice with an + n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice + is the decoding result. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help="""Number of paths for n-best based decoding method. + Used only when "method" is one of the following values: + nbest, nbest-rescoring + """, + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""The scale to be applied to `lattice.scores`. + It's needed if you use any kinds of n-best based rescoring. + Used only when "method" is one of the following values: + nbest, nbest-rescoring + A smaller value results in more unique paths. + """, + ) + + parser.add_argument( + "--export", + type=str2bool, + default=False, + help="""When enabled, the averaged model is saved to + tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved. + pretrained.pt contains a dict {"model": model.state_dict()}, + which can be loaded by `icefall.checkpoint.load_checkpoint()`. + """, + ) + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + "exp_dir": Path("audionet_ctc_asr/exp"), + "lang_dir": Path("data/lang_character"), + "lm_dir": Path("data/lm"), + "feature_dim": 80, + "subsampling_factor": 3, + "search_beam": 20, + "output_beam": 5, + "min_active_states": 30, + "max_active_states": 10000, + "use_double_scores": True, + # parameters for dataset + "video_path": Path("download/GRID/lip/"), + "anno_path": Path("download/GRID/GRID_align_txt"), + "val_list": Path("download/GRID/unseen_val.txt"), + "aud_padding": 200, + "num_workers": 1, + "batch_size": 120, + } + ) + return params + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + HLG: k2.Fsa, + batch: dict, + lexicon: Lexicon, + G: Optional[k2.Fsa] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if no rescoring is used, the key is the string `no_rescore`. + If LM rescoring is used, the key is the string `lm_scale_xxx`, + where `xxx` is the value of `lm_scale`. An example key is + `lm_scale_0.7` + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + + - params.method is "1best", it uses 1best decoding without LM rescoring. + - params.method is "nbest", it uses nbest decoding without LM rescoring. + - params.method is "nbest-rescoring", it uses nbest LM rescoring. + - params.method is "whole-lattice-rescoring", it uses whole lattice LM + rescoring. + + model: + The neural model. + HLG: + The decoding graph. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + lexicon: + It contains word symbol table. + G: + An LM. It is not None when params.method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = HLG.device + feature = batch["aud"] + assert feature.ndim == 3 + feature = feature.to(device) + nnet_output = model(feature.permute(0, 2, 1)) + + nnet_output_shape = nnet_output.size() + supervision_segments, text = encode_supervisions(nnet_output_shape, batch) + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + ) + + if params.method in ["1best", "nbest"]: + if params.method == "1best": + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + key = "no_rescore" + else: + best_path = nbest_decoding( + lattice=lattice, + num_paths=params.num_paths, + use_double_scores=params.use_double_scores, + nbest_scale=params.nbest_scale, + ) + key = f"no_rescore-{params.num_paths}" + hyps = get_texts(best_path) + hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps] + return {key: hyps} + + assert params.method in ["nbest-rescoring", "whole-lattice-rescoring"] + + lm_scale_list = [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09] + lm_scale_list += [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] + lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3] + lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] + + if params.method == "nbest-rescoring": + best_path_dict = rescore_with_n_best_list( + lattice=lattice, + G=G, + num_paths=params.num_paths, + lm_scale_list=lm_scale_list, + nbest_scale=params.nbest_scale, + ) + else: + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=lm_scale_list, + ) + + ans = dict() + for lm_scale_str, best_path in best_path_dict.items(): + hyps = get_texts(best_path) + hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps] + ans[lm_scale_str] = hyps + return ans + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + HLG: k2.Fsa, + lexicon: Lexicon, + G: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + HLG: + The decoding graph. + lexicon: + It contains word symbol table. + G: + An LM. It is not None when params.method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return a dict, whose key may be "no-rescore" if no LM rescoring + is used, or it may be "lm_scale_0.7" if LM rescoring is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + results = [] + + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["txt"] + hyps_dict = decode_one_batch( + params=params, + model=model, + HLG=HLG, + batch=batch, + lexicon=lexicon, + G=G, + ) + + for lm_scale, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for hyp_words, ref_text in zip(hyps, texts): + ref_words = ref_text.split() + this_batch.append((ref_words, hyp_words)) + + results[lm_scale].extend(this_batch) + + num_cuts += len(batch["txt"]) + + if batch_idx % 10 == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info( + f"batch {batch_str}, cuts processed until now is {num_cuts}" + ) + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[List[int], List[int]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt" + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out PERs, per-phone error statistics and aligned + # ref/hyp pairs. + errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt" + with open(errs_filename, "w") as f: + wer = write_error_stats(f, f"{test_set_name}-{key}", results) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = params.exp_dir / f"per-summary-{test_set_name}.txt" + with open(errs_info, "w") as f: + print("settings\tPER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, PER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + params.update(vars(args)) + + setup_logger(f"{params.exp_dir}/log/log-decode") + logging.info("Decoding started") + logging.info(params) + + lexicon = Lexicon(params.lang_dir) + max_token_id = max(lexicon.tokens) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + HLG = k2.Fsa.from_dict( + torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu") + ) + + HLG = HLG.to(device) + assert HLG.requires_grad is False + + if not hasattr(HLG, "lm_scores"): + HLG.lm_scores = HLG.scores.clone() + + if params.method in ["nbest-rescoring", "whole-lattice-rescoring"]: + if not (params.lm_dir / "G_4_gram.pt").is_file(): + logging.info("Loading G_4_gram.fst.txt") + logging.warning("It may take 8 minutes.") + with open(params.lm_dir / "G_4_gram.fst.txt") as f: + first_word_disambig_id = lexicon.word_table["#0"] + + G = k2.Fsa.from_openfst(f.read(), acceptor=False) + # G.aux_labels is not needed in later computations, so + # remove it here. + del G.aux_labels + # CAUTION: The following line is crucial. + # Arcs entering the back-off state have label equal to #0. + # We have to change it to 0 here. + G.labels[G.labels >= first_word_disambig_id] = 0 + G = k2.Fsa.from_fsas([G]).to(device) + G = k2.arc_sort(G) + torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt") + else: + logging.info("Loading pre-compiled G_4_gram.pt") + d = torch.load(params.lm_dir / "G_4_gram.pt", map_location="cpu") + G = k2.Fsa.from_dict(d).to(device) + + if params.method == "whole-lattice-rescoring": + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + G = G.to(device) + + # G.lm_scores is used to replace HLG.lm_scores during + # LM rescoring. + G.lm_scores = G.scores.clone() + else: + G = None + + model = TdnnLstm( + num_features=params.feature_dim, + num_classes=max_token_id + 1, # +1 for the blank symbol + subsampling_factor=params.subsampling_factor, + ) + if params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if start >= 0: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.load_state_dict(average_checkpoints(filenames)) + + if params.export: + logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt") + torch.save( + {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt" + ) + return + + model.to(device) + model.eval() + + grid = MyDataset( + params.video_path, + params.anno_path, + params.val_list, + params.aud_padding, + "test", + 16000, + params.feature_dim, + ) + test_dl = DataLoader( + grid, + batch_size=params.batch_size, + shuffle=False, + num_workers=params.num_workers, + drop_last=False, + ) + test_set = "test" + + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + HLG=HLG, + lexicon=lexicon, + G=G, + ) + + save_results( + params=params, test_set_name=test_set, results_dict=results_dict + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/grid/AVSR/audionet_ctc_asr/model.py b/egs/grid/AVSR/audionet_ctc_asr/model.py new file mode 100644 index 000000000..8f9969ec0 --- /dev/null +++ b/egs/grid/AVSR/audionet_ctc_asr/model.py @@ -0,0 +1,111 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import torch +import torch.nn as nn + + +class TdnnLstm(nn.Module): + def __init__( + self, num_features: int, num_classes: int, subsampling_factor: int = 3 + ) -> None: + """ + Args: + num_features: + The input dimension of the model. + num_classes: + The output dimension of the model. + subsampling_factor: + It reduces the number of output frames by this factor. + """ + super().__init__() + self.num_features = num_features + self.num_classes = num_classes + self.subsampling_factor = subsampling_factor + self.tdnn = nn.Sequential( + nn.Conv1d( + in_channels=num_features, + out_channels=512, + kernel_size=3, + stride=1, + padding=1, + ), + nn.ReLU(inplace=True), + nn.BatchNorm1d(num_features=512, affine=False), + nn.Conv1d( + in_channels=512, + out_channels=512, + kernel_size=3, + stride=1, + padding=1, + ), + nn.ReLU(inplace=True), + nn.BatchNorm1d(num_features=512, affine=False), + nn.Conv1d( + in_channels=512, + out_channels=512, + kernel_size=3, + # stride=self.subsampling_factor, # stride: subsampling_factor! + stride=1, + padding=1, + ), + nn.ReLU(inplace=True), + nn.BatchNorm1d(num_features=512, affine=False), + nn.Conv1d( + in_channels=512, + out_channels=512, + kernel_size=3, + stride=self.subsampling_factor, # stride: subsampling_factor! + ), + nn.ReLU(inplace=True), + nn.BatchNorm1d(num_features=512, affine=False), + ) + self.lstms = nn.ModuleList( + [ + nn.LSTM(input_size=512, hidden_size=512, num_layers=1) + for _ in range(4) + ] + ) + self.lstm_bnorms = nn.ModuleList( + [nn.BatchNorm1d(num_features=512, affine=False) for _ in range(5)] + ) + self.dropout = nn.Dropout(0.2) + self.linear = nn.Linear(in_features=512, out_features=self.num_classes) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Args: + x: + Its shape is [N, C, T] + Returns: + The output tensor has shape [N, T, C] + """ + x = self.tdnn(x) + x = x.permute(2, 0, 1) # (N, C, T) -> (T, N, C) -> how LSTM expects it + for lstm, bnorm in zip(self.lstms, self.lstm_bnorms): + x_new, _ = lstm(x) + x_new = bnorm(x_new.permute(1, 2, 0)).permute( + 2, 0, 1 + ) # (T, N, C) -> (N, C, T) -> (T, N, C) + x_new = self.dropout(x_new) + x = x_new + x # skip connections + x = x.transpose( + 1, 0 + ) # (T, N, C) -> (N, T, C) -> linear expects "features" in the last dim + x = self.linear(x) + x = nn.functional.log_softmax(x, dim=-1) + return x diff --git a/egs/grid/AVSR/audionet_ctc_asr/train.py b/egs/grid/AVSR/audionet_ctc_asr/train.py new file mode 100644 index 000000000..1ebc1aa11 --- /dev/null +++ b/egs/grid/AVSR/audionet_ctc_asr/train.py @@ -0,0 +1,612 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang +# Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +from pathlib import Path +from shutil import copyfile +from typing import Optional, Tuple + +from utils import encode_supervisions + +import k2 +import torch +import torch.multiprocessing as mp +import torch.nn as nn +import torch.optim as optim +from torch.utils.data import DataLoader + +from local.dataset_audio import MyDataset +from lhotse.utils import fix_random_seed +from model import TdnnLstm +from torch import Tensor +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.nn.utils import clip_grad_norm_ +from torch.optim.lr_scheduler import StepLR +from torch.utils.tensorboard import SummaryWriter + +from icefall.checkpoint import load_checkpoint +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.dist import cleanup_dist, setup_dist +from icefall.graph_compiler import CtcTrainingGraphCompiler +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + MetricsTracker, + get_env_info, + setup_logger, + str2bool, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=0, + help="""Resume training from from this epoch. + If it is positive, it will load checkpoint from + audionet_ctc_asr/exp/epoch-{start_epoch-1}.pt + """, + ) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + is saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - exp_dir: It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + + - lang_dir: It contains language related input files such as + "lexicon.txt" + + - lr: It specifies the initial learning rate + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - weight_decay: The weight_decay for the optimizer. + + - subsampling_factor: The subsampling factor for the model. + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval` is 0 + + - beam_size: It is used in k2.ctc_loss + + - reduction: It is used in k2.ctc_loss + + - use_double_scores: It is used in k2.ctc_loss + """ + params = AttributeDict( + { + "exp_dir": Path("audionet_ctc_asr/exp"), + "lang_dir": Path("data/lang_character"), + "lr": 4e-4, + "feature_dim": 80, + "weight_decay": 5e-4, + "subsampling_factor": 3, + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 1, + "reset_interval": 200, + "valid_interval": 1000, + "beam_size": 10, + "reduction": "sum", + "use_double_scores": True, + "env_info": get_env_info(), + # parameters for dataset + "video_path": Path("download/GRID/lip/"), + "anno_path": Path("download/GRID/GRID_align_txt"), + "train_list": Path("download/GRID/unseen_train.txt"), + "aud_padding": 200, + "num_workers": 1, + "batch_size": 120, + } + ) + + return params + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, +) -> None: + """Load checkpoint from file. + + If params.start_epoch is positive, it will load the checkpoint from + `params.start_epoch - 1`. Otherwise, this function does nothing. + + Apart from loading state dict for `model`, `optimizer` and `scheduler`, + it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + optimizer: + The optimizer that we are using. + scheduler: + The learning rate scheduler we are using. + Returns: + Return None. + """ + if params.start_epoch <= 0: + return + + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + saved_params = load_checkpoint( + filename, + model=model, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: nn.Module, + optimizer: torch.optim.Optimizer, + scheduler: torch.optim.lr_scheduler._LRScheduler, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + params=params, + optimizer=optimizer, + scheduler=scheduler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: nn.Module, + batch: dict, + graph_compiler: CtcTrainingGraphCompiler, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute CTC loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of TdnnLstm in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + graph_compiler: + It is used to build a decoding graph from a ctc topo and training + transcript. The training transcript is contained in the given `batch`, + while the ctc topo is built when this compiler is instantiated. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + """ + device = graph_compiler.device + feature = batch["aud"] + feature = feature.permute(0, 2, 1) # now feature size is (N, C, T) + assert feature.ndim == 3 + feature = feature.to(device) + with torch.set_grad_enabled(is_training): + nnet_output = model(feature) # nnet_output size is (N, T, C) + + # NOTE: We need `encode_supervisions` to sort sequences with + # different duration in decreasing order, required by + # `k2.intersect_dense` called in `k2.ctc_loss` + supervision_segments, texts = encode_supervisions(nnet_output.size(), batch) + + decoding_graph = graph_compiler.compile(texts) + dense_fsa_vec = k2.DenseFsaVec( + nnet_output, + supervision_segments, + allow_truncate=params.subsampling_factor - 1, + ) + loss = k2.ctc_loss( + decoding_graph=decoding_graph, + dense_fsa_vec=dense_fsa_vec, + output_beam=params.beam_size, + reduction=params.reduction, + use_double_scores=params.use_double_scores, + ) + assert loss.requires_grad == is_training + + info = MetricsTracker() + info["frames"] = supervision_segments[:, 2].sum().item() + info["loss"] = loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: nn.Module, + graph_compiler: CtcTrainingGraphCompiler, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process. The validation loss + is saved in `params.valid_loss`. + """ + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + batch=batch, + graph_compiler=graph_compiler, + is_training=False, + ) + assert loss.requires_grad is False + + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: nn.Module, + optimizer: torch.optim.Optimizer, + graph_compiler: CtcTrainingGraphCompiler, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + graph_compiler: + It is used to convert transcripts to FSAs. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + """ + model.train() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(train_dl): + params.batch_idx_train += 1 + batch_size = len(batch["txt"]) + + loss, loss_info = compute_loss( + params=params, + model=model, + batch=batch, + graph_compiler=graph_compiler, + is_training=True, + ) + # summary stats. + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + optimizer.zero_grad() + loss.backward() + clip_grad_norm_(model.parameters(), 5.0, 2.0) + optimizer.step() + + if batch_idx % params.log_interval == 0: + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}" + ) + if batch_idx % params.log_interval == 0: + + if tb_writer is not None: + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary( + tb_writer, "train/tot_", params.batch_idx_train + ) + + if batch_idx > 0 and batch_idx % params.valid_interval == 0: + valid_info = compute_validation_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation {valid_info}") + if tb_writer is not None: + valid_info.write_summary( + tb_writer, + "train/valid_", + params.batch_idx_train, + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + + fix_random_seed(42) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + logging.info(params) + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + lexicon = Lexicon(params.lang_dir) + max_token_id = max(lexicon.tokens) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + + graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device) + + model = TdnnLstm( + num_features=params.feature_dim, + num_classes=max_token_id + 1, # +1 for the blank symbol + subsampling_factor=params.subsampling_factor, + ) + checkpoints = load_checkpoint_if_available(params=params, model=model) + + model.to(device) + if world_size > 1: + model = DDP(model, device_ids=[rank]) + + optimizer = optim.AdamW( + model.parameters(), + lr=params.lr, + weight_decay=params.weight_decay, + ) + scheduler = StepLR(optimizer, step_size=10, gamma=0.8) + + if checkpoints: + optimizer.load_state_dict(checkpoints["optimizer"]) + scheduler.load_state_dict(checkpoints["scheduler"]) + + grid = MyDataset( + params.video_path, + params.anno_path, + params.train_list, + params.vid_padding, + "train", + 16000, + params.feature_dim, + ) + + train_dl = DataLoader( + grid, + batch_size=params.batch_size, + shuffle=True, + num_workers=params.num_workers, + drop_last=False, + ) + valid_dl = train_dl + + for epoch in range(params.start_epoch, params.num_epochs): + # train_dl.sampler.set_epoch(epoch) + + if epoch > params.start_epoch: + logging.info(f"epoch {epoch}, lr: {scheduler.get_last_lr()[0]}") + + if tb_writer is not None: + tb_writer.add_scalar( + "train/lr", + scheduler.get_last_lr()[0], + params.batch_idx_train, + ) + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + optimizer=optimizer, + graph_compiler=graph_compiler, + train_dl=train_dl, + valid_dl=valid_dl, + tb_writer=tb_writer, + world_size=world_size, + ) + + scheduler.step() + + if epoch % 1 == 0: + save_checkpoint( + params=params, + model=model, + optimizer=optimizer, + scheduler=scheduler, + rank=rank, + ) + + logging.info("Done!") + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def main(): + parser = get_parser() + # TimitAsrDataModule.add_arguments(parser) + args = parser.parse_args() + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +if __name__ == "__main__": + main() diff --git a/egs/grid/AVSR/audionet_ctc_asr/utils.py b/egs/grid/AVSR/audionet_ctc_asr/utils.py new file mode 100644 index 000000000..dbe01bb25 --- /dev/null +++ b/egs/grid/AVSR/audionet_ctc_asr/utils.py @@ -0,0 +1,51 @@ +# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo) +# +# See ../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch + + +def encode_supervisions(nnet_output_shape, batch): + """ + Encodes Lhotse's ``batch["supervisions"]`` dict into + a pair of torch Tensor, and a list of transcription strings. + + The supervision tensor has shape ``(batch_size, 3)``. + Its second dimension contains information about sequence index [0], + start frames [1] and num frames [2]. + + The batch items might become re-ordered during this operation -- the + returned tensor and list of strings are guaranteed to be consistent with + each other. + """ + N, T, D = nnet_output_shape + + supervisions_idx = torch.arange(0, N).to(torch.int32) + start_frames = [0 for _ in range(N)] + supervisions_start_frame = torch.tensor(start_frames).to(torch.int32) + num_frames = [T for _ in range(N)] + supervisions_num_frames = torch.tensor(num_frames).to(torch.int32) + + supervision_segments = torch.stack( + ( + supervisions_idx, + supervisions_start_frame, + supervisions_num_frames, + ), + 1, + ).to(torch.int32) + texts = batch["txt"] + + return supervision_segments, texts diff --git a/egs/grid/AVSR/local/dataset_audio.py b/egs/grid/AVSR/local/dataset_audio.py new file mode 100644 index 000000000..eca6f1c55 --- /dev/null +++ b/egs/grid/AVSR/local/dataset_audio.py @@ -0,0 +1,83 @@ +# encoding: utf-8 +import os +import kaldifeat +import numpy as np + +import torch +import torchaudio +from torch.utils.data import Dataset + + +class MyDataset(Dataset): + def __init__( + self, + video_path, + anno_path, + file_list, + aud_padding, + phase, + sample_rate, + feature_dim, + ): + self.anno_path = anno_path + self.aud_padding = aud_padding + self.phase = phase + self.sample_rate = sample_rate + self.feature_dim = feature_dim + with open(file_list, "r") as f: + self.videos = [ + os.path.join(video_path, line.strip()) for line in f.readlines() + ] + + self.data = [] + for vid in self.videos: + items = vid.split(os.path.sep) + aud = ( + vid.replace("lip", "audio_25k").replace("/video/mpg_6000", "") + + ".wav" + ) + self.data.append((aud, items[-4], items[-1])) + + def __getitem__(self, idx): + (aud, spk, name) = self.data[idx] + aud = self._load_aud(aud) + aud = self._padding(aud, self.aud_padding) + anno = self._load_anno( + os.path.join(self.anno_path, spk, "align", name + ".align") + ) + + return { + "aud": torch.FloatTensor(aud), + "txt": anno.upper(), + } + + def __len__(self): + return len(self.data) + + def _load_aud(self, filename): + opts = kaldifeat.FbankOptions() + opts.device = "cpu" + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = self.sample_rate + opts.mel_opts.num_bins = self.feature_dim + fbank = kaldifeat.Fbank(opts) + wave, sr = torchaudio.load(filename) + wave = wave[0] + features = fbank(wave) + return features + + def _load_anno(self, name): + with open(name, "r") as f: + lines = [line.strip().split(" ") for line in f.readlines()] + txt = [line[2] for line in lines] + txt = list(filter(lambda s: not s.upper() in ["SIL", "SP"], txt)) + txt = " ".join(txt) + return txt + + def _padding(self, array, length): + array = [array[_] for _ in range(array.shape[0])] + size = array[0].shape + for i in range(length - len(array)): + array.append(np.zeros(size)) + return np.stack(array, axis=0) From a9abcc5fda3c01f8fef1635cadd9ba931c9246e4 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Wed, 22 Dec 2021 11:20:41 +0800 Subject: [PATCH 11/20] Add grid AVSR task results --- egs/grid/AVSR/audionet_ctc_asr/decode.py | 17 +- egs/grid/AVSR/audionet_ctc_asr/model.py | 2 +- egs/grid/AVSR/audionet_ctc_asr/train.py | 19 +- egs/grid/AVSR/combinenet_ctc_avsr/__init__.py | 0 egs/grid/AVSR/combinenet_ctc_avsr/decode.py | 514 ++++++++++++++ egs/grid/AVSR/combinenet_ctc_avsr/model.py | 176 +++++ egs/grid/AVSR/combinenet_ctc_avsr/train.py | 625 ++++++++++++++++++ egs/grid/AVSR/combinenet_ctc_avsr/utils.py | 51 ++ egs/grid/AVSR/lipnet_ctc_vsr/decode.py | 4 +- egs/grid/AVSR/lipnet_ctc_vsr/train.py | 4 +- egs/grid/AVSR/local/dataset_audio.py | 6 +- egs/grid/AVSR/local/dataset_av.py | 111 ++++ .../local/{dataset.py => dataset_visual.py} | 8 +- 13 files changed, 1508 insertions(+), 29 deletions(-) create mode 100644 egs/grid/AVSR/combinenet_ctc_avsr/__init__.py create mode 100644 egs/grid/AVSR/combinenet_ctc_avsr/decode.py create mode 100644 egs/grid/AVSR/combinenet_ctc_avsr/model.py create mode 100644 egs/grid/AVSR/combinenet_ctc_avsr/train.py create mode 100644 egs/grid/AVSR/combinenet_ctc_avsr/utils.py create mode 100644 egs/grid/AVSR/local/dataset_av.py rename egs/grid/AVSR/local/{dataset.py => dataset_visual.py} (94%) diff --git a/egs/grid/AVSR/audionet_ctc_asr/decode.py b/egs/grid/AVSR/audionet_ctc_asr/decode.py index 3c0abf960..7a80c70e0 100644 --- a/egs/grid/AVSR/audionet_ctc_asr/decode.py +++ b/egs/grid/AVSR/audionet_ctc_asr/decode.py @@ -30,8 +30,8 @@ import torch import torch.nn as nn from torch.utils.data import DataLoader -from local.dataset_audio import MyDataset -from model import TdnnLstm +from local.dataset_audio import dataset_audio +from model import AudioNet from icefall.checkpoint import average_checkpoints, load_checkpoint from icefall.decode import ( @@ -143,8 +143,9 @@ def get_params() -> AttributeDict: "video_path": Path("download/GRID/lip/"), "anno_path": Path("download/GRID/GRID_align_txt"), "val_list": Path("download/GRID/unseen_val.txt"), - "aud_padding": 200, - "num_workers": 1, + "aud_padding": 480, + "sample_rate": 16000, + "num_workers": 16, "batch_size": 120, } ) @@ -440,7 +441,7 @@ def main(): else: G = None - model = TdnnLstm( + model = AudioNet( num_features=params.feature_dim, num_classes=max_token_id + 1, # +1 for the blank symbol subsampling_factor=params.subsampling_factor, @@ -466,14 +467,14 @@ def main(): model.to(device) model.eval() - grid = MyDataset( + grid = dataset_audio( params.video_path, params.anno_path, params.val_list, params.aud_padding, - "test", - 16000, + params.sample_rate, params.feature_dim, + "test", ) test_dl = DataLoader( grid, diff --git a/egs/grid/AVSR/audionet_ctc_asr/model.py b/egs/grid/AVSR/audionet_ctc_asr/model.py index 8f9969ec0..0bb05a7ba 100644 --- a/egs/grid/AVSR/audionet_ctc_asr/model.py +++ b/egs/grid/AVSR/audionet_ctc_asr/model.py @@ -19,7 +19,7 @@ import torch import torch.nn as nn -class TdnnLstm(nn.Module): +class AudioNet(nn.Module): def __init__( self, num_features: int, num_classes: int, subsampling_factor: int = 3 ) -> None: diff --git a/egs/grid/AVSR/audionet_ctc_asr/train.py b/egs/grid/AVSR/audionet_ctc_asr/train.py index 1ebc1aa11..a0e2a002e 100644 --- a/egs/grid/AVSR/audionet_ctc_asr/train.py +++ b/egs/grid/AVSR/audionet_ctc_asr/train.py @@ -32,9 +32,9 @@ import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader -from local.dataset_audio import MyDataset +from local.dataset_audio import dataset_audio from lhotse.utils import fix_random_seed -from model import TdnnLstm +from model import AudioNet from torch import Tensor from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.utils import clip_grad_norm_ @@ -179,8 +179,9 @@ def get_params() -> AttributeDict: "video_path": Path("download/GRID/lip/"), "anno_path": Path("download/GRID/GRID_align_txt"), "train_list": Path("download/GRID/unseen_train.txt"), - "aud_padding": 200, - "num_workers": 1, + "aud_padding": 480, + "sample_rate": 16000, + "num_workers": 16, "batch_size": 120, } ) @@ -510,7 +511,7 @@ def run(rank, world_size, args): graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device) - model = TdnnLstm( + model = AudioNet( num_features=params.feature_dim, num_classes=max_token_id + 1, # +1 for the blank symbol subsampling_factor=params.subsampling_factor, @@ -532,14 +533,14 @@ def run(rank, world_size, args): optimizer.load_state_dict(checkpoints["optimizer"]) scheduler.load_state_dict(checkpoints["scheduler"]) - grid = MyDataset( + grid = dataset_audio( params.video_path, params.anno_path, params.train_list, - params.vid_padding, - "train", - 16000, + params.aud_padding, + params.sample_rate, params.feature_dim, + "train", ) train_dl = DataLoader( diff --git a/egs/grid/AVSR/combinenet_ctc_avsr/__init__.py b/egs/grid/AVSR/combinenet_ctc_avsr/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/egs/grid/AVSR/combinenet_ctc_avsr/decode.py b/egs/grid/AVSR/combinenet_ctc_avsr/decode.py new file mode 100644 index 000000000..5b6b9647d --- /dev/null +++ b/egs/grid/AVSR/combinenet_ctc_avsr/decode.py @@ -0,0 +1,514 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang +# Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +from utils import encode_supervisions + +import k2 +import torch +import torch.nn as nn + +from torch.utils.data import DataLoader +from local.dataset_av import dataset_av +from model import CombineNet + +from icefall.checkpoint import average_checkpoints, load_checkpoint +from icefall.decode import ( + get_lattice, + nbest_decoding, + one_best_decoding, + rescore_with_n_best_list, + rescore_with_whole_lattice, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + get_texts, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=19, + help="It specifies the checkpoint to use for decoding." + "Note: Epoch counts from 0.", + ) + parser.add_argument( + "--avg", + type=int, + default=5, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch'. ", + ) + parser.add_argument( + "--method", + type=str, + default="whole-lattice-rescoring", + help="""Decoding method. + Supported values are: + - (1) 1best. Extract the best path from the decoding lattice as the + decoding result. + - (2) nbest. Extract n paths from the decoding lattice; the path + with the highest score is the decoding result. + - (3) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an n-gram LM (e.g., a 4-gram LM), the path with + the highest score is the decoding result. + - (4) whole-lattice-rescoring. Rescore the decoding lattice with an + n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice + is the decoding result. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help="""Number of paths for n-best based decoding method. + Used only when "method" is one of the following values: + nbest, nbest-rescoring + """, + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""The scale to be applied to `lattice.scores`. + It's needed if you use any kinds of n-best based rescoring. + Used only when "method" is one of the following values: + nbest, nbest-rescoring + A smaller value results in more unique paths. + """, + ) + + parser.add_argument( + "--export", + type=str2bool, + default=False, + help="""When enabled, the averaged model is saved to + tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved. + pretrained.pt contains a dict {"model": model.state_dict()}, + which can be loaded by `icefall.checkpoint.load_checkpoint()`. + """, + ) + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + "exp_dir": Path("combinenet_ctc_avsr/exp"), + "lang_dir": Path("data/lang_character"), + "lm_dir": Path("data/lm"), + "feature_dim": 80, + "subsampling_factor": 3, + "search_beam": 20, + "output_beam": 5, + "min_active_states": 30, + "max_active_states": 10000, + "use_double_scores": True, + # parameters for dataset + "video_path": Path("download/GRID/lip/"), + "anno_path": Path("download/GRID/GRID_align_txt"), + "val_list": Path("download/GRID/unseen_val.txt"), + "vid_padding": 75, + "aud_padding": 450, + "sample_rate": 16000, + "num_workers": 16, + "batch_size": 120, + } + ) + return params + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + HLG: k2.Fsa, + batch: dict, + lexicon: Lexicon, + G: Optional[k2.Fsa] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if no rescoring is used, the key is the string `no_rescore`. + If LM rescoring is used, the key is the string `lm_scale_xxx`, + where `xxx` is the value of `lm_scale`. An example key is + `lm_scale_0.7` + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + + - params.method is "1best", it uses 1best decoding without LM rescoring. + - params.method is "nbest", it uses nbest decoding without LM rescoring. + - params.method is "nbest-rescoring", it uses nbest LM rescoring. + - params.method is "whole-lattice-rescoring", it uses whole lattice LM + rescoring. + + model: + The neural model. + HLG: + The decoding graph. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + lexicon: + It contains word symbol table. + G: + An LM. It is not None when params.method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = HLG.device + audio_feature = batch["aud"] + video_feature = batch["vid"] + + audio_feature = audio_feature.permute(0, 2, 1) + assert audio_feature.ndim == 3 + audio_feature = audio_feature.to(device) + + assert video_feature.ndim == 5 + video_feature = video_feature.to(device) + + nnet_output = model(video_feature, audio_feature) + + nnet_output_shape = nnet_output.size() + supervision_segments, text = encode_supervisions(nnet_output_shape, batch) + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + ) + + if params.method in ["1best", "nbest"]: + if params.method == "1best": + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + key = "no_rescore" + else: + best_path = nbest_decoding( + lattice=lattice, + num_paths=params.num_paths, + use_double_scores=params.use_double_scores, + nbest_scale=params.nbest_scale, + ) + key = f"no_rescore-{params.num_paths}" + hyps = get_texts(best_path) + hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps] + return {key: hyps} + + assert params.method in ["nbest-rescoring", "whole-lattice-rescoring"] + + lm_scale_list = [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09] + lm_scale_list += [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] + lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3] + lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] + + if params.method == "nbest-rescoring": + best_path_dict = rescore_with_n_best_list( + lattice=lattice, + G=G, + num_paths=params.num_paths, + lm_scale_list=lm_scale_list, + nbest_scale=params.nbest_scale, + ) + else: + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=lm_scale_list, + ) + + ans = dict() + for lm_scale_str, best_path in best_path_dict.items(): + hyps = get_texts(best_path) + hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps] + ans[lm_scale_str] = hyps + return ans + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + HLG: k2.Fsa, + lexicon: Lexicon, + G: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + HLG: + The decoding graph. + lexicon: + It contains word symbol table. + G: + An LM. It is not None when params.method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return a dict, whose key may be "no-rescore" if no LM rescoring + is used, or it may be "lm_scale_0.7" if LM rescoring is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + results = [] + + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["txt"] + hyps_dict = decode_one_batch( + params=params, + model=model, + HLG=HLG, + batch=batch, + lexicon=lexicon, + G=G, + ) + + for lm_scale, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for hyp_words, ref_text in zip(hyps, texts): + ref_words = ref_text.split() + this_batch.append((ref_words, hyp_words)) + + results[lm_scale].extend(this_batch) + + num_cuts += len(batch["txt"]) + + if batch_idx % 10 == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info( + f"batch {batch_str}, cuts processed until now is {num_cuts}" + ) + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[List[int], List[int]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt" + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out PERs, per-phone error statistics and aligned + # ref/hyp pairs. + errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt" + with open(errs_filename, "w") as f: + wer = write_error_stats(f, f"{test_set_name}-{key}", results) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = params.exp_dir / f"per-summary-{test_set_name}.txt" + with open(errs_info, "w") as f: + print("settings\tPER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, PER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + params.update(vars(args)) + + setup_logger(f"{params.exp_dir}/log/log-decode") + logging.info("Decoding started") + logging.info(params) + + lexicon = Lexicon(params.lang_dir) + max_token_id = max(lexicon.tokens) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + HLG = k2.Fsa.from_dict( + torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu") + ) + + HLG = HLG.to(device) + assert HLG.requires_grad is False + + if not hasattr(HLG, "lm_scores"): + HLG.lm_scores = HLG.scores.clone() + + if params.method in ["nbest-rescoring", "whole-lattice-rescoring"]: + if not (params.lm_dir / "G_4_gram.pt").is_file(): + logging.info("Loading G_4_gram.fst.txt") + logging.warning("It may take 8 minutes.") + with open(params.lm_dir / "G_4_gram.fst.txt") as f: + first_word_disambig_id = lexicon.word_table["#0"] + + G = k2.Fsa.from_openfst(f.read(), acceptor=False) + # G.aux_labels is not needed in later computations, so + # remove it here. + del G.aux_labels + # CAUTION: The following line is crucial. + # Arcs entering the back-off state have label equal to #0. + # We have to change it to 0 here. + G.labels[G.labels >= first_word_disambig_id] = 0 + G = k2.Fsa.from_fsas([G]).to(device) + G = k2.arc_sort(G) + torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt") + else: + logging.info("Loading pre-compiled G_4_gram.pt") + d = torch.load(params.lm_dir / "G_4_gram.pt", map_location="cpu") + G = k2.Fsa.from_dict(d).to(device) + + if params.method == "whole-lattice-rescoring": + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + G = G.to(device) + + # G.lm_scores is used to replace HLG.lm_scores during + # LM rescoring. + G.lm_scores = G.scores.clone() + else: + G = None + + model = CombineNet( + num_features=params.feature_dim, + num_classes=max_token_id + 1, # +1 for the blank symbol + subsampling_factor=params.subsampling_factor, + ) + if params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if start >= 0: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.load_state_dict(average_checkpoints(filenames)) + + if params.export: + logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt") + torch.save( + {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt" + ) + return + + model.to(device) + model.eval() + + grid = dataset_av( + params.video_path, + params.anno_path, + params.val_list, + params.feature_dim, + params.vid_padding, + params.aud_padding, + params.sample_rate, + "test", + ) + test_dl = DataLoader( + grid, + batch_size=params.batch_size, + shuffle=False, + num_workers=params.num_workers, + drop_last=False, + ) + test_set = "test" + + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + HLG=HLG, + lexicon=lexicon, + G=G, + ) + + save_results( + params=params, test_set_name=test_set, results_dict=results_dict + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/grid/AVSR/combinenet_ctc_avsr/model.py b/egs/grid/AVSR/combinenet_ctc_avsr/model.py new file mode 100644 index 000000000..9485a14dc --- /dev/null +++ b/egs/grid/AVSR/combinenet_ctc_avsr/model.py @@ -0,0 +1,176 @@ +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import torch +import torch.nn as nn + + +class CombineNet(nn.Module): + def __init__( + self, num_features: int, num_classes: int, subsampling_factor: int = 3 + ) -> None: + """ + Args: + num_features: + The input dimension of the audio encoder. + num_classes: + The output dimension of the combinenet model. + subsampling_factor: + It reduces the number of output frames by this factor. + """ + super().__init__() + self.num_features = num_features + self.num_classes = num_classes + self.subsampling_factor = subsampling_factor + + # the audio encoder + self.audio_encoder = nn.Sequential( + nn.Conv1d( + in_channels=num_features, + out_channels=512, + kernel_size=3, + stride=1, + padding=1, + ), + nn.ReLU(inplace=True), + nn.BatchNorm1d(num_features=512, affine=False), + nn.Conv1d( + in_channels=512, + out_channels=512, + kernel_size=3, + stride=1, + padding=1, + ), + nn.ReLU(inplace=True), + nn.BatchNorm1d(num_features=512, affine=False), + nn.Conv1d( + in_channels=512, + out_channels=512, + kernel_size=3, + # stride=self.subsampling_factor, # stride: subsampling_factor! + stride=1, + padding=1, + ), + nn.ReLU(inplace=True), + nn.BatchNorm1d(num_features=512, affine=False), + nn.Conv1d( + in_channels=512, + out_channels=512, + kernel_size=3, + stride=self.subsampling_factor, # stride: subsampling_factor! + ), + nn.ReLU(inplace=True), + nn.BatchNorm1d(num_features=512, affine=False), + ) + + # the video encoder + self.video_encoder = nn.Sequential( + nn.Conv3d( + in_channels=3, + out_channels=32, + kernel_size=(3, 5, 5), + stride=(1, 2, 2), + padding=(1, 2, 2), + ), + nn.ReLU(inplace=True), + nn.Dropout3d(p=0.1), + nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2)), + nn.Conv3d( + in_channels=32, + out_channels=64, + kernel_size=(3, 5, 5), + stride=(1, 1, 1), + padding=(1, 2, 2), + ), + nn.ReLU(inplace=True), + nn.Dropout3d(p=0.1), + nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2)), + nn.Conv3d( + in_channels=64, + out_channels=96, + kernel_size=(3, 3, 3), + stride=(1, 1, 1), + padding=(1, 1, 1), + ), + nn.ReLU(inplace=True), + nn.Dropout3d(p=0.1), + nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2)), + ) + self.linear_visual = nn.Linear(96 * 4 * 8, 512) + + # the audio-visual combining encoder based on GRU + self.grus = nn.ModuleList( + [ + nn.GRU( + input_size=512 * 2, + hidden_size=512, + num_layers=1, + bidirectional=True, + ) + for _ in range(4) + ] + ) + self.gru_bnorms = nn.ModuleList( + [nn.BatchNorm1d(num_features=1024, affine=False) for _ in range(4)] + ) + self.dropout = nn.Dropout(0.2) + self.linear = nn.Linear( + in_features=512 * 2, out_features=self.num_classes + ) + + def forward(self, x_v, x_a): + """ + Args: + x_v: + Its shape is [N, 3, H, W] + x_a: + Its shape is [N, C, T] + Returns: + The output tensor has shape [N, T, C] + """ + x_v = self.video_encoder(x_v) + x_v = x_v.permute(2, 0, 1, 3, 4).contiguous() + x_v = x_v.view(x_v.size(0), x_v.size(1), -1) + x_v = self.linear_visual(x_v) + x_a = self.audio_encoder(x_a) + + x_v = x_v.permute(1, 0, 2) + x_a = x_a.permute(0, 2, 1) + + # Repeat the visual features + # to cat with the audio features in time axis. + x_v_copy = x_v + x_v_stack = torch.stack((x_v, x_v_copy), dim=2) + x_v = x_v_stack.view( + x_v_stack.size(0), 2 * x_v_stack.size(1), x_v_stack.size(3) + ) + + x = torch.cat((x_v, x_a), dim=2) + x = x.permute(1, 0, 2) # (N, C, T) -> (T, N, C) -> how GRU expects it + for gru, bnorm in zip(self.grus, self.gru_bnorms): + x_new, _ = gru(x) + x_new = bnorm(x_new.permute(1, 2, 0)).permute( + 2, 0, 1 + ) # (T, N, C) -> (N, C, T) -> (T, N, C) + x_new = self.dropout(x_new) + x = x_new + x # skip connections + x = x.transpose( + 1, 0 + ) # (T, N, C) -> (N, T, C) -> linear expects "features" in the last dim + x = self.linear(x) + x = nn.functional.log_softmax(x, dim=-1) + return x diff --git a/egs/grid/AVSR/combinenet_ctc_avsr/train.py b/egs/grid/AVSR/combinenet_ctc_avsr/train.py new file mode 100644 index 000000000..d6cb107f7 --- /dev/null +++ b/egs/grid/AVSR/combinenet_ctc_avsr/train.py @@ -0,0 +1,625 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang +# Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +from pathlib import Path +from shutil import copyfile +from typing import Optional, Tuple + +from utils import encode_supervisions + +import k2 +import torch +import torch.multiprocessing as mp +import torch.nn as nn +import torch.optim as optim +from torch.utils.data import DataLoader + +from local.dataset_av import dataset_av +from lhotse.utils import fix_random_seed +from model import CombineNet +from torch import Tensor +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.nn.utils import clip_grad_norm_ +from torch.optim.lr_scheduler import StepLR +from torch.utils.tensorboard import SummaryWriter + +from icefall.checkpoint import load_checkpoint +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.dist import cleanup_dist, setup_dist +from icefall.graph_compiler import CtcTrainingGraphCompiler +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + MetricsTracker, + get_env_info, + setup_logger, + str2bool, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=0, + help="""Resume training from from this epoch. + If it is positive, it will load checkpoint from + audionet_ctc_asr/exp/epoch-{start_epoch-1}.pt + """, + ) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + is saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - exp_dir: It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + + - lang_dir: It contains language related input files such as + "lexicon.txt" + + - lr: It specifies the initial learning rate + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - weight_decay: The weight_decay for the optimizer. + + - subsampling_factor: The subsampling factor for the model. + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval` is 0 + + - beam_size: It is used in k2.ctc_loss + + - reduction: It is used in k2.ctc_loss + + - use_double_scores: It is used in k2.ctc_loss + """ + params = AttributeDict( + { + "exp_dir": Path("combinenet_ctc_avsr/exp"), + "lang_dir": Path("data/lang_character"), + "lr": 4e-4, + "feature_dim": 80, + "weight_decay": 5e-4, + "subsampling_factor": 3, + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 1, + "reset_interval": 200, + "valid_interval": 1000, + "beam_size": 10, + "reduction": "sum", + "use_double_scores": True, + "env_info": get_env_info(), + # parameters for dataset + "video_path": Path("download/GRID/lip/"), + "anno_path": Path("download/GRID/GRID_align_txt"), + "train_list": Path("download/GRID/unseen_train.txt"), + "vid_padding": 80, + "aud_padding": 480, + "sample_rate": 16000, + "num_workers": 16, + "batch_size": 120, + } + ) + + return params + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, +) -> None: + """Load checkpoint from file. + + If params.start_epoch is positive, it will load the checkpoint from + `params.start_epoch - 1`. Otherwise, this function does nothing. + + Apart from loading state dict for `model`, `optimizer` and `scheduler`, + it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + optimizer: + The optimizer that we are using. + scheduler: + The learning rate scheduler we are using. + Returns: + Return None. + """ + if params.start_epoch <= 0: + return + + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + saved_params = load_checkpoint( + filename, + model=model, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: nn.Module, + optimizer: torch.optim.Optimizer, + scheduler: torch.optim.lr_scheduler._LRScheduler, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + params=params, + optimizer=optimizer, + scheduler=scheduler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: nn.Module, + batch: dict, + graph_compiler: CtcTrainingGraphCompiler, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute CTC loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of TdnnLstm in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + graph_compiler: + It is used to build a decoding graph from a ctc topo and training + transcript. The training transcript is contained in the given `batch`, + while the ctc topo is built when this compiler is instantiated. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + """ + device = graph_compiler.device + audio_feature = batch["aud"] + video_feature = batch["vid"] + + audio_feature = audio_feature.permute( + 0, 2, 1 + ) # now feature size is (N, C, T) + assert audio_feature.ndim == 3 + audio_feature = audio_feature.to(device) + + assert video_feature.ndim == 5 + video_feature = video_feature.to(device) + + with torch.set_grad_enabled(is_training): + nnet_output = model( + video_feature, audio_feature + ) # nnet_output size is (N, T, C) + + # NOTE: We need `encode_supervisions` to sort sequences with + # different duration in decreasing order, required by + # `k2.intersect_dense` called in `k2.ctc_loss` + supervision_segments, texts = encode_supervisions(nnet_output.size(), batch) + + decoding_graph = graph_compiler.compile(texts) + dense_fsa_vec = k2.DenseFsaVec( + nnet_output, + supervision_segments, + allow_truncate=params.subsampling_factor - 1, + ) + loss = k2.ctc_loss( + decoding_graph=decoding_graph, + dense_fsa_vec=dense_fsa_vec, + output_beam=params.beam_size, + reduction=params.reduction, + use_double_scores=params.use_double_scores, + ) + assert loss.requires_grad == is_training + + info = MetricsTracker() + info["frames"] = supervision_segments[:, 2].sum().item() + info["loss"] = loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: nn.Module, + graph_compiler: CtcTrainingGraphCompiler, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process. The validation loss + is saved in `params.valid_loss`. + """ + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + batch=batch, + graph_compiler=graph_compiler, + is_training=False, + ) + assert loss.requires_grad is False + + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: nn.Module, + optimizer: torch.optim.Optimizer, + graph_compiler: CtcTrainingGraphCompiler, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + graph_compiler: + It is used to convert transcripts to FSAs. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + """ + model.train() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(train_dl): + params.batch_idx_train += 1 + batch_size = len(batch["txt"]) + + loss, loss_info = compute_loss( + params=params, + model=model, + batch=batch, + graph_compiler=graph_compiler, + is_training=True, + ) + # summary stats. + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + optimizer.zero_grad() + loss.backward() + clip_grad_norm_(model.parameters(), 5.0, 2.0) + optimizer.step() + + if batch_idx % params.log_interval == 0: + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}" + ) + if batch_idx % params.log_interval == 0: + + if tb_writer is not None: + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary( + tb_writer, "train/tot_", params.batch_idx_train + ) + + if batch_idx > 0 and batch_idx % params.valid_interval == 0: + valid_info = compute_validation_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation {valid_info}") + if tb_writer is not None: + valid_info.write_summary( + tb_writer, + "train/valid_", + params.batch_idx_train, + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + + fix_random_seed(42) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + logging.info(params) + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + lexicon = Lexicon(params.lang_dir) + max_token_id = max(lexicon.tokens) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + + graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device) + + model = CombineNet( + num_features=params.feature_dim, + num_classes=max_token_id + 1, # +1 for the blank symbol + subsampling_factor=params.subsampling_factor, + ) + checkpoints = load_checkpoint_if_available(params=params, model=model) + + model.to(device) + if world_size > 1: + model = DDP(model, device_ids=[rank]) + + optimizer = optim.AdamW( + model.parameters(), + lr=params.lr, + weight_decay=params.weight_decay, + ) + scheduler = StepLR(optimizer, step_size=10, gamma=0.8) + + if checkpoints: + optimizer.load_state_dict(checkpoints["optimizer"]) + scheduler.load_state_dict(checkpoints["scheduler"]) + + grid = dataset_av( + params.video_path, + params.anno_path, + params.train_list, + params.feature_dim, + params.vid_padding, + params.aud_padding, + params.sample_rate, + "train", + ) + + train_dl = DataLoader( + grid, + batch_size=params.batch_size, + shuffle=True, + num_workers=params.num_workers, + drop_last=False, + ) + valid_dl = train_dl + + for epoch in range(params.start_epoch, params.num_epochs): + # train_dl.sampler.set_epoch(epoch) + + if epoch > params.start_epoch: + logging.info(f"epoch {epoch}, lr: {scheduler.get_last_lr()[0]}") + + if tb_writer is not None: + tb_writer.add_scalar( + "train/lr", + scheduler.get_last_lr()[0], + params.batch_idx_train, + ) + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + optimizer=optimizer, + graph_compiler=graph_compiler, + train_dl=train_dl, + valid_dl=valid_dl, + tb_writer=tb_writer, + world_size=world_size, + ) + + scheduler.step() + + if epoch % 1 == 0: + save_checkpoint( + params=params, + model=model, + optimizer=optimizer, + scheduler=scheduler, + rank=rank, + ) + + logging.info("Done!") + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def main(): + parser = get_parser() + # TimitAsrDataModule.add_arguments(parser) + args = parser.parse_args() + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +if __name__ == "__main__": + main() diff --git a/egs/grid/AVSR/combinenet_ctc_avsr/utils.py b/egs/grid/AVSR/combinenet_ctc_avsr/utils.py new file mode 100644 index 000000000..dbe01bb25 --- /dev/null +++ b/egs/grid/AVSR/combinenet_ctc_avsr/utils.py @@ -0,0 +1,51 @@ +# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo) +# +# See ../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch + + +def encode_supervisions(nnet_output_shape, batch): + """ + Encodes Lhotse's ``batch["supervisions"]`` dict into + a pair of torch Tensor, and a list of transcription strings. + + The supervision tensor has shape ``(batch_size, 3)``. + Its second dimension contains information about sequence index [0], + start frames [1] and num frames [2]. + + The batch items might become re-ordered during this operation -- the + returned tensor and list of strings are guaranteed to be consistent with + each other. + """ + N, T, D = nnet_output_shape + + supervisions_idx = torch.arange(0, N).to(torch.int32) + start_frames = [0 for _ in range(N)] + supervisions_start_frame = torch.tensor(start_frames).to(torch.int32) + num_frames = [T for _ in range(N)] + supervisions_num_frames = torch.tensor(num_frames).to(torch.int32) + + supervision_segments = torch.stack( + ( + supervisions_idx, + supervisions_start_frame, + supervisions_num_frames, + ), + 1, + ).to(torch.int32) + texts = batch["txt"] + + return supervision_segments, texts diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/decode.py b/egs/grid/AVSR/lipnet_ctc_vsr/decode.py index 5b8e5f972..4e63e53c7 100644 --- a/egs/grid/AVSR/lipnet_ctc_vsr/decode.py +++ b/egs/grid/AVSR/lipnet_ctc_vsr/decode.py @@ -30,7 +30,7 @@ import torch import torch.nn as nn from torch.utils.data import DataLoader -from local.dataset import dataset_GRID +from local.dataset_visual import dataset_visual from model import LipNet from icefall.checkpoint import average_checkpoints, load_checkpoint @@ -461,7 +461,7 @@ def main(): model.to(device) model.eval() - grid = dataset_GRID( + grid = dataset_visual( params.video_path, params.anno_path, params.val_list, diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/train.py b/egs/grid/AVSR/lipnet_ctc_vsr/train.py index 6a12c837f..6eb985832 100644 --- a/egs/grid/AVSR/lipnet_ctc_vsr/train.py +++ b/egs/grid/AVSR/lipnet_ctc_vsr/train.py @@ -32,7 +32,7 @@ import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader -from local.dataset import dataset_GRID +from local.dataset_visual import dataset_visual from lhotse.utils import fix_random_seed from model import LipNet from torch import Tensor @@ -528,7 +528,7 @@ def run(rank, world_size, args): optimizer.load_state_dict(checkpoints["optimizer"]) scheduler.load_state_dict(checkpoints["scheduler"]) - grid = dataset_GRID( + grid = dataset_visual( params.video_path, params.anno_path, params.train_list, diff --git a/egs/grid/AVSR/local/dataset_audio.py b/egs/grid/AVSR/local/dataset_audio.py index eca6f1c55..7a5704d97 100644 --- a/egs/grid/AVSR/local/dataset_audio.py +++ b/egs/grid/AVSR/local/dataset_audio.py @@ -8,22 +8,22 @@ import torchaudio from torch.utils.data import Dataset -class MyDataset(Dataset): +class dataset_audio(Dataset): def __init__( self, video_path, anno_path, file_list, aud_padding, - phase, sample_rate, feature_dim, + phase, ): self.anno_path = anno_path self.aud_padding = aud_padding - self.phase = phase self.sample_rate = sample_rate self.feature_dim = feature_dim + self.phase = phase with open(file_list, "r") as f: self.videos = [ os.path.join(video_path, line.strip()) for line in f.readlines() diff --git a/egs/grid/AVSR/local/dataset_av.py b/egs/grid/AVSR/local/dataset_av.py new file mode 100644 index 000000000..70957c14b --- /dev/null +++ b/egs/grid/AVSR/local/dataset_av.py @@ -0,0 +1,111 @@ +# encoding: utf-8 +import cv2 +import os +import kaldifeat +import numpy as np + +import torch +import torchaudio +from torch.utils.data import Dataset + +from cvtransforms import HorizontalFlip, ColorNormalize + + +class dataset_av(Dataset): + def __init__( + self, + video_path, + anno_path, + file_list, + feature_dim, + vid_pad, + aud_pad, + sample_rate, + phase, + ): + self.anno_path = anno_path + self.vid_pad = vid_pad + self.aud_pad = aud_pad + self.feature_dim = feature_dim + self.sample_rate = sample_rate + self.phase = phase + with open(file_list, "r") as f: + self.videos = [ + os.path.join(video_path, line.strip()) for line in f.readlines() + ] + + self.data = [] + for vid in self.videos: + items = vid.split(os.path.sep) + aud = ( + vid.replace("lip", "audio_25k").replace("/video/mpg_6000", "") + + ".wav" + ) + self.data.append((vid, aud, items[-4], items[-1])) + + def __getitem__(self, idx): + (vid, aud, spk, name) = self.data[idx] + + vid = self._load_vid(vid) + aud = self._load_aud(aud) + vid = self._padding(vid, self.vid_pad) + aud = self._padding(aud, self.aud_pad) + anno = self._load_anno( + os.path.join(self.anno_path, spk, "align", name + ".align") + ) + + if self.phase == "train": + vid = HorizontalFlip(vid) + vid = ColorNormalize(vid) + + vid = self._padding(vid, self.vid_pad) + aud = self._padding(aud, self.aud_pad) + + return { + "vid": torch.FloatTensor(vid.transpose(3, 0, 1, 2)), + "aud": torch.FloatTensor(aud), + "txt": anno.upper(), + } + + def __len__(self): + return len(self.data) + + def _load_vid(self, p): + files = os.listdir(p) + files = list(filter(lambda file: file.find(".jpg") != -1, files)) + files = sorted(files, key=lambda file: int(os.path.splitext(file)[0])) + array = [cv2.imread(os.path.join(p, file)) for file in files] + array = list(filter(lambda im: im is not None, array)) + array = [ + cv2.resize(im, (128, 64), interpolation=cv2.INTER_LANCZOS4) + for im in array + ] + array = np.stack(array, axis=0).astype(np.float32) + return array + + def _load_aud(self, filename): + opts = kaldifeat.FbankOptions() + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = self.sample_rate + opts.mel_opts.num_bins = self.feature_dim + fbank = kaldifeat.Fbank(opts) + wave, sample_rate = torchaudio.load(filename) + features = fbank(wave[0]) + + return features + + def _load_anno(self, name): + with open(name, "r") as f: + lines = [line.strip().split(" ") for line in f.readlines()] + txt = [line[2] for line in lines] + txt = list(filter(lambda s: not s.upper() in ["SIL", "SP"], txt)) + txt = " ".join(txt) + return txt + + def _padding(self, array, length): + array = [array[_] for _ in range(array.shape[0])] + size = array[0].shape + for i in range(length - len(array)): + array.append(np.zeros(size)) + return np.stack(array, axis=0) diff --git a/egs/grid/AVSR/local/dataset.py b/egs/grid/AVSR/local/dataset_visual.py similarity index 94% rename from egs/grid/AVSR/local/dataset.py rename to egs/grid/AVSR/local/dataset_visual.py index 3c344ddf9..557e8aec0 100644 --- a/egs/grid/AVSR/local/dataset.py +++ b/egs/grid/AVSR/local/dataset_visual.py @@ -7,17 +7,17 @@ from torch.utils.data import Dataset from cvtransforms import HorizontalFlip, ColorNormalize -class dataset_GRID(Dataset): +class dataset_visual(Dataset): def __init__( self, video_path, anno_path, file_list, - vid_pad, + vid_padding, phase, ): self.anno_path = anno_path - self.vid_pad = vid_pad + self.vid_padding = vid_padding self.phase = phase with open(file_list, "r") as f: self.videos = [ @@ -44,7 +44,7 @@ class dataset_GRID(Dataset): vid = HorizontalFlip(vid) vid = ColorNormalize(vid) - vid = self._padding(vid, self.vid_pad) + vid = self._padding(vid, self.vid_padding) return { "vid": torch.FloatTensor(vid.transpose(3, 0, 1, 2)), From 1abf255bdd39272af6d8a15681ea19d90d4832f7 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Wed, 22 Dec 2021 16:11:35 +0800 Subject: [PATCH 12/20] update some files --- egs/grid/AVSR/lipnet_ctc_vsr/decode.py | 2 +- egs/grid/AVSR/lipnet_ctc_vsr/train.py | 2 +- egs/grid/AVSR/local/dataset_av.py | 2 +- egs/grid/AVSR/local/dataset_visual.py | 2 +- 4 files changed, 4 insertions(+), 4 deletions(-) diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/decode.py b/egs/grid/AVSR/lipnet_ctc_vsr/decode.py index 4e63e53c7..d4f3910a3 100644 --- a/egs/grid/AVSR/lipnet_ctc_vsr/decode.py +++ b/egs/grid/AVSR/lipnet_ctc_vsr/decode.py @@ -142,7 +142,7 @@ def get_params() -> AttributeDict: "anno_path": Path("download/GRID/GRID_align_txt"), "val_list": Path("download/GRID/unseen_val.txt"), "vid_padding": 75, - "num_workers": 1, + "num_workers": 16, "batch_size": 120, } ) diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/train.py b/egs/grid/AVSR/lipnet_ctc_vsr/train.py index 6eb985832..9caa9b55a 100644 --- a/egs/grid/AVSR/lipnet_ctc_vsr/train.py +++ b/egs/grid/AVSR/lipnet_ctc_vsr/train.py @@ -181,7 +181,7 @@ def get_params() -> AttributeDict: "train_list": Path("download/GRID/unseen_train.txt"), "vid_padding": 75, "aud_padding": 200, - "num_workers": 1, + "num_workers": 16, "batch_size": 120, } ) diff --git a/egs/grid/AVSR/local/dataset_av.py b/egs/grid/AVSR/local/dataset_av.py index 70957c14b..2f023b080 100644 --- a/egs/grid/AVSR/local/dataset_av.py +++ b/egs/grid/AVSR/local/dataset_av.py @@ -8,7 +8,7 @@ import torch import torchaudio from torch.utils.data import Dataset -from cvtransforms import HorizontalFlip, ColorNormalize +from .cvtransforms import HorizontalFlip, ColorNormalize class dataset_av(Dataset): diff --git a/egs/grid/AVSR/local/dataset_visual.py b/egs/grid/AVSR/local/dataset_visual.py index 557e8aec0..6fb826b48 100644 --- a/egs/grid/AVSR/local/dataset_visual.py +++ b/egs/grid/AVSR/local/dataset_visual.py @@ -4,7 +4,7 @@ import os import numpy as np import torch from torch.utils.data import Dataset -from cvtransforms import HorizontalFlip, ColorNormalize +from .cvtransforms import HorizontalFlip, ColorNormalize class dataset_visual(Dataset): From f03337980571f1d14ca4489b1c3153bd694f16b8 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Fri, 24 Dec 2021 14:07:57 +0800 Subject: [PATCH 13/20] update lipnet-ctc-vsr --- egs/grid/AVSR/lipnet_ctc_vsr/decode.py | 3 ++- egs/grid/AVSR/lipnet_ctc_vsr/model.py | 5 +++-- egs/grid/AVSR/lipnet_ctc_vsr/train.py | 4 ++-- 3 files changed, 7 insertions(+), 5 deletions(-) diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/decode.py b/egs/grid/AVSR/lipnet_ctc_vsr/decode.py index d4f3910a3..6b535f156 100644 --- a/egs/grid/AVSR/lipnet_ctc_vsr/decode.py +++ b/egs/grid/AVSR/lipnet_ctc_vsr/decode.py @@ -386,6 +386,7 @@ def main(): logging.info(params) lexicon = Lexicon(params.lang_dir) + max_token_id = max(lexicon.tokens) device = torch.device("cpu") if torch.cuda.is_available(): @@ -439,7 +440,7 @@ def main(): else: G = None - model = LipNet() + model = LipNet(num_classes=max_token_id+1) if params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/model.py b/egs/grid/AVSR/lipnet_ctc_vsr/model.py index ce246899c..4fb70b269 100644 --- a/egs/grid/AVSR/lipnet_ctc_vsr/model.py +++ b/egs/grid/AVSR/lipnet_ctc_vsr/model.py @@ -4,8 +4,9 @@ import torch.nn as nn class LipNet(torch.nn.Module): - def __init__(self, dropout_p=0.1): + def __init__(self, num_classes, dropout_p=0.1): super(LipNet, self).__init__() + self.num_classes = num_classes self.conv1 = nn.Conv3d(3, 32, (3, 5, 5), (1, 2, 2), (1, 2, 2)) self.pool1 = nn.MaxPool3d((1, 2, 2), (1, 2, 2)) @@ -18,7 +19,7 @@ class LipNet(torch.nn.Module): self.gru1 = nn.GRU(96 * 4 * 8, 256, 1, bidirectional=True) self.gru2 = nn.GRU(512, 256, 1, bidirectional=True) - self.FC = nn.Linear(512, 28) + self.FC = nn.Linear(512, self.num_classes) self.dropout_p = dropout_p self.relu = nn.ReLU(inplace=True) diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/train.py b/egs/grid/AVSR/lipnet_ctc_vsr/train.py index 9caa9b55a..b0aab49ee 100644 --- a/egs/grid/AVSR/lipnet_ctc_vsr/train.py +++ b/egs/grid/AVSR/lipnet_ctc_vsr/train.py @@ -180,7 +180,6 @@ def get_params() -> AttributeDict: "anno_path": Path("download/GRID/GRID_align_txt"), "train_list": Path("download/GRID/unseen_train.txt"), "vid_padding": 75, - "aud_padding": 200, "num_workers": 16, "batch_size": 120, } @@ -503,13 +502,14 @@ def run(rank, world_size, args): tb_writer = None lexicon = Lexicon(params.lang_dir) + max_token_id = max(lexicon.tokens) device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", rank) graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device) - model = LipNet() + model = LipNet(num_classes=max_token_id+1) checkpoints = load_checkpoint_if_available(params=params, model=model) From 149ccd1b85337131a196966e8f23632c1ebe3f55 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Fri, 24 Dec 2021 14:16:12 +0800 Subject: [PATCH 14/20] update lipnet-ctc-vsr for grid --- egs/grid/AVSR/lipnet_ctc_vsr/decode.py | 2 +- egs/grid/AVSR/lipnet_ctc_vsr/train.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/decode.py b/egs/grid/AVSR/lipnet_ctc_vsr/decode.py index 6b535f156..3ed36f339 100644 --- a/egs/grid/AVSR/lipnet_ctc_vsr/decode.py +++ b/egs/grid/AVSR/lipnet_ctc_vsr/decode.py @@ -440,7 +440,7 @@ def main(): else: G = None - model = LipNet(num_classes=max_token_id+1) + model = LipNet(num_classes=max_token_id + 1) if params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/train.py b/egs/grid/AVSR/lipnet_ctc_vsr/train.py index b0aab49ee..d8b7b3315 100644 --- a/egs/grid/AVSR/lipnet_ctc_vsr/train.py +++ b/egs/grid/AVSR/lipnet_ctc_vsr/train.py @@ -509,7 +509,7 @@ def run(rank, world_size, args): device = torch.device("cuda", rank) graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device) - model = LipNet(num_classes=max_token_id+1) + model = LipNet(num_classes=max_token_id + 1) checkpoints = load_checkpoint_if_available(params=params, model=model) From 7b3624006fa82601d0eec148907bd47f4d3f8399 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Mon, 27 Dec 2021 16:56:15 +0800 Subject: [PATCH 15/20] update the codes --- README.md | 53 ++ egs/grid/AVSR/audionet_ctc_asr/model.py | 1 - egs/grid/AVSR/combinenet_ctc_avsr/decode.py | 2 +- egs/grid/AVSR/combinenet_ctc_avsr/model.py | 1 - egs/grid/AVSR/combinenet_ctc_avsr/train.py | 2 +- egs/grid/AVSR/local/cvtransforms.py | 19 +- egs/grid/AVSR/local/dataset_audio.py | 21 +- egs/grid/AVSR/local/dataset_av.py | 37 +- egs/grid/AVSR/local/dataset_visual.py | 19 +- egs/grid/AVSR/prepare.sh | 9 +- .../__init__.py | 0 egs/grid/AVSR/visualnet2_ctc_vsr/decode.py | 499 +++++++++++++++ egs/grid/AVSR/visualnet2_ctc_vsr/model.py | 209 ++++++ egs/grid/AVSR/visualnet2_ctc_vsr/train.py | 605 ++++++++++++++++++ .../utils.py | 0 egs/grid/AVSR/visualnet_ctc_vsr/__init__.py | 0 .../decode.py | 6 +- .../model.py | 21 +- .../train.py | 6 +- egs/grid/AVSR/visualnet_ctc_vsr/utils.py | 45 ++ 20 files changed, 1525 insertions(+), 30 deletions(-) rename egs/grid/AVSR/{lipnet_ctc_vsr => visualnet2_ctc_vsr}/__init__.py (100%) create mode 100644 egs/grid/AVSR/visualnet2_ctc_vsr/decode.py create mode 100644 egs/grid/AVSR/visualnet2_ctc_vsr/model.py create mode 100644 egs/grid/AVSR/visualnet2_ctc_vsr/train.py rename egs/grid/AVSR/{lipnet_ctc_vsr => visualnet2_ctc_vsr}/utils.py (100%) create mode 100644 egs/grid/AVSR/visualnet_ctc_vsr/__init__.py rename egs/grid/AVSR/{lipnet_ctc_vsr => visualnet_ctc_vsr}/decode.py (99%) rename egs/grid/AVSR/{lipnet_ctc_vsr => visualnet_ctc_vsr}/model.py (69%) rename egs/grid/AVSR/{lipnet_ctc_vsr => visualnet_ctc_vsr}/train.py (99%) create mode 100644 egs/grid/AVSR/visualnet_ctc_vsr/utils.py diff --git a/README.md b/README.md index f0a678839..88e5c6d81 100644 --- a/README.md +++ b/README.md @@ -18,6 +18,7 @@ We provide four recipes at present: - [LibriSpeech][librispeech] - [Aishell][aishell] - [TIMIT][timit] + - [GRID][grid] ### yesno @@ -142,6 +143,54 @@ The PER for this model is: We provide a Colab notebook to run a pre-trained TDNN LiGRU CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/11IT-k4HQIgQngXz1uvWsEYktjqQt7Tmb?usp=sharing) +### GRID + +For the VSR (visual speech recognition) task, we provide two models: [Conv3d Map BiGRU CTC model][GRID_conv3d_map_bigru_ctc] +and [Conv3d ResNet18 BiGRU CTC model][GRID_conv3d_resnet18_bigru_ctc]. + +#### Conv3d Map BiGRU CTC Model + +The best WER we currently have is: + +||TEST| +|--|--| +|WER| 15.68% | + +We provide a Colab notebook to run a pre-trained Conv3d Map BiGRU CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1X1U2VsHD3AmRQ4UvdVEuj2y8HKJ0ZJgS?usp=sharing) + +#### Conv3d ResNet18 BiGRU CTC Model + +The WER for this model is: + +||TEST| +|--|--| +|WER| 13.63% | + +We provide a Colab notebook to run a pre-trained Conv3d ResNet18 BiGRU CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1PC9Fd7QcOOONFKUQqwLODwjztCuI-Oh1?usp=sharing) + +For the ASR (automatic speech recognition) task, we provide one model: [Tdnn Lstm CTC model][GRID_tdnn_lstm_ctc]. + +#### Tdnn Lstm CTC Model + +The best WER we currently have is: + +||TEST| +|--|--| +|WER| 2.35% | + +We provide a Colab notebook to run a pre-trained Tdnn Lstm CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bkDyVDVBhGJS5TuvjNsJ1yJ3vlCoFk9p?usp=sharing) + +For the AVSR (audio-visual speech recognition) task, we provide one model: [CombineNet CTC model][GRID_combinenet_ctc]. + +#### CombineNet CTC Model + +The best WER we currently have is: + +||TEST| +|--|--| +|WER| 1.71% | + +We provide a Colab notebook to run a pre-trained CombineNet CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1UmCYX7GwbQ3Ms6SnoAuB8Tov46OD82hb?usp=sharing) ## Deployment with C++ @@ -164,6 +213,10 @@ Please see: [![Open In Colab](https://colab.research.google.com/assets/colab-bad [Aishell_conformer_ctc]: egs/aishell/ASR/conformer_ctc [TIMIT_tdnn_lstm_ctc]: egs/timit/ASR/tdnn_lstm_ctc [TIMIT_tdnn_ligru_ctc]: egs/timit/ASR/tdnn_ligru_ctc +[GRID_conv3d_map_bigru_ctc]: egs/grid/AVSR/visualnet_ctc_vsr +[GRID_conv3d_resnet18_bigru_ctc]:egs/grid/AVSR/visualnet2_ctc_vsr +[GRID_tdnn_lstm_ctc]: egs/grid/AVSR/audionet_ctc_asr +[GRID_combinenet_ctc]: egs/grid/AVSR/combinenet_ctc_avsr [yesno]: egs/yesno/ASR [librispeech]: egs/librispeech/ASR [aishell]: egs/aishell/ASR diff --git a/egs/grid/AVSR/audionet_ctc_asr/model.py b/egs/grid/AVSR/audionet_ctc_asr/model.py index 0bb05a7ba..93c442aa7 100644 --- a/egs/grid/AVSR/audionet_ctc_asr/model.py +++ b/egs/grid/AVSR/audionet_ctc_asr/model.py @@ -59,7 +59,6 @@ class AudioNet(nn.Module): in_channels=512, out_channels=512, kernel_size=3, - # stride=self.subsampling_factor, # stride: subsampling_factor! stride=1, padding=1, ), diff --git a/egs/grid/AVSR/combinenet_ctc_avsr/decode.py b/egs/grid/AVSR/combinenet_ctc_avsr/decode.py index 5b6b9647d..579225fea 100644 --- a/egs/grid/AVSR/combinenet_ctc_avsr/decode.py +++ b/egs/grid/AVSR/combinenet_ctc_avsr/decode.py @@ -147,7 +147,7 @@ def get_params() -> AttributeDict: "aud_padding": 450, "sample_rate": 16000, "num_workers": 16, - "batch_size": 120, + "batch_size": 100, } ) return params diff --git a/egs/grid/AVSR/combinenet_ctc_avsr/model.py b/egs/grid/AVSR/combinenet_ctc_avsr/model.py index 9485a14dc..03652a223 100644 --- a/egs/grid/AVSR/combinenet_ctc_avsr/model.py +++ b/egs/grid/AVSR/combinenet_ctc_avsr/model.py @@ -61,7 +61,6 @@ class CombineNet(nn.Module): in_channels=512, out_channels=512, kernel_size=3, - # stride=self.subsampling_factor, # stride: subsampling_factor! stride=1, padding=1, ), diff --git a/egs/grid/AVSR/combinenet_ctc_avsr/train.py b/egs/grid/AVSR/combinenet_ctc_avsr/train.py index d6cb107f7..df476a2b0 100644 --- a/egs/grid/AVSR/combinenet_ctc_avsr/train.py +++ b/egs/grid/AVSR/combinenet_ctc_avsr/train.py @@ -183,7 +183,7 @@ def get_params() -> AttributeDict: "aud_padding": 480, "sample_rate": 16000, "num_workers": 16, - "batch_size": 120, + "batch_size": 100, } ) diff --git a/egs/grid/AVSR/local/cvtransforms.py b/egs/grid/AVSR/local/cvtransforms.py index 07361dac8..c80387850 100644 --- a/egs/grid/AVSR/local/cvtransforms.py +++ b/egs/grid/AVSR/local/cvtransforms.py @@ -1,4 +1,21 @@ -# coding: utf-8 +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + import random diff --git a/egs/grid/AVSR/local/dataset_audio.py b/egs/grid/AVSR/local/dataset_audio.py index 7a5704d97..d7eba76c5 100644 --- a/egs/grid/AVSR/local/dataset_audio.py +++ b/egs/grid/AVSR/local/dataset_audio.py @@ -1,7 +1,24 @@ -# encoding: utf-8 -import os +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + import kaldifeat import numpy as np +import os import torch import torchaudio diff --git a/egs/grid/AVSR/local/dataset_av.py b/egs/grid/AVSR/local/dataset_av.py index 2f023b080..5d056aef4 100644 --- a/egs/grid/AVSR/local/dataset_av.py +++ b/egs/grid/AVSR/local/dataset_av.py @@ -1,8 +1,25 @@ -# encoding: utf-8 +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + import cv2 -import os import kaldifeat import numpy as np +import os import torch import torchaudio @@ -18,14 +35,14 @@ class dataset_av(Dataset): anno_path, file_list, feature_dim, - vid_pad, - aud_pad, + vid_pading, + aud_pading, sample_rate, phase, ): self.anno_path = anno_path - self.vid_pad = vid_pad - self.aud_pad = aud_pad + self.vid_pading = vid_pading + self.aud_pading = aud_pading self.feature_dim = feature_dim self.sample_rate = sample_rate self.phase = phase @@ -48,8 +65,8 @@ class dataset_av(Dataset): vid = self._load_vid(vid) aud = self._load_aud(aud) - vid = self._padding(vid, self.vid_pad) - aud = self._padding(aud, self.aud_pad) + vid = self._padding(vid, self.vid_pading) + aud = self._padding(aud, self.aud_pading) anno = self._load_anno( os.path.join(self.anno_path, spk, "align", name + ".align") ) @@ -58,8 +75,8 @@ class dataset_av(Dataset): vid = HorizontalFlip(vid) vid = ColorNormalize(vid) - vid = self._padding(vid, self.vid_pad) - aud = self._padding(aud, self.aud_pad) + vid = self._padding(vid, self.vid_pading) + aud = self._padding(aud, self.aud_pading) return { "vid": torch.FloatTensor(vid.transpose(3, 0, 1, 2)), diff --git a/egs/grid/AVSR/local/dataset_visual.py b/egs/grid/AVSR/local/dataset_visual.py index 6fb826b48..04c45ba46 100644 --- a/egs/grid/AVSR/local/dataset_visual.py +++ b/egs/grid/AVSR/local/dataset_visual.py @@ -1,4 +1,21 @@ -# encoding: utf-8 +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + import cv2 import os import numpy as np diff --git a/egs/grid/AVSR/prepare.sh b/egs/grid/AVSR/prepare.sh index 14f4f12d2..ea8d2325d 100644 --- a/egs/grid/AVSR/prepare.sh +++ b/egs/grid/AVSR/prepare.sh @@ -60,12 +60,13 @@ if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then #git clone https://huggingface.co/luomingshuang/grid_lm $dl_dir/lm #cd $dl_dir/lm && git lfs pull - # You can also use the following commands to download the lm files - wget -P $dl_dir/lm https://huggingface.co/luomingshuang/grid_lm/resolve/main/lm_3_gram.arpa - wget -P $dl_dir/lm https://huggingface.co/luomingshuang/grid_lm/resolve/main/lm_4_gram.arpa - + # You can also use the following commands to download the lm files. # Because the texts among the samples in GRID are very similar, # the lm_4_gram.arpa is nearly no use for decoding when use LM. + # In our experiments, the decoding results based on 1best is better + # than based on whole-lattice-rescoring. + wget -P $dl_dir/lm https://huggingface.co/luomingshuang/grid_lm/resolve/main/lm_3_gram.arpa + wget -P $dl_dir/lm https://huggingface.co/luomingshuang/grid_lm/resolve/main/lm_4_gram.arpa fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/__init__.py b/egs/grid/AVSR/visualnet2_ctc_vsr/__init__.py similarity index 100% rename from egs/grid/AVSR/lipnet_ctc_vsr/__init__.py rename to egs/grid/AVSR/visualnet2_ctc_vsr/__init__.py diff --git a/egs/grid/AVSR/visualnet2_ctc_vsr/decode.py b/egs/grid/AVSR/visualnet2_ctc_vsr/decode.py new file mode 100644 index 000000000..a8fe0a515 --- /dev/null +++ b/egs/grid/AVSR/visualnet2_ctc_vsr/decode.py @@ -0,0 +1,499 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang +# Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +from utils import encode_supervisions + +import k2 +import torch +import torch.nn as nn + +from torch.utils.data import DataLoader +from local.dataset_visual import dataset_visual + +# from model import LipNet +from model import visual_frontend + +from icefall.checkpoint import average_checkpoints, load_checkpoint +from icefall.decode import ( + get_lattice, + nbest_decoding, + one_best_decoding, + rescore_with_n_best_list, + rescore_with_whole_lattice, +) +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + get_texts, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=19, + help="It specifies the checkpoint to use for decoding." + "Note: Epoch counts from 0.", + ) + parser.add_argument( + "--avg", + type=int, + default=5, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch'. ", + ) + parser.add_argument( + "--method", + type=str, + default="whole-lattice-rescoring", + help="""Decoding method. + Supported values are: + - (1) 1best. Extract the best path from the decoding lattice as the + decoding result. + - (2) nbest. Extract n paths from the decoding lattice; the path + with the highest score is the decoding result. + - (3) nbest-rescoring. Extract n paths from the decoding lattice, + rescore them with an n-gram LM (e.g., a 4-gram LM), the path with + the highest score is the decoding result. + - (4) whole-lattice-rescoring. Rescore the decoding lattice with an + n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice + is the decoding result. + """, + ) + + parser.add_argument( + "--num-paths", + type=int, + default=100, + help="""Number of paths for n-best based decoding method. + Used only when "method" is one of the following values: + nbest, nbest-rescoring + """, + ) + + parser.add_argument( + "--nbest-scale", + type=float, + default=0.5, + help="""The scale to be applied to `lattice.scores`. + It's needed if you use any kinds of n-best based rescoring. + Used only when "method" is one of the following values: + nbest, nbest-rescoring + A smaller value results in more unique paths. + """, + ) + + parser.add_argument( + "--export", + type=str2bool, + default=False, + help="""When enabled, the averaged model is saved to + tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved. + pretrained.pt contains a dict {"model": model.state_dict()}, + which can be loaded by `icefall.checkpoint.load_checkpoint()`. + """, + ) + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + "exp_dir": Path("visualnet_ctc_vsr2/exp"), + "lang_dir": Path("data/lang_character"), + "lm_dir": Path("data/lm"), + "search_beam": 20, + "output_beam": 5, + "min_active_states": 30, + "max_active_states": 10000, + "use_double_scores": True, + # parameters for dataset + "video_path": Path("download/GRID/lip/"), + "anno_path": Path("download/GRID/GRID_align_txt"), + "val_list": Path("download/GRID/unseen_val.txt"), + "vid_padding": 75, + "num_workers": 16, + "batch_size": 120, + } + ) + return params + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + HLG: k2.Fsa, + batch: dict, + lexicon: Lexicon, + G: Optional[k2.Fsa] = None, +) -> Dict[str, List[List[str]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: It indicates the setting used for decoding. For example, + if no rescoring is used, the key is the string `no_rescore`. + If LM rescoring is used, the key is the string `lm_scale_xxx`, + where `xxx` is the value of `lm_scale`. An example key is + `lm_scale_0.7` + - value: It contains the decoding result. `len(value)` equals to + batch size. `value[i]` is the decoding result for the i-th + utterance in the given batch. + Args: + params: + It's the return value of :func:`get_params`. + + - params.method is "1best", it uses 1best decoding without LM rescoring. + - params.method is "nbest", it uses nbest decoding without LM rescoring. + - params.method is "nbest-rescoring", it uses nbest LM rescoring. + - params.method is "whole-lattice-rescoring", it uses whole lattice LM + rescoring. + + model: + The neural model. + HLG: + The decoding graph. + batch: + It is the return value from iterating + `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation + for the format of the `batch`. + lexicon: + It contains word symbol table. + G: + An LM. It is not None when params.method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return the decoding result. See above description for the format of + the returned dict. + """ + device = HLG.device + feature = batch["vid"] + assert feature.ndim == 5 + feature = feature.to(device) + + nnet_output = model(feature) + nnet_output_shape = nnet_output.size() + supervision_segments, text = encode_supervisions(nnet_output_shape, batch) + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + ) + + if params.method in ["1best", "nbest"]: + if params.method == "1best": + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + key = "no_rescore" + else: + best_path = nbest_decoding( + lattice=lattice, + num_paths=params.num_paths, + use_double_scores=params.use_double_scores, + nbest_scale=params.nbest_scale, + ) + key = f"no_rescore-{params.num_paths}" + + hyps = get_texts(best_path) + hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps] + + return {key: hyps} + + assert params.method in ["nbest-rescoring", "whole-lattice-rescoring"] + + lm_scale_list = [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09] + lm_scale_list += [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] + lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3] + lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] + + if params.method == "nbest-rescoring": + best_path_dict = rescore_with_n_best_list( + lattice=lattice, + G=G, + num_paths=params.num_paths, + lm_scale_list=lm_scale_list, + nbest_scale=params.nbest_scale, + ) + else: + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=lm_scale_list, + ) + + ans = dict() + for lm_scale_str, best_path in best_path_dict.items(): + hyps = get_texts(best_path) + hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps] + ans[lm_scale_str] = hyps + return ans + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, + HLG: k2.Fsa, + lexicon: Lexicon, + G: Optional[k2.Fsa] = None, +) -> Dict[str, List[Tuple[List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + PyTorch's dataloader containing the dataset to decode. + params: + It is returned by :func:`get_params`. + model: + The neural model. + HLG: + The decoding graph. + lexicon: + It contains word symbol table. + G: + An LM. It is not None when params.method is "nbest-rescoring" + or "whole-lattice-rescoring". In general, the G in HLG + is a 3-gram LM, while this G is a 4-gram LM. + Returns: + Return a dict, whose key may be "no-rescore" if no LM rescoring + is used, or it may be "lm_scale_0.7" if LM rescoring is used. + Its value is a list of tuples. Each tuple contains two elements: + The first is the reference transcript, and the second is the + predicted result. + """ + results = [] + + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["txt"] + hyps_dict = decode_one_batch( + params=params, + model=model, + HLG=HLG, + batch=batch, + lexicon=lexicon, + G=G, + ) + + for lm_scale, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for hyp_words, ref_text in zip(hyps, texts): + ref_words = ref_text.split() + this_batch.append((ref_words, hyp_words)) + results[lm_scale].extend(this_batch) + + num_cuts += len(batch["txt"]) + + if batch_idx % 10 == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info( + f"batch {batch_str}, cuts processed until now is {num_cuts}" + ) + + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[List[int], List[int]]]], +): + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt" + store_transcripts(filename=recog_path, texts=results) + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out PERs, per-phone error statistics and aligned + # ref/hyp pairs. + errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt" + with open(errs_filename, "w") as f: + wer = write_error_stats(f, f"{test_set_name}-{key}", results) + test_set_wers[key] = wer + + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = params.exp_dir / f"per-summary-{test_set_name}.txt" + with open(errs_info, "w") as f: + print("settings\tPER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, PER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + params.update(vars(args)) + + setup_logger(f"{params.exp_dir}/log/log-decode") + logging.info("Decoding started") + logging.info(params) + + lexicon = Lexicon(params.lang_dir) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + HLG = k2.Fsa.from_dict( + torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu") + ) + + HLG = HLG.to(device) + assert HLG.requires_grad is False + + if not hasattr(HLG, "lm_scores"): + HLG.lm_scores = HLG.scores.clone() + + if params.method in ["nbest-rescoring", "whole-lattice-rescoring"]: + if not (params.lm_dir / "G_4_gram.pt").is_file(): + logging.info("Loading G_4_gram.fst.txt") + logging.warning("It may take 8 minutes.") + with open(params.lm_dir / "G_4_gram.fst.txt") as f: + first_word_disambig_id = lexicon.word_table["#0"] + + G = k2.Fsa.from_openfst(f.read(), acceptor=False) + # G.aux_labels is not needed in later computations, so + # remove it here. + del G.aux_labels + # CAUTION: The following line is crucial. + # Arcs entering the back-off state have label equal to #0. + # We have to change it to 0 here. + G.labels[G.labels >= first_word_disambig_id] = 0 + G = k2.Fsa.from_fsas([G]).to(device) + G = k2.arc_sort(G) + torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt") + else: + logging.info("Loading pre-compiled G_4_gram.pt") + d = torch.load(params.lm_dir / "G_4_gram.pt", map_location="cpu") + G = k2.Fsa.from_dict(d).to(device) + + if params.method == "whole-lattice-rescoring": + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + G = G.to(device) + + # G.lm_scores is used to replace HLG.lm_scores during + # LM rescoring. + G.lm_scores = G.scores.clone() + else: + G = None + + model = visual_frontend() + if params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if start >= 0: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.load_state_dict(average_checkpoints(filenames)) + + if params.export: + logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt") + torch.save( + {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt" + ) + return + + model.to(device) + model.eval() + + grid = dataset_visual( + params.video_path, + params.anno_path, + params.val_list, + params.vid_padding, + "test", + ) + test_dl = DataLoader( + grid, + batch_size=params.batch_size, + shuffle=False, + num_workers=params.num_workers, + drop_last=False, + ) + test_set = "test" + + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + HLG=HLG, + lexicon=lexicon, + G=G, + ) + + save_results( + params=params, test_set_name=test_set, results_dict=results_dict + ) + + logging.info("Done!") + + +if __name__ == "__main__": + main() diff --git a/egs/grid/AVSR/visualnet2_ctc_vsr/model.py b/egs/grid/AVSR/visualnet2_ctc_vsr/model.py new file mode 100644 index 000000000..14f102108 --- /dev/null +++ b/egs/grid/AVSR/visualnet2_ctc_vsr/model.py @@ -0,0 +1,209 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang +# Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import math +import torch.nn as nn + + +def conv3x3(in_planes, out_planes, stride=1): + return nn.Conv2d( + in_planes, + out_planes, + kernel_size=3, + stride=stride, + padding=1, + bias=False, + ) + + +class BasicBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(BasicBlock, self).__init__() + self.conv1 = conv3x3(inplanes, planes, stride) + self.bn1 = nn.BatchNorm2d(planes) + self.relu = nn.ReLU(inplace=True) + self.conv2 = conv3x3(planes, planes) + self.bn2 = nn.BatchNorm2d(planes) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class ResNet(nn.Module): + def __init__(self, block, layers): + self.inplanes = 64 + super(ResNet, self).__init__() + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.avgpool = nn.AdaptiveAvgPool2d(1) + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2.0 / n)) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + elif isinstance(m, nn.BatchNorm1d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d( + self.inplanes, + planes * block.expansion, + kernel_size=1, + stride=stride, + bias=False, + ), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + x = self.avgpool(x) + x = x.view(x.size(0), -1) + return x + + +class VisualNet2(nn.Module): + def __init__(self, inputDim=512): + super(VisualNet2, self).__init__() + self.inputDim = inputDim + self.conv3d = nn.Conv3d( + 3, + 64, + kernel_size=(5, 7, 7), + stride=(1, 2, 2), + padding=(2, 3, 3), + bias=False, + ) + self.bn = nn.BatchNorm3d(64, track_running_stats=True) + self.relu = nn.ReLU(True) + self.maxpool = nn.MaxPool3d( + kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1) + ) + + # resnet + self.resnet18 = ResNet(BasicBlock, [2, 2, 2, 2]) + + # grus + self.gru1 = nn.GRU(512, 512, 1, bidirectional=True) + self.gru2 = nn.GRU(1024, 512, 1, bidirectional=True) + + # dropout + self.dropout = nn.Dropout(p=0.5) + + # fc + self.linear = nn.Linear(1024, 28) + + # initialize + self._initialize_weights() + + def forward(self, x): + frameLen = x.size(2) + x = self.conv3d(x) + x = self.bn(x) + x = self.relu(x) + x = self.maxpool(x) + + x = x.transpose(1, 2) + x = x.contiguous() + x = x.view(-1, 64, x.size(3), x.size(4)) + x = self.resnet18(x) + + x = self.dropout(x) + x = x.view(-1, frameLen, self.inputDim) + + x = x.permute(1, 0, 2) + x, h = self.gru1(x) + x, h = self.gru2(self.dropout(x)) + x = self.linear(x) + x = x.permute(1, 0, 2) + x = nn.functional.log_softmax(x, dim=-1) + return x + + def _initialize_weights(self): + for m in self.modules(): + if isinstance(m, nn.Conv3d): + n = ( + m.kernel_size[0] + * m.kernel_size[1] + * m.kernel_size[2] + * m.out_channels + ) + m.weight.data.normal_(0, math.sqrt(2.0 / n)) + if m.bias is not None: + m.bias.data.zero_() + + elif isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2.0 / n)) + if m.bias is not None: + m.bias.data.zero_() + + elif isinstance(m, nn.Conv1d): + n = m.kernel_size[0] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2.0 / n)) + if m.bias is not None: + m.bias.data.zero_() + + elif isinstance(m, nn.BatchNorm3d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + elif isinstance(m, nn.BatchNorm1d): + m.weight.data.fill_(1) + m.bias.data.zero_() diff --git a/egs/grid/AVSR/visualnet2_ctc_vsr/train.py b/egs/grid/AVSR/visualnet2_ctc_vsr/train.py new file mode 100644 index 000000000..91a1b024a --- /dev/null +++ b/egs/grid/AVSR/visualnet2_ctc_vsr/train.py @@ -0,0 +1,605 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang +# Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +from pathlib import Path +from shutil import copyfile +from typing import Optional, Tuple + +from utils import encode_supervisions + +import k2 +import torch +import torch.multiprocessing as mp +import torch.nn as nn +import torch.optim as optim +from torch.utils.data import DataLoader + +from local.dataset_visual import dataset_visual +from lhotse.utils import fix_random_seed + +from model import VisualNet2 +from torch import Tensor +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.nn.utils import clip_grad_norm_ +from torch.optim.lr_scheduler import StepLR +from torch.utils.tensorboard import SummaryWriter + +from icefall.checkpoint import load_checkpoint +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.dist import cleanup_dist, setup_dist +from icefall.graph_compiler import CtcTrainingGraphCompiler +from icefall.lexicon import Lexicon +from icefall.utils import ( + AttributeDict, + MetricsTracker, + get_env_info, + setup_logger, + str2bool, +) + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--world-size", + type=int, + default=1, + help="Number of GPUs for DDP training.", + ) + + parser.add_argument( + "--master-port", + type=int, + default=12354, + help="Master port to use for DDP training.", + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=30, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=0, + help="""Resume training from from this epoch. + If it is positive, it will load checkpoint from + tdnn_lstm_ctc/exp/epoch-{start_epoch-1}.pt + """, + ) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + is saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - exp_dir: It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + + - lang_dir: It contains language related input files such as + "lexicon.txt" + + - lr: It specifies the initial learning rate + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - weight_decay: The weight_decay for the optimizer. + + - subsampling_factor: The subsampling factor for the model. + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + - valid_interval: Run validation if batch_idx % valid_interval` is 0 + + - beam_size: It is used in k2.ctc_loss + + - reduction: It is used in k2.ctc_loss + + - use_double_scores: It is used in k2.ctc_loss + """ + params = AttributeDict( + { + "exp_dir": Path("visualnet2_ctc_vsr/exp"), + "lang_dir": Path("data/lang_character"), + "lr": 4e-4, + "feature_dim": 80, + "weight_decay": 5e-4, + "subsampling_factor": 3, + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 1, + "reset_interval": 200, + "valid_interval": 1000, + "beam_size": 10, + "reduction": "sum", + "use_double_scores": True, + "env_info": get_env_info(), + # parameters for dataset + "video_path": Path("download/GRID/lip/"), + "anno_path": Path("download/GRID/GRID_align_txt"), + "train_list": Path("download/GRID/unseen_train.txt"), + "vid_padding": 75, + "num_workers": 16, + "batch_size": 80, + } + ) + + return params + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None, +) -> None: + """Load checkpoint from file. + + If params.start_epoch is positive, it will load the checkpoint from + `params.start_epoch - 1`. Otherwise, this function does nothing. + + Apart from loading state dict for `model`, `optimizer` and `scheduler`, + it also updates `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + optimizer: + The optimizer that we are using. + scheduler: + The learning rate scheduler we are using. + Returns: + Return None. + """ + if params.start_epoch <= 0: + return + + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + saved_params = load_checkpoint( + filename, + model=model, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: nn.Module, + optimizer: torch.optim.Optimizer, + scheduler: torch.optim.lr_scheduler._LRScheduler, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + params=params, + optimizer=optimizer, + scheduler=scheduler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + model: nn.Module, + batch: dict, + graph_compiler: CtcTrainingGraphCompiler, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute CTC loss given the model and its inputs. + + Args: + params: + Parameters for training. See :func:`get_params`. + model: + The model for training. It is an instance of TdnnLstm in our case. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + graph_compiler: + It is used to build a decoding graph from a ctc topo and training + transcript. The training transcript is contained in the given `batch`, + while the ctc topo is built when this compiler is instantiated. + is_training: + True for training. False for validation. When it is True, this + function enables autograd during computation; when it is False, it + disables autograd. + """ + device = graph_compiler.device + feature = batch["vid"] + assert feature.ndim == 5 + feature = feature.to(device) + + with torch.set_grad_enabled(is_training): + nnet_output = model(feature) + + # NOTE: We need `encode_supervisions` to sort sequences with + # different duration in decreasing order, required by + # `k2.intersect_dense` called in `k2.ctc_loss` + supervision_segments, texts = encode_supervisions(nnet_output.size(), batch) + decoding_graph = graph_compiler.compile(texts) + dense_fsa_vec = k2.DenseFsaVec( + nnet_output, + supervision_segments, + ) + + loss = k2.ctc_loss( + decoding_graph=decoding_graph, + dense_fsa_vec=dense_fsa_vec, + output_beam=params.beam_size, + reduction=params.reduction, + use_double_scores=params.use_double_scores, + ) + + assert loss.requires_grad == is_training + + info = MetricsTracker() + info["frames"] = supervision_segments[:, 2].sum().item() + info["loss"] = loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + model: nn.Module, + graph_compiler: CtcTrainingGraphCompiler, + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process. The validation loss + is saved in `params.valid_loss`. + """ + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + loss, loss_info = compute_loss( + params=params, + model=model, + batch=batch, + graph_compiler=graph_compiler, + is_training=False, + ) + assert loss.requires_grad is False + + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + model: nn.Module, + optimizer: torch.optim.Optimizer, + graph_compiler: CtcTrainingGraphCompiler, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + graph_compiler: + It is used to convert transcripts to FSAs. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + """ + model.train() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(train_dl): + params.batch_idx_train += 1 + batch_size = len(batch["txt"]) + + loss, loss_info = compute_loss( + params=params, + model=model, + batch=batch, + graph_compiler=graph_compiler, + is_training=True, + ) + # summary stats. + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + optimizer.zero_grad() + loss.backward() + clip_grad_norm_(model.parameters(), 5.0, 2.0) + optimizer.step() + + if batch_idx % params.log_interval == 0: + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}" + ) + if batch_idx % params.log_interval == 0: + + if tb_writer is not None: + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary( + tb_writer, "train/tot_", params.batch_idx_train + ) + + if batch_idx > 0 and batch_idx % params.valid_interval == 0: + valid_info = compute_validation_loss( + params=params, + model=model, + graph_compiler=graph_compiler, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation {valid_info}") + if tb_writer is not None: + valid_info.write_summary( + tb_writer, + "train/valid_", + params.batch_idx_train, + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + + fix_random_seed(42) + if world_size > 1: + setup_dist(rank, world_size, params.master_port) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info("Training started") + logging.info(params) + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + lexicon = Lexicon(params.lang_dir) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + + graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device) + model = VisualNet2() + + checkpoints = load_checkpoint_if_available(params=params, model=model) + + model.to(device) + if world_size > 1: + model = DDP(model, device_ids=[rank]) + + optimizer = optim.AdamW( + model.parameters(), + lr=params.lr, + weight_decay=params.weight_decay, + ) + scheduler = StepLR(optimizer, step_size=10, gamma=0.8) + + if checkpoints: + optimizer.load_state_dict(checkpoints["optimizer"]) + scheduler.load_state_dict(checkpoints["scheduler"]) + + grid = dataset_visual( + params.video_path, + params.anno_path, + params.train_list, + params.vid_padding, + "train", + ) + + train_dl = DataLoader( + grid, + batch_size=params.batch_size, + shuffle=True, + num_workers=params.num_workers, + drop_last=False, + ) + # Here, we use train_dl as valid_dl because we don't have extra valid data. + valid_dl = train_dl + + for epoch in range(params.start_epoch, params.num_epochs): + + if epoch > params.start_epoch: + logging.info(f"epoch {epoch}, lr: {scheduler.get_last_lr()[0]}") + + if tb_writer is not None: + tb_writer.add_scalar( + "train/lr", + scheduler.get_last_lr()[0], + params.batch_idx_train, + ) + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + model=model, + optimizer=optimizer, + graph_compiler=graph_compiler, + train_dl=train_dl, + valid_dl=valid_dl, + tb_writer=tb_writer, + world_size=world_size, + ) + + scheduler.step() + + if epoch % 1 == 0: + save_checkpoint( + params=params, + model=model, + optimizer=optimizer, + scheduler=scheduler, + rank=rank, + ) + + logging.info("Done!") + if world_size > 1: + torch.distributed.barrier() + cleanup_dist() + + +def main(): + parser = get_parser() + args = parser.parse_args() + + world_size = args.world_size + assert world_size >= 1 + if world_size > 1: + mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) + else: + run(rank=0, world_size=1, args=args) + + +if __name__ == "__main__": + main() diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/utils.py b/egs/grid/AVSR/visualnet2_ctc_vsr/utils.py similarity index 100% rename from egs/grid/AVSR/lipnet_ctc_vsr/utils.py rename to egs/grid/AVSR/visualnet2_ctc_vsr/utils.py diff --git a/egs/grid/AVSR/visualnet_ctc_vsr/__init__.py b/egs/grid/AVSR/visualnet_ctc_vsr/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/decode.py b/egs/grid/AVSR/visualnet_ctc_vsr/decode.py similarity index 99% rename from egs/grid/AVSR/lipnet_ctc_vsr/decode.py rename to egs/grid/AVSR/visualnet_ctc_vsr/decode.py index 3ed36f339..80b4d8b87 100644 --- a/egs/grid/AVSR/lipnet_ctc_vsr/decode.py +++ b/egs/grid/AVSR/visualnet_ctc_vsr/decode.py @@ -31,7 +31,7 @@ import torch.nn as nn from torch.utils.data import DataLoader from local.dataset_visual import dataset_visual -from model import LipNet +from model import VisualNet from icefall.checkpoint import average_checkpoints, load_checkpoint from icefall.decode import ( @@ -129,7 +129,7 @@ def get_parser(): def get_params() -> AttributeDict: params = AttributeDict( { - "exp_dir": Path("lipnet_ctc_vsr/exp"), + "exp_dir": Path("visualnet_ctc_vsr/exp"), "lang_dir": Path("data/lang_character"), "lm_dir": Path("data/lm"), "search_beam": 20, @@ -440,7 +440,7 @@ def main(): else: G = None - model = LipNet(num_classes=max_token_id + 1) + model = VisualNet(num_classes=max_token_id + 1) if params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/model.py b/egs/grid/AVSR/visualnet_ctc_vsr/model.py similarity index 69% rename from egs/grid/AVSR/lipnet_ctc_vsr/model.py rename to egs/grid/AVSR/visualnet_ctc_vsr/model.py index 4fb70b269..19ecc1fcd 100644 --- a/egs/grid/AVSR/lipnet_ctc_vsr/model.py +++ b/egs/grid/AVSR/visualnet_ctc_vsr/model.py @@ -1,11 +1,28 @@ #!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + import torch import torch.nn as nn -class LipNet(torch.nn.Module): +class VisualNet(torch.nn.Module): def __init__(self, num_classes, dropout_p=0.1): - super(LipNet, self).__init__() + super(VisualNet, self).__init__() self.num_classes = num_classes self.conv1 = nn.Conv3d(3, 32, (3, 5, 5), (1, 2, 2), (1, 2, 2)) self.pool1 = nn.MaxPool3d((1, 2, 2), (1, 2, 2)) diff --git a/egs/grid/AVSR/lipnet_ctc_vsr/train.py b/egs/grid/AVSR/visualnet_ctc_vsr/train.py similarity index 99% rename from egs/grid/AVSR/lipnet_ctc_vsr/train.py rename to egs/grid/AVSR/visualnet_ctc_vsr/train.py index d8b7b3315..55e1b3b53 100644 --- a/egs/grid/AVSR/lipnet_ctc_vsr/train.py +++ b/egs/grid/AVSR/visualnet_ctc_vsr/train.py @@ -34,7 +34,7 @@ from torch.utils.data import DataLoader from local.dataset_visual import dataset_visual from lhotse.utils import fix_random_seed -from model import LipNet +from model import VisualNet from torch import Tensor from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.utils import clip_grad_norm_ @@ -157,7 +157,7 @@ def get_params() -> AttributeDict: """ params = AttributeDict( { - "exp_dir": Path("lipnet_ctc_vsr/exp"), + "exp_dir": Path("visualnet_ctc_vsr/exp"), "lang_dir": Path("data/lang_character"), "lr": 4e-4, "feature_dim": 80, @@ -509,7 +509,7 @@ def run(rank, world_size, args): device = torch.device("cuda", rank) graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device) - model = LipNet(num_classes=max_token_id + 1) + model = VisualNet(num_classes=max_token_id + 1) checkpoints = load_checkpoint_if_available(params=params, model=model) diff --git a/egs/grid/AVSR/visualnet_ctc_vsr/utils.py b/egs/grid/AVSR/visualnet_ctc_vsr/utils.py new file mode 100644 index 000000000..cf68944bf --- /dev/null +++ b/egs/grid/AVSR/visualnet_ctc_vsr/utils.py @@ -0,0 +1,45 @@ +# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo) +# +# See ../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch + + +def encode_supervisions(nnet_output_shape, batch): + """ + In GRID, the lengths of all samples are same. + And here, we don't deploy cut operation on it. + So, the start frame is always 0 among all samples. + """ + N, T, D = nnet_output_shape + + supervisions_idx = torch.arange(0, N).to(torch.int32) + start_frames = [0 for _ in range(N)] + supervisions_start_frame = torch.tensor(start_frames).to(torch.int32) + num_frames = [T for _ in range(N)] + supervisions_num_frames = torch.tensor(num_frames).to(torch.int32) + + supervision_segments = torch.stack( + ( + supervisions_idx, + supervisions_start_frame, + supervisions_num_frames, + ), + 1, + ).to(torch.int32) + + texts = batch["txt"] + + return supervision_segments, texts From 514cd1fcf3d34d194be37e7f838d14e7b54bf81e Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Mon, 27 Dec 2021 17:01:31 +0800 Subject: [PATCH 16/20] Update README.md --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 88e5c6d81..769dc16e6 100644 --- a/README.md +++ b/README.md @@ -221,4 +221,5 @@ Please see: [![Open In Colab](https://colab.research.google.com/assets/colab-bad [librispeech]: egs/librispeech/ASR [aishell]: egs/aishell/ASR [timit]: egs/timit/ASR +[grid]: egs/grid/AVSR [k2]: https://github.com/k2-fsa/k2 From 2b5881f4d997bafbfabfe9f8280c22122b7e1899 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Mon, 27 Dec 2021 21:18:49 +0800 Subject: [PATCH 17/20] Update README.md --- README.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 769dc16e6..cf1c7bcb6 100644 --- a/README.md +++ b/README.md @@ -150,7 +150,7 @@ and [Conv3d ResNet18 BiGRU CTC model][GRID_conv3d_resnet18_bigru_ctc]. #### Conv3d Map BiGRU CTC Model -The best WER we currently have is: +The WER for this model is: ||TEST| |--|--| @@ -172,7 +172,7 @@ For the ASR (automatic speech recognition) task, we provide one model: [Tdnn Lst #### Tdnn Lstm CTC Model -The best WER we currently have is: +The WER for this model is: ||TEST| |--|--| @@ -184,7 +184,7 @@ For the AVSR (audio-visual speech recognition) task, we provide one model: [Comb #### CombineNet CTC Model -The best WER we currently have is: +The WER for this model is: ||TEST| |--|--| From 283bd126c599692d064c77b92a2733a6c772ba10 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Wed, 29 Dec 2021 19:10:56 +0800 Subject: [PATCH 18/20] add pretrained.py --- egs/grid/AVSR/audionet_ctc_asr/pretrained.py | 274 ++++++++++++++++++ .../AVSR/combinenet_ctc_avsr/pretrained.py | 270 +++++++++++++++++ egs/grid/AVSR/visualnet2_ctc_vsr/decode.py | 8 +- egs/grid/AVSR/visualnet2_ctc_vsr/model.py | 7 +- .../AVSR/visualnet2_ctc_vsr/pretrained.py | 243 ++++++++++++++++ egs/grid/AVSR/visualnet2_ctc_vsr/train.py | 3 +- egs/grid/AVSR/visualnet_ctc_vsr/pretrained.py | 243 ++++++++++++++++ 7 files changed, 1040 insertions(+), 8 deletions(-) create mode 100644 egs/grid/AVSR/audionet_ctc_asr/pretrained.py create mode 100644 egs/grid/AVSR/combinenet_ctc_avsr/pretrained.py create mode 100644 egs/grid/AVSR/visualnet2_ctc_vsr/pretrained.py create mode 100644 egs/grid/AVSR/visualnet_ctc_vsr/pretrained.py diff --git a/egs/grid/AVSR/audionet_ctc_asr/pretrained.py b/egs/grid/AVSR/audionet_ctc_asr/pretrained.py new file mode 100644 index 000000000..fe81ded6b --- /dev/null +++ b/egs/grid/AVSR/audionet_ctc_asr/pretrained.py @@ -0,0 +1,274 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang +# Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import logging +from typing import List + +import k2 +import kaldifeat +import torch +import torchaudio +from model import AudioNet + +from icefall.decode import ( + get_lattice, + one_best_decoding, + rescore_with_whole_lattice, +) +from icefall.utils import AttributeDict, get_texts + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--words-file", + type=str, + required=True, + help="Path to words.txt", + ) + + parser.add_argument( + "--HLG", type=str, required=True, help="Path to HLG.pt." + ) + + parser.add_argument( + "--method", + type=str, + default="1best", + help="""Decoding method. + Possible values are: + (1) 1best - Use the best path as decoding output. Only + the transformer encoder output is used for decoding. + We call it HLG decoding. + (2) whole-lattice-rescoring - Use an LM to rescore the + decoding lattice and then use 1best to decode the + rescored lattice. + We call it HLG decoding + n-gram LM rescoring. + """, + ) + + parser.add_argument( + "--G", + type=str, + help="""An LM for rescoring. + Used only when method is + whole-lattice-rescoring. + It's usually a 4-gram LM. + """, + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=0.1, + help=""" + Used only when method is whole-lattice-rescoring. + It specifies the scale for n-gram LM scores. + (Note: You need to tune it on a dataset.) + """, + ) + + parser.add_argument( + "sound_files", + type=str, + nargs="+", + help="The input sound file(s) to transcribe. " + "Supported formats are those supported by torchaudio.load(). " + "For example, wav and flac are supported. " + "The sample rate has to be 16kHz.", + ) + + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + "feature_dim": 80, + "subsampling_factor": 3, + "num_classes": 28, + "sample_rate": 16000, + "search_beam": 20, + "output_beam": 5, + "min_active_states": 30, + "max_active_states": 10000, + "use_double_scores": True, + } + ) + return params + + +def read_sound_files( + filenames: List[str], expected_sample_rate: float +) -> List[torch.Tensor]: + """Read a list of sound files into a list 1-D float32 torch tensors. + Args: + filenames: + A list of sound filenames. + expected_sample_rate: + The expected sample rate of the sound files. + Returns: + Return a list of 1-D float32 torch tensors. + """ + ans = [] + for f in filenames: + wave, sample_rate = torchaudio.load(f) + # We use only the first channel + ans.append(wave[0]) + return ans + + +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + params.update(vars(args)) + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("Creating model") + model = AudioNet( + num_features=params.feature_dim, + num_classes=params.num_classes, + subsampling_factor=params.subsampling_factor, + ) + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"]) + model.to(device) + model.eval() + + logging.info(f"Loading HLG from {params.HLG}") + HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu")) + HLG = HLG.to(device) + if not hasattr(HLG, "lm_scores"): + # For whole-lattice-rescoring and attention-decoder + HLG.lm_scores = HLG.scores.clone() + + if params.method == "whole-lattice-rescoring": + logging.info(f"Loading G from {params.G}") + G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu")) + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = G.to(device) + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + G.lm_scores = G.scores.clone() + + logging.info("Constructing Fbank computer") + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = params.sample_rate + opts.mel_opts.num_bins = params.feature_dim + + fbank = kaldifeat.Fbank(opts) + + logging.info(f"Reading sound files: {params.sound_files}") + waves = read_sound_files( + filenames=params.sound_files, expected_sample_rate=params.sample_rate + ) + waves = [w.to(device) for w in waves] + + logging.info("Decoding started") + features = fbank(waves) + + features_new = torch.zeros(len(features), 480, params.feature_dim).to( + device + ) + for i in range(len(features)): + length = features[i].shape[0] + features_new[i][:length] = features[i] + + with torch.no_grad(): + nnet_output = model(features_new.permute(0, 2, 1)) + # nnet_output is (N, T, C) + + batch_size = nnet_output.shape[0] + supervision_segments = torch.tensor( + [[i, 0, nnet_output.shape[1]] for i in range(batch_size)], + dtype=torch.int32, + ) + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + subsampling_factor=params.subsampling_factor, + ) + + if params.method == "1best": + logging.info("Use HLG decoding") + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + elif params.method == "whole-lattice-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=[params.ngram_lm_scale], + ) + best_path = next(iter(best_path_dict.values())) + + hyps = get_texts(best_path) + word_sym_table = k2.SymbolTable.from_file(params.words_file) + hyps = [[word_sym_table[i] for i in ids] for ids in hyps] + + s = "\n" + for filename, hyp in zip(params.sound_files, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = ( + "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + ) + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/grid/AVSR/combinenet_ctc_avsr/pretrained.py b/egs/grid/AVSR/combinenet_ctc_avsr/pretrained.py new file mode 100644 index 000000000..121d0cdd7 --- /dev/null +++ b/egs/grid/AVSR/combinenet_ctc_avsr/pretrained.py @@ -0,0 +1,270 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang +# Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import cv2 +import logging +import numpy as np +import os + +import k2 +import kaldifeat +import torch +import torchaudio +from model import TdnnLstm + +from icefall.decode import ( + get_lattice, + one_best_decoding, + rescore_with_whole_lattice, +) +from icefall.utils import AttributeDict, get_texts + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--words-file", + type=str, + required=True, + help="Path to words.txt", + ) + + parser.add_argument( + "--HLG", type=str, required=True, help="Path to HLG.pt." + ) + + parser.add_argument( + "--method", + type=str, + default="1best", + help="""Decoding method. + Possible values are: + (1) 1best - Use the best path as decoding output. Only + the transformer encoder output is used for decoding. + We call it HLG decoding. + (2) whole-lattice-rescoring - Use an LM to rescore the + decoding lattice and then use 1best to decode the + rescored lattice. + We call it HLG decoding + n-gram LM rescoring. + """, + ) + + parser.add_argument( + "--G", + type=str, + help="""An LM for rescoring. + Used only when method is + whole-lattice-rescoring. + It's usually a 4-gram LM. + """, + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=0.1, + help=""" + Used only when method is whole-lattice-rescoring. + It specifies the scale for n-gram LM scores. + (Note: You need to tune it on a dataset.) + """, + ) + + parser.add_argument( + "--lipframes-dirs", + type=str, + nargs="+", + help="The input visual file(s) to transcribe. " + "Supported formats are those supported by cv2.imread(). " + "The frames sample rate is 25fps.", + ) + + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + "num_classes": 28, + "search_beam": 20, + "output_beam": 5, + "min_active_states": 30, + "max_active_states": 10000, + "use_double_scores": True, + } + ) + return params + + +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + params.update(vars(args)) + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("Creating model") + model = TdnnLstm(num_features=80, num_classes=28, subsampling_factor=3) + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"]) + model.to(device) + model.eval() + + logging.info(f"Loading HLG from {params.HLG}") + HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu")) + HLG = HLG.to(device) + if not hasattr(HLG, "lm_scores"): + # For whole-lattice-rescoring and attention-decoder + HLG.lm_scores = HLG.scores.clone() + + if params.method == "whole-lattice-rescoring": + logging.info(f"Loading G from {params.G}") + G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu")) + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = G.to(device) + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + G.lm_scores = G.scores.clone() + + logging.info("Loading lip roi frames and audio wav files") + aud = [] + vid = [] + + opts = kaldifeat.FbankOptions() + opts.device = device + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = 16000 + opts.mel_opts.num_bins = 80 + fbank = kaldifeat.Fbank(opts) + + for sample_dir in params.lipframes_dirs: + wave, sr = torchaudio.load( + sample_dir.replace("lip", "audio_25k").replace( + "video/mpg_6000/", "" + ) + + ".wav" + ) + wave = wave[0] + aud.append(fbank(wave)) + + files = os.listdir(sample_dir) + files = list(filter(lambda file: file.find(".jpg") != -1, files)) + files = sorted(files, key=lambda file: int(os.path.splitext(file)[0])) + array = [cv2.imread(os.path.join(sample_dir, file)) for file in files] + array = list(filter(lambda im: im is not None, array)) + array = [ + cv2.resize(im, (128, 64), interpolation=cv2.INTER_LANCZOS4) + for im in array + ] + array = np.stack(array, axis=0).astype(np.float32) + vid.append(array) + + L, H, W, C = vid[0].shape + features_v = torch.zeros(len(vid), 75, H, W, C).to(device) + for i in range(len(vid)): + length = vid[i].shape[0] + features_v[i][:length] = torch.FloatTensor(vid[i]).to(device) + + features_a = torch.zeros(len(aud), 450, 80).to(device) + for i in range(len(aud)): + length = aud[i].shape[0] + features_a[i][:length] = torch.FloatTensor(aud[i]).to(device) + + logging.info("Decoding started") + with torch.no_grad(): + nnet_output = model( + features_v.permute(0, 4, 1, 2, 3) / 255.0, + features_a.permute(0, 2, 1), + ) + # nnet_output is (N, T, C) + + batch_size = nnet_output.shape[0] + supervision_segments = torch.tensor( + [[i, 0, nnet_output.shape[1]] for i in range(batch_size)], + dtype=torch.int32, + ) + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + ) + + if params.method == "1best": + logging.info("Use HLG decoding") + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + elif params.method == "whole-lattice-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=[params.ngram_lm_scale], + ) + best_path = next(iter(best_path_dict.values())) + + hyps = get_texts(best_path) + word_sym_table = k2.SymbolTable.from_file(params.words_file) + hyps = [[word_sym_table[i] for i in ids] for ids in hyps] + + s = "\n" + for filename, hyp in zip(params.lipframes_dirs, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = ( + "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + ) + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/grid/AVSR/visualnet2_ctc_vsr/decode.py b/egs/grid/AVSR/visualnet2_ctc_vsr/decode.py index a8fe0a515..1fbfd7650 100644 --- a/egs/grid/AVSR/visualnet2_ctc_vsr/decode.py +++ b/egs/grid/AVSR/visualnet2_ctc_vsr/decode.py @@ -32,8 +32,7 @@ import torch.nn as nn from torch.utils.data import DataLoader from local.dataset_visual import dataset_visual -# from model import LipNet -from model import visual_frontend +from model import VisualNet2 from icefall.checkpoint import average_checkpoints, load_checkpoint from icefall.decode import ( @@ -131,7 +130,7 @@ def get_parser(): def get_params() -> AttributeDict: params = AttributeDict( { - "exp_dir": Path("visualnet_ctc_vsr2/exp"), + "exp_dir": Path("visualnet2_ctc_vsr/exp"), "lang_dir": Path("data/lang_character"), "lm_dir": Path("data/lm"), "search_beam": 20, @@ -388,6 +387,7 @@ def main(): logging.info(params) lexicon = Lexicon(params.lang_dir) + max_token_id = max(lexicon.tokens) device = torch.device("cpu") if torch.cuda.is_available(): @@ -441,7 +441,7 @@ def main(): else: G = None - model = visual_frontend() + model = VisualNet2(num_classes=max_token_id + 1) if params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: diff --git a/egs/grid/AVSR/visualnet2_ctc_vsr/model.py b/egs/grid/AVSR/visualnet2_ctc_vsr/model.py index 14f102108..bf3ceadd0 100644 --- a/egs/grid/AVSR/visualnet2_ctc_vsr/model.py +++ b/egs/grid/AVSR/visualnet2_ctc_vsr/model.py @@ -115,9 +115,10 @@ class ResNet(nn.Module): class VisualNet2(nn.Module): - def __init__(self, inputDim=512): + def __init__(self, num_classes): super(VisualNet2, self).__init__() - self.inputDim = inputDim + self.num_classes = num_classes + self.inputDim = 512 self.conv3d = nn.Conv3d( 3, 64, @@ -143,7 +144,7 @@ class VisualNet2(nn.Module): self.dropout = nn.Dropout(p=0.5) # fc - self.linear = nn.Linear(1024, 28) + self.linear = nn.Linear(1024, self.num_classes) # initialize self._initialize_weights() diff --git a/egs/grid/AVSR/visualnet2_ctc_vsr/pretrained.py b/egs/grid/AVSR/visualnet2_ctc_vsr/pretrained.py new file mode 100644 index 000000000..08589db57 --- /dev/null +++ b/egs/grid/AVSR/visualnet2_ctc_vsr/pretrained.py @@ -0,0 +1,243 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang +# Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import cv2 +import logging +import numpy as np +import os + +import k2 +import torch +from model import VisualNet2 + +from icefall.decode import ( + get_lattice, + one_best_decoding, + rescore_with_whole_lattice, +) +from icefall.utils import AttributeDict, get_texts + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--words-file", + type=str, + required=True, + help="Path to words.txt", + ) + + parser.add_argument( + "--HLG", type=str, required=True, help="Path to HLG.pt." + ) + + parser.add_argument( + "--method", + type=str, + default="1best", + help="""Decoding method. + Possible values are: + (1) 1best - Use the best path as decoding output. Only + the transformer encoder output is used for decoding. + We call it HLG decoding. + (2) whole-lattice-rescoring - Use an LM to rescore the + decoding lattice and then use 1best to decode the + rescored lattice. + We call it HLG decoding + n-gram LM rescoring. + """, + ) + + parser.add_argument( + "--G", + type=str, + help="""An LM for rescoring. + Used only when method is + whole-lattice-rescoring. + It's usually a 4-gram LM. + """, + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=0.1, + help=""" + Used only when method is whole-lattice-rescoring. + It specifies the scale for n-gram LM scores. + (Note: You need to tune it on a dataset.) + """, + ) + + parser.add_argument( + "--lipframes-dirs", + type=str, + nargs="+", + help="The input visual file(s) to transcribe. " + "Supported formats are those supported by cv2.imread(). " + "The frames sample rate is 25fps.", + ) + + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + "num_classes": 28, + "search_beam": 20, + "output_beam": 5, + "min_active_states": 30, + "max_active_states": 10000, + "use_double_scores": True, + } + ) + return params + + +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + params.update(vars(args)) + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("Creating model") + model = VisualNet2(num_classes=params.num_classes) + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"]) + model.to(device) + model.eval() + + logging.info(f"Loading HLG from {params.HLG}") + HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu")) + HLG = HLG.to(device) + if not hasattr(HLG, "lm_scores"): + # For whole-lattice-rescoring and attention-decoder + HLG.lm_scores = HLG.scores.clone() + + if params.method == "whole-lattice-rescoring": + logging.info(f"Loading G from {params.G}") + G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu")) + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = G.to(device) + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + G.lm_scores = G.scores.clone() + + logging.info("Loading lip roi frames") + + vid = [] + for sample_dir in params.lipframes_dirs: + files = os.listdir(sample_dir) + files = list(filter(lambda file: file.find(".jpg") != -1, files)) + files = sorted(files, key=lambda file: int(os.path.splitext(file)[0])) + array = [cv2.imread(os.path.join(sample_dir, file)) for file in files] + array = list(filter(lambda im: im is not None, array)) + array = [ + cv2.resize(im, (128, 64), interpolation=cv2.INTER_LANCZOS4) + for im in array + ] + array = np.stack(array, axis=0).astype(np.float32) + vid.append(array) + + _, H, W, C = vid[0].shape + features = torch.zeros(len(vid), 75, H, W, C).to(device) + for i in range(len(vid)): + length = vid[i].shape[0] + features[i][:length] = torch.FloatTensor(vid[i]).to(device) + + logging.info("Decoding started") + features = features / 255.0 + with torch.no_grad(): + nnet_output = model(features.permute(0, 4, 1, 2, 3)) + # nnet_output is (N, T, C) + + batch_size = nnet_output.shape[0] + supervision_segments = torch.tensor( + [[i, 0, nnet_output.shape[1]] for i in range(batch_size)], + dtype=torch.int32, + ) + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + ) + + if params.method == "1best": + logging.info("Use HLG decoding") + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + elif params.method == "whole-lattice-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=[params.ngram_lm_scale], + ) + best_path = next(iter(best_path_dict.values())) + + hyps = get_texts(best_path) + word_sym_table = k2.SymbolTable.from_file(params.words_file) + hyps = [[word_sym_table[i] for i in ids] for ids in hyps] + + s = "\n" + for filename, hyp in zip(params.lipframes_dirs, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = ( + "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + ) + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/grid/AVSR/visualnet2_ctc_vsr/train.py b/egs/grid/AVSR/visualnet2_ctc_vsr/train.py index 91a1b024a..af9bdec9e 100644 --- a/egs/grid/AVSR/visualnet2_ctc_vsr/train.py +++ b/egs/grid/AVSR/visualnet2_ctc_vsr/train.py @@ -503,13 +503,14 @@ def run(rank, world_size, args): tb_writer = None lexicon = Lexicon(params.lang_dir) + max_token_id = max(lexicon.tokens) device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", rank) graph_compiler = CtcTrainingGraphCompiler(lexicon=lexicon, device=device) - model = VisualNet2() + model = VisualNet2(num_classes=max_token_id + 1) checkpoints = load_checkpoint_if_available(params=params, model=model) diff --git a/egs/grid/AVSR/visualnet_ctc_vsr/pretrained.py b/egs/grid/AVSR/visualnet_ctc_vsr/pretrained.py new file mode 100644 index 000000000..e479b46f2 --- /dev/null +++ b/egs/grid/AVSR/visualnet_ctc_vsr/pretrained.py @@ -0,0 +1,243 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, +# Wei Kang +# Mingshuang Luo) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import cv2 +import logging +import numpy as np +import os + +import k2 +import torch +from model import VisualNet + +from icefall.decode import ( + get_lattice, + one_best_decoding, + rescore_with_whole_lattice, +) +from icefall.utils import AttributeDict, get_texts + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--checkpoint", + type=str, + required=True, + help="Path to the checkpoint. " + "The checkpoint is assumed to be saved by " + "icefall.checkpoint.save_checkpoint().", + ) + + parser.add_argument( + "--words-file", + type=str, + required=True, + help="Path to words.txt", + ) + + parser.add_argument( + "--HLG", type=str, required=True, help="Path to HLG.pt." + ) + + parser.add_argument( + "--method", + type=str, + default="1best", + help="""Decoding method. + Possible values are: + (1) 1best - Use the best path as decoding output. Only + the transformer encoder output is used for decoding. + We call it HLG decoding. + (2) whole-lattice-rescoring - Use an LM to rescore the + decoding lattice and then use 1best to decode the + rescored lattice. + We call it HLG decoding + n-gram LM rescoring. + """, + ) + + parser.add_argument( + "--G", + type=str, + help="""An LM for rescoring. + Used only when method is + whole-lattice-rescoring. + It's usually a 4-gram LM. + """, + ) + + parser.add_argument( + "--ngram-lm-scale", + type=float, + default=0.1, + help=""" + Used only when method is whole-lattice-rescoring. + It specifies the scale for n-gram LM scores. + (Note: You need to tune it on a dataset.) + """, + ) + + parser.add_argument( + "--lipframes-dirs", + type=str, + nargs="+", + help="The input visual file(s) to transcribe. " + "Supported formats are those supported by cv2.imread(). " + "The frames sample rate is 25fps.", + ) + + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + "num_classes": 28, + "search_beam": 20, + "output_beam": 5, + "min_active_states": 30, + "max_active_states": 10000, + "use_double_scores": True, + } + ) + return params + + +def main(): + parser = get_parser() + args = parser.parse_args() + + params = get_params() + params.update(vars(args)) + logging.info(f"{params}") + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda", 0) + + logging.info(f"device: {device}") + + logging.info("Creating model") + model = VisualNet(num_classes=params.num_classes) + + checkpoint = torch.load(args.checkpoint, map_location="cpu") + model.load_state_dict(checkpoint["model"]) + model.to(device) + model.eval() + + logging.info(f"Loading HLG from {params.HLG}") + HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu")) + HLG = HLG.to(device) + if not hasattr(HLG, "lm_scores"): + # For whole-lattice-rescoring and attention-decoder + HLG.lm_scores = HLG.scores.clone() + + if params.method == "whole-lattice-rescoring": + logging.info(f"Loading G from {params.G}") + G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu")) + # Add epsilon self-loops to G as we will compose + # it with the whole lattice later + G = G.to(device) + G = k2.add_epsilon_self_loops(G) + G = k2.arc_sort(G) + G.lm_scores = G.scores.clone() + + logging.info("Loading lip roi frames") + + vid = [] + for sample_dir in params.lipframes_dirs: + files = os.listdir(sample_dir) + files = list(filter(lambda file: file.find(".jpg") != -1, files)) + files = sorted(files, key=lambda file: int(os.path.splitext(file)[0])) + array = [cv2.imread(os.path.join(sample_dir, file)) for file in files] + array = list(filter(lambda im: im is not None, array)) + array = [ + cv2.resize(im, (128, 64), interpolation=cv2.INTER_LANCZOS4) + for im in array + ] + array = np.stack(array, axis=0).astype(np.float32) + vid.append(array) + + _, H, W, C = vid[0].shape + features = torch.zeros(len(vid), 75, H, W, C).to(device) + for i in range(len(vid)): + length = vid[i].shape[0] + features[i][:length] = torch.FloatTensor(vid[i]).to(device) + + logging.info("Decoding started") + features = features / 255.0 + with torch.no_grad(): + nnet_output = model(features.permute(0, 4, 1, 2, 3)) + # nnet_output is (N, T, C) + + batch_size = nnet_output.shape[0] + supervision_segments = torch.tensor( + [[i, 0, nnet_output.shape[1]] for i in range(batch_size)], + dtype=torch.int32, + ) + + lattice = get_lattice( + nnet_output=nnet_output, + decoding_graph=HLG, + supervision_segments=supervision_segments, + search_beam=params.search_beam, + output_beam=params.output_beam, + min_active_states=params.min_active_states, + max_active_states=params.max_active_states, + ) + + if params.method == "1best": + logging.info("Use HLG decoding") + best_path = one_best_decoding( + lattice=lattice, use_double_scores=params.use_double_scores + ) + elif params.method == "whole-lattice-rescoring": + logging.info("Use HLG decoding + LM rescoring") + best_path_dict = rescore_with_whole_lattice( + lattice=lattice, + G_with_epsilon_loops=G, + lm_scale_list=[params.ngram_lm_scale], + ) + best_path = next(iter(best_path_dict.values())) + + hyps = get_texts(best_path) + word_sym_table = k2.SymbolTable.from_file(params.words_file) + hyps = [[word_sym_table[i] for i in ids] for ids in hyps] + + s = "\n" + for filename, hyp in zip(params.lipframes_dirs, hyps): + words = " ".join(hyp) + s += f"{filename}:\n{words}\n\n" + logging.info(s) + + logging.info("Decoding Done") + + +if __name__ == "__main__": + formatter = ( + "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + ) + + logging.basicConfig(format=formatter, level=logging.INFO) + main() From 7391f4febf5fcdf0f50d3a539b4a8cd7e46f557c Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Thu, 30 Dec 2021 10:24:47 +0800 Subject: [PATCH 19/20] Add explaination for some functions and classes --- egs/grid/AVSR/audionet_ctc_asr/pretrained.py | 2 +- egs/grid/AVSR/audionet_ctc_asr/utils.py | 6 +-- egs/grid/AVSR/combinenet_ctc_avsr/model.py | 2 +- .../AVSR/combinenet_ctc_avsr/pretrained.py | 2 + egs/grid/AVSR/local/cvtransforms.py | 7 ++++ egs/grid/AVSR/local/dataset_audio.py | 38 ++++++++++++++----- egs/grid/AVSR/local/dataset_av.py | 24 +++++++++++- egs/grid/AVSR/local/dataset_visual.py | 28 +++++++++++--- egs/grid/AVSR/visualnet2_ctc_vsr/model.py | 7 +++- .../AVSR/visualnet2_ctc_vsr/pretrained.py | 1 + egs/grid/AVSR/visualnet_ctc_vsr/model.py | 11 ++++-- 11 files changed, 102 insertions(+), 26 deletions(-) diff --git a/egs/grid/AVSR/audionet_ctc_asr/pretrained.py b/egs/grid/AVSR/audionet_ctc_asr/pretrained.py index fe81ded6b..853a38066 100644 --- a/egs/grid/AVSR/audionet_ctc_asr/pretrained.py +++ b/egs/grid/AVSR/audionet_ctc_asr/pretrained.py @@ -209,7 +209,7 @@ def main(): logging.info("Decoding started") features = fbank(waves) - + # aud_padding = 480 features_new = torch.zeros(len(features), 480, params.feature_dim).to( device ) diff --git a/egs/grid/AVSR/audionet_ctc_asr/utils.py b/egs/grid/AVSR/audionet_ctc_asr/utils.py index dbe01bb25..03b1b4ec4 100644 --- a/egs/grid/AVSR/audionet_ctc_asr/utils.py +++ b/egs/grid/AVSR/audionet_ctc_asr/utils.py @@ -19,16 +19,14 @@ import torch def encode_supervisions(nnet_output_shape, batch): """ - Encodes Lhotse's ``batch["supervisions"]`` dict into + Encodes the output of net and texts into a pair of torch Tensor, and a list of transcription strings. The supervision tensor has shape ``(batch_size, 3)``. Its second dimension contains information about sequence index [0], start frames [1] and num frames [2]. - The batch items might become re-ordered during this operation -- the - returned tensor and list of strings are guaranteed to be consistent with - each other. + In GRID, the start frame of each audio sample is 0. """ N, T, D = nnet_output_shape diff --git a/egs/grid/AVSR/combinenet_ctc_avsr/model.py b/egs/grid/AVSR/combinenet_ctc_avsr/model.py index 03652a223..c0bcffa04 100644 --- a/egs/grid/AVSR/combinenet_ctc_avsr/model.py +++ b/egs/grid/AVSR/combinenet_ctc_avsr/model.py @@ -135,7 +135,7 @@ class CombineNet(nn.Module): """ Args: x_v: - Its shape is [N, 3, H, W] + Its shape is [N, 3, T, H, W] x_a: Its shape is [N, C, T] Returns: diff --git a/egs/grid/AVSR/combinenet_ctc_avsr/pretrained.py b/egs/grid/AVSR/combinenet_ctc_avsr/pretrained.py index 121d0cdd7..65801471d 100644 --- a/egs/grid/AVSR/combinenet_ctc_avsr/pretrained.py +++ b/egs/grid/AVSR/combinenet_ctc_avsr/pretrained.py @@ -200,6 +200,8 @@ def main(): vid.append(array) L, H, W, C = vid[0].shape + # vid_padding = 75 + # aud_padding = 480 features_v = torch.zeros(len(vid), 75, H, W, C).to(device) for i in range(len(vid)): length = vid[i].shape[0] diff --git a/egs/grid/AVSR/local/cvtransforms.py b/egs/grid/AVSR/local/cvtransforms.py index c80387850..11f47a57d 100644 --- a/egs/grid/AVSR/local/cvtransforms.py +++ b/egs/grid/AVSR/local/cvtransforms.py @@ -15,7 +15,14 @@ # See the License for the specific language governing permissions and # limitations under the License. +""" +In this script, there are two functions: +the function HorizontalFlip is to flip the images, +the function ColorNormalize is to normalize the images. +The above two functions is to augment the images. +The input for the above functions is a sequence of images. +""" import random diff --git a/egs/grid/AVSR/local/dataset_audio.py b/egs/grid/AVSR/local/dataset_audio.py index d7eba76c5..27868529f 100644 --- a/egs/grid/AVSR/local/dataset_audio.py +++ b/egs/grid/AVSR/local/dataset_audio.py @@ -15,7 +15,10 @@ # See the License for the specific language governing permissions and # limitations under the License. - +""" +This script is to load the audio data in GRID. +The class dataset_audio makes each audio batch data have the same shape. +""" import kaldifeat import numpy as np import os @@ -28,14 +31,31 @@ from torch.utils.data import Dataset class dataset_audio(Dataset): def __init__( self, - video_path, - anno_path, - file_list, - aud_padding, - sample_rate, - feature_dim, - phase, - ): + video_path: str, + anno_path: str, + file_list: str, + aud_padding: int, + sample_rate: int, + feature_dim: int, + phase: str, + ) -> None: + """ + Args: + video_path: + The dir path of the visual data. + anno_path: + The dir path of the texts data. + file_list: + The file which listing all samples for training or testing. + aud_padding: + The padding for each audio sample. + sample_rate: + The sample rate for extracting fbank feature. + feature_dim: + The dim for fbank feature. + phase: + "train" or "test". + """ self.anno_path = anno_path self.aud_padding = aud_padding self.sample_rate = sample_rate diff --git a/egs/grid/AVSR/local/dataset_av.py b/egs/grid/AVSR/local/dataset_av.py index 5d056aef4..54e095ea0 100644 --- a/egs/grid/AVSR/local/dataset_av.py +++ b/egs/grid/AVSR/local/dataset_av.py @@ -15,7 +15,10 @@ # See the License for the specific language governing permissions and # limitations under the License. - +""" +This script is to load the pair of audio-visual data in GRID. +The class dataset_av makes each audio-visual batch data have the same shape. +""" import cv2 import kaldifeat import numpy as np @@ -40,6 +43,25 @@ class dataset_av(Dataset): sample_rate, phase, ): + """ + Args: + video_path: + The dir path of the visual data. + anno_path: + The dir path of the texts data. + file_list: + The file which listing all samples for training or testing. + feature_dim: + The dimension for fbank feature. + vid_padding: + The padding for each visual sample. + aud_padding: + The padding for each audio sample. + sample_rate: + The sample rate for extracting fbank feature. + phase: + "train" or "test". + """ self.anno_path = anno_path self.vid_pading = vid_pading self.aud_pading = aud_pading diff --git a/egs/grid/AVSR/local/dataset_visual.py b/egs/grid/AVSR/local/dataset_visual.py index 04c45ba46..f0f2f21ae 100644 --- a/egs/grid/AVSR/local/dataset_visual.py +++ b/egs/grid/AVSR/local/dataset_visual.py @@ -15,7 +15,10 @@ # See the License for the specific language governing permissions and # limitations under the License. - +""" +This script is to load the visual data in GRID. +The class dataset_visual makes each visual batch data have the same shape. +""" import cv2 import os import numpy as np @@ -27,12 +30,25 @@ from .cvtransforms import HorizontalFlip, ColorNormalize class dataset_visual(Dataset): def __init__( self, - video_path, - anno_path, - file_list, - vid_padding, - phase, + video_path: str, + anno_path: str, + file_list: str, + vid_padding: int, + phase: str, ): + """ + Args: + video_path: + The dir path of the visual data. + anno_path: + The dir path of the texts data. + file_list: + The file which listing all samples for training or testing. + vid_padding: + The padding for each visual sample. + phase: + "train" or "test". + """ self.anno_path = anno_path self.vid_padding = vid_padding self.phase = phase diff --git a/egs/grid/AVSR/visualnet2_ctc_vsr/model.py b/egs/grid/AVSR/visualnet2_ctc_vsr/model.py index bf3ceadd0..b5dd5879c 100644 --- a/egs/grid/AVSR/visualnet2_ctc_vsr/model.py +++ b/egs/grid/AVSR/visualnet2_ctc_vsr/model.py @@ -116,7 +116,12 @@ class ResNet(nn.Module): class VisualNet2(nn.Module): def __init__(self, num_classes): - super(VisualNet2, self).__init__() + """ + Args: + num_classes: + The output dimension of the visualnet2 model. + """ + super().__init__() self.num_classes = num_classes self.inputDim = 512 self.conv3d = nn.Conv3d( diff --git a/egs/grid/AVSR/visualnet2_ctc_vsr/pretrained.py b/egs/grid/AVSR/visualnet2_ctc_vsr/pretrained.py index 08589db57..94eef79f7 100644 --- a/egs/grid/AVSR/visualnet2_ctc_vsr/pretrained.py +++ b/egs/grid/AVSR/visualnet2_ctc_vsr/pretrained.py @@ -180,6 +180,7 @@ def main(): vid.append(array) _, H, W, C = vid[0].shape + # vid_padding = 75 features = torch.zeros(len(vid), 75, H, W, C).to(device) for i in range(len(vid)): length = vid[i].shape[0] diff --git a/egs/grid/AVSR/visualnet_ctc_vsr/model.py b/egs/grid/AVSR/visualnet_ctc_vsr/model.py index 19ecc1fcd..6ff30ff16 100644 --- a/egs/grid/AVSR/visualnet_ctc_vsr/model.py +++ b/egs/grid/AVSR/visualnet_ctc_vsr/model.py @@ -21,8 +21,13 @@ import torch.nn as nn class VisualNet(torch.nn.Module): - def __init__(self, num_classes, dropout_p=0.1): - super(VisualNet, self).__init__() + def __init__(self, num_classes: int) -> None: + """ + Args: + num_classes: + The output dimension of the visualnet model. + """ + super().__init__() self.num_classes = num_classes self.conv1 = nn.Conv3d(3, 32, (3, 5, 5), (1, 2, 2), (1, 2, 2)) self.pool1 = nn.MaxPool3d((1, 2, 2), (1, 2, 2)) @@ -37,7 +42,7 @@ class VisualNet(torch.nn.Module): self.gru2 = nn.GRU(512, 256, 1, bidirectional=True) self.FC = nn.Linear(512, self.num_classes) - self.dropout_p = dropout_p + self.dropout_p = 0.5 self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout(self.dropout_p) From d412dbb2f0a47f1b7385322fd0d6251e678554c8 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Thu, 6 Jan 2022 18:00:05 +0800 Subject: [PATCH 20/20] Done some changes that are required. --- egs/grid/AVSR/audionet_ctc_asr/decode.py | 4 +- egs/grid/AVSR/audionet_ctc_asr/model.py | 3 +- egs/grid/AVSR/audionet_ctc_asr/pretrained.py | 2 +- egs/grid/AVSR/audionet_ctc_asr/train.py | 4 +- egs/grid/AVSR/audionet_ctc_asr/utils.py | 35 ++++++++------ egs/grid/AVSR/combinenet_ctc_avsr/decode.py | 4 +- egs/grid/AVSR/combinenet_ctc_avsr/model.py | 2 +- egs/grid/AVSR/combinenet_ctc_avsr/train.py | 4 +- egs/grid/AVSR/combinenet_ctc_avsr/utils.py | 16 +++---- egs/grid/AVSR/local/cvtransforms.py | 24 ++++++++-- egs/grid/AVSR/local/dataset_audio.py | 50 +++++++++++++++----- egs/grid/AVSR/local/dataset_av.py | 41 ++++++++++++++-- egs/grid/AVSR/local/dataset_visual.py | 35 ++++++++++++-- egs/grid/AVSR/visualnet2_ctc_vsr/decode.py | 4 +- egs/grid/AVSR/visualnet2_ctc_vsr/train.py | 4 +- egs/grid/AVSR/visualnet2_ctc_vsr/utils.py | 31 +++++++----- egs/grid/AVSR/visualnet_ctc_vsr/decode.py | 4 +- egs/grid/AVSR/visualnet_ctc_vsr/train.py | 4 +- egs/grid/AVSR/visualnet_ctc_vsr/utils.py | 31 +++++++----- 19 files changed, 212 insertions(+), 90 deletions(-) diff --git a/egs/grid/AVSR/audionet_ctc_asr/decode.py b/egs/grid/AVSR/audionet_ctc_asr/decode.py index 7a80c70e0..af02a143f 100644 --- a/egs/grid/AVSR/audionet_ctc_asr/decode.py +++ b/egs/grid/AVSR/audionet_ctc_asr/decode.py @@ -30,7 +30,7 @@ import torch import torch.nn as nn from torch.utils.data import DataLoader -from local.dataset_audio import dataset_audio +from local.dataset_audio import AudioDataSet from model import AudioNet from icefall.checkpoint import average_checkpoints, load_checkpoint @@ -467,7 +467,7 @@ def main(): model.to(device) model.eval() - grid = dataset_audio( + grid = AudioDataSet( params.video_path, params.anno_path, params.val_list, diff --git a/egs/grid/AVSR/audionet_ctc_asr/model.py b/egs/grid/AVSR/audionet_ctc_asr/model.py index 93c442aa7..a368cd85a 100644 --- a/egs/grid/AVSR/audionet_ctc_asr/model.py +++ b/egs/grid/AVSR/audionet_ctc_asr/model.py @@ -1,4 +1,5 @@ -# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang +# Mingshuang Luo) # # See ../../../../LICENSE for clarification regarding multiple authors # diff --git a/egs/grid/AVSR/audionet_ctc_asr/pretrained.py b/egs/grid/AVSR/audionet_ctc_asr/pretrained.py index 853a38066..f88d4e0fb 100644 --- a/egs/grid/AVSR/audionet_ctc_asr/pretrained.py +++ b/egs/grid/AVSR/audionet_ctc_asr/pretrained.py @@ -209,7 +209,7 @@ def main(): logging.info("Decoding started") features = fbank(waves) - # aud_padding = 480 + # Here , we set aud_padding as 480. features_new = torch.zeros(len(features), 480, params.feature_dim).to( device ) diff --git a/egs/grid/AVSR/audionet_ctc_asr/train.py b/egs/grid/AVSR/audionet_ctc_asr/train.py index a0e2a002e..f67d4c515 100644 --- a/egs/grid/AVSR/audionet_ctc_asr/train.py +++ b/egs/grid/AVSR/audionet_ctc_asr/train.py @@ -32,7 +32,7 @@ import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader -from local.dataset_audio import dataset_audio +from local.dataset_audio import AudioDataSet from lhotse.utils import fix_random_seed from model import AudioNet from torch import Tensor @@ -533,7 +533,7 @@ def run(rank, world_size, args): optimizer.load_state_dict(checkpoints["optimizer"]) scheduler.load_state_dict(checkpoints["scheduler"]) - grid = dataset_audio( + grid = AudioDataSet( params.video_path, params.anno_path, params.train_list, diff --git a/egs/grid/AVSR/audionet_ctc_asr/utils.py b/egs/grid/AVSR/audionet_ctc_asr/utils.py index 03b1b4ec4..17889a31c 100644 --- a/egs/grid/AVSR/audionet_ctc_asr/utils.py +++ b/egs/grid/AVSR/audionet_ctc_asr/utils.py @@ -14,27 +14,32 @@ # See the License for the specific language governing permissions and # limitations under the License. +""" +This script is to encodes the supervisions as Tuple list. +The supervision tensor has shape ``(batch_size, 3)``. +Its second dimension contains information about sequence index [0], +start frames [1] and num frames [2]. +In GRID, the start frame of each audio sample is 0. +""" import torch -def encode_supervisions(nnet_output_shape, batch): +def encode_supervisions(nnet_output_shape: int, batch: dict): """ - Encodes the output of net and texts into - a pair of torch Tensor, and a list of transcription strings. - - The supervision tensor has shape ``(batch_size, 3)``. - Its second dimension contains information about sequence index [0], - start frames [1] and num frames [2]. - - In GRID, the start frame of each audio sample is 0. + Args: + nnet_output_shape: + The shape of nnet_output, e.g: (N, T, D). + batch: + A batch of dataloader, it's a dict file + including text and aud/vid arrays. + Return: + The tuple list of supervisions and the text in batch. """ N, T, D = nnet_output_shape - supervisions_idx = torch.arange(0, N).to(torch.int32) - start_frames = [0 for _ in range(N)] - supervisions_start_frame = torch.tensor(start_frames).to(torch.int32) - num_frames = [T for _ in range(N)] - supervisions_num_frames = torch.tensor(num_frames).to(torch.int32) + supervisions_idx = torch.arange(0, N, dtype=torch.int32) + supervisions_start_frame = torch.full((1, N), 0, dtype=torch.int32)[0] + supervisions_num_frames = torch.full((1, N), T, dtype=torch.int32)[0] supervision_segments = torch.stack( ( @@ -43,7 +48,7 @@ def encode_supervisions(nnet_output_shape, batch): supervisions_num_frames, ), 1, - ).to(torch.int32) + ) texts = batch["txt"] return supervision_segments, texts diff --git a/egs/grid/AVSR/combinenet_ctc_avsr/decode.py b/egs/grid/AVSR/combinenet_ctc_avsr/decode.py index 579225fea..885e7e17d 100644 --- a/egs/grid/AVSR/combinenet_ctc_avsr/decode.py +++ b/egs/grid/AVSR/combinenet_ctc_avsr/decode.py @@ -30,7 +30,7 @@ import torch import torch.nn as nn from torch.utils.data import DataLoader -from local.dataset_av import dataset_av +from local.dataset_av import AudioVisualDataset from model import CombineNet from icefall.checkpoint import average_checkpoints, load_checkpoint @@ -475,7 +475,7 @@ def main(): model.to(device) model.eval() - grid = dataset_av( + grid = AudioVisualDataset( params.video_path, params.anno_path, params.val_list, diff --git a/egs/grid/AVSR/combinenet_ctc_avsr/model.py b/egs/grid/AVSR/combinenet_ctc_avsr/model.py index c0bcffa04..158727192 100644 --- a/egs/grid/AVSR/combinenet_ctc_avsr/model.py +++ b/egs/grid/AVSR/combinenet_ctc_avsr/model.py @@ -1,4 +1,4 @@ -# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) +# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo) # # See ../../../../LICENSE for clarification regarding multiple authors # diff --git a/egs/grid/AVSR/combinenet_ctc_avsr/train.py b/egs/grid/AVSR/combinenet_ctc_avsr/train.py index df476a2b0..7eac415d5 100644 --- a/egs/grid/AVSR/combinenet_ctc_avsr/train.py +++ b/egs/grid/AVSR/combinenet_ctc_avsr/train.py @@ -32,7 +32,7 @@ import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader -from local.dataset_av import dataset_av +from local.dataset_av import AudioVisualDataset from lhotse.utils import fix_random_seed from model import CombineNet from torch import Tensor @@ -544,7 +544,7 @@ def run(rank, world_size, args): optimizer.load_state_dict(checkpoints["optimizer"]) scheduler.load_state_dict(checkpoints["scheduler"]) - grid = dataset_av( + grid = AudioVisualDataset( params.video_path, params.anno_path, params.train_list, diff --git a/egs/grid/AVSR/combinenet_ctc_avsr/utils.py b/egs/grid/AVSR/combinenet_ctc_avsr/utils.py index dbe01bb25..66823874a 100644 --- a/egs/grid/AVSR/combinenet_ctc_avsr/utils.py +++ b/egs/grid/AVSR/combinenet_ctc_avsr/utils.py @@ -19,24 +19,20 @@ import torch def encode_supervisions(nnet_output_shape, batch): """ - Encodes Lhotse's ``batch["supervisions"]`` dict into + Encodes the output of net and texts into a pair of torch Tensor, and a list of transcription strings. The supervision tensor has shape ``(batch_size, 3)``. Its second dimension contains information about sequence index [0], start frames [1] and num frames [2]. - The batch items might become re-ordered during this operation -- the - returned tensor and list of strings are guaranteed to be consistent with - each other. + In GRID, the start frame of each audio sample is 0. """ N, T, D = nnet_output_shape - supervisions_idx = torch.arange(0, N).to(torch.int32) - start_frames = [0 for _ in range(N)] - supervisions_start_frame = torch.tensor(start_frames).to(torch.int32) - num_frames = [T for _ in range(N)] - supervisions_num_frames = torch.tensor(num_frames).to(torch.int32) + supervisions_idx = torch.arange(0, N, dtype=torch.int32) + supervisions_start_frame = torch.full((1, N), 0, dtype=torch.int32)[0] + supervisions_num_frames = torch.full((1, N), T, dtype=torch.int32)[0] supervision_segments = torch.stack( ( @@ -45,7 +41,7 @@ def encode_supervisions(nnet_output_shape, batch): supervisions_num_frames, ), 1, - ).to(torch.int32) + ) texts = batch["txt"] return supervision_segments, texts diff --git a/egs/grid/AVSR/local/cvtransforms.py b/egs/grid/AVSR/local/cvtransforms.py index 11f47a57d..0e64c632e 100644 --- a/egs/grid/AVSR/local/cvtransforms.py +++ b/egs/grid/AVSR/local/cvtransforms.py @@ -26,13 +26,31 @@ The input for the above functions is a sequence of images. import random -def HorizontalFlip(batch_img, p=0.5): - # (T, H, W, C) +def horizontal_flip(batch_img: float, p: float): + """ + Args: + batch_img: + The float array of a sequence of images, the shape of the + arrat is (T, H, W, C). + p: + The probability of implementing horizontal flip, the defaults + value is 0.5. + Return: + A new float array of the sequence of images after flipping. + """ if random.random() > p: batch_img = batch_img[:, :, ::-1, ...] return batch_img -def ColorNormalize(batch_img): +def color_normalize(batch_img: float): + """ + Args: + batch_img: + The float array of a sequence of images, the shape of the + arrat is (T, H, W, C). + Return: + A new float array of the sequence of images after normalizing. + """ batch_img = batch_img / 255.0 return batch_img diff --git a/egs/grid/AVSR/local/dataset_audio.py b/egs/grid/AVSR/local/dataset_audio.py index 27868529f..1e99f7607 100644 --- a/egs/grid/AVSR/local/dataset_audio.py +++ b/egs/grid/AVSR/local/dataset_audio.py @@ -19,7 +19,6 @@ This script is to load the audio data in GRID. The class dataset_audio makes each audio batch data have the same shape. """ -import kaldifeat import numpy as np import os @@ -27,8 +26,10 @@ import torch import torchaudio from torch.utils.data import Dataset +import kaldifeat -class dataset_audio(Dataset): + +class AudioDataSet(Dataset): def __init__( self, video_path: str, @@ -46,7 +47,7 @@ class dataset_audio(Dataset): anno_path: The dir path of the texts data. file_list: - The file which listing all samples for training or testing. + A txt file which listing all samples for training or testing. aud_padding: The padding for each audio sample. sample_rate: @@ -61,6 +62,15 @@ class dataset_audio(Dataset): self.sample_rate = sample_rate self.feature_dim = feature_dim self.phase = phase + + opts = kaldifeat.FbankOptions() + opts.device = "cpu" + opts.frame_opts.dither = 0 + opts.frame_opts.snip_edges = False + opts.frame_opts.samp_freq = self.sample_rate + opts.mel_opts.num_bins = self.feature_dim + self.fbank = kaldifeat.Fbank(opts) + with open(file_list, "r") as f: self.videos = [ os.path.join(video_path, line.strip()) for line in f.readlines() @@ -92,19 +102,26 @@ class dataset_audio(Dataset): return len(self.data) def _load_aud(self, filename): - opts = kaldifeat.FbankOptions() - opts.device = "cpu" - opts.frame_opts.dither = 0 - opts.frame_opts.snip_edges = False - opts.frame_opts.samp_freq = self.sample_rate - opts.mel_opts.num_bins = self.feature_dim - fbank = kaldifeat.Fbank(opts) - wave, sr = torchaudio.load(filename) + """Load the audio data. + Args: + filename: + The full path of a wav file. + Return: + The fbank feature array. + """ + wave, _ = torchaudio.load(filename) wave = wave[0] - features = fbank(wave) + features = self.fbank(wave) return features def _load_anno(self, name): + """Load the text file. + Args: + name: + The file which records the text. + Return: + A sequence of words. + """ with open(name, "r") as f: lines = [line.strip().split(" ") for line in f.readlines()] txt = [line[2] for line in lines] @@ -113,6 +130,15 @@ class dataset_audio(Dataset): return txt def _padding(self, array, length): + """Pad zeros for the feature array. + Args: + array: + The feature arry. (Audio or Visual feature) + length: + The length for padding. + Return: + A new feature array after padding. + """ array = [array[_] for _ in range(array.shape[0])] size = array[0].shape for i in range(length - len(array)): diff --git a/egs/grid/AVSR/local/dataset_av.py b/egs/grid/AVSR/local/dataset_av.py index 54e095ea0..a0faefd68 100644 --- a/egs/grid/AVSR/local/dataset_av.py +++ b/egs/grid/AVSR/local/dataset_av.py @@ -20,7 +20,6 @@ This script is to load the pair of audio-visual data in GRID. The class dataset_av makes each audio-visual batch data have the same shape. """ import cv2 -import kaldifeat import numpy as np import os @@ -28,10 +27,11 @@ import torch import torchaudio from torch.utils.data import Dataset -from .cvtransforms import HorizontalFlip, ColorNormalize +import kaldifeat +from .cvtransforms import horizontal_flip, color_normalize -class dataset_av(Dataset): +class AudioVisualDataset(Dataset): def __init__( self, video_path, @@ -94,8 +94,8 @@ class dataset_av(Dataset): ) if self.phase == "train": - vid = HorizontalFlip(vid) - vid = ColorNormalize(vid) + vid = horizontal_flip(vid) + vid = color_normalize(vid) vid = self._padding(vid, self.vid_pading) aud = self._padding(aud, self.aud_pading) @@ -110,6 +110,14 @@ class dataset_av(Dataset): return len(self.data) def _load_vid(self, p): + """Load the visual data. + Args: + p: + A directory which contains a sequence of frames + for a visual sample. + Return: + The array of a visual sample. + """ files = os.listdir(p) files = list(filter(lambda file: file.find(".jpg") != -1, files)) files = sorted(files, key=lambda file: int(os.path.splitext(file)[0])) @@ -123,6 +131,13 @@ class dataset_av(Dataset): return array def _load_aud(self, filename): + """Load the audio data. + Args: + filename: + The full path of a wav file. + Return: + The fbank feature array. + """ opts = kaldifeat.FbankOptions() opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False @@ -135,6 +150,13 @@ class dataset_av(Dataset): return features def _load_anno(self, name): + """Load the text file. + Args: + name: + The file which records the text. + Return: + A sequence of words. + """ with open(name, "r") as f: lines = [line.strip().split(" ") for line in f.readlines()] txt = [line[2] for line in lines] @@ -143,6 +165,15 @@ class dataset_av(Dataset): return txt def _padding(self, array, length): + """Pad zeros for the feature array. + Args: + array: + The feature arry. (Audio or Visual feature) + length: + The length for padding. + Return: + A new feature array after padding. + """ array = [array[_] for _ in range(array.shape[0])] size = array[0].shape for i in range(length - len(array)): diff --git a/egs/grid/AVSR/local/dataset_visual.py b/egs/grid/AVSR/local/dataset_visual.py index f0f2f21ae..720f5d09a 100644 --- a/egs/grid/AVSR/local/dataset_visual.py +++ b/egs/grid/AVSR/local/dataset_visual.py @@ -24,10 +24,13 @@ import os import numpy as np import torch from torch.utils.data import Dataset -from .cvtransforms import HorizontalFlip, ColorNormalize +from .cvtransforms import ( + color_normalize, + horizontal_flip, +) -class dataset_visual(Dataset): +class VisualDataset(Dataset): def __init__( self, video_path: str, @@ -74,8 +77,8 @@ class dataset_visual(Dataset): ) if self.phase == "train": - vid = HorizontalFlip(vid) - vid = ColorNormalize(vid) + vid = horizontal_flip(vid, p=0.5) + vid = color_normalize(vid) vid = self._padding(vid, self.vid_padding) @@ -88,6 +91,14 @@ class dataset_visual(Dataset): return len(self.data) def _load_vid(self, p): + """Load the visual data. + Args: + p: + A directory which contains a sequence of frames + for a visual sample. + Return: + The array of a visual sample. + """ files = os.listdir(p) files = list(filter(lambda file: file.find(".jpg") != -1, files)) files = sorted(files, key=lambda file: int(os.path.splitext(file)[0])) @@ -101,6 +112,13 @@ class dataset_visual(Dataset): return array def _load_anno(self, name): + """Load the text file. + Args: + name: + The file which records the text. + Return: + A sequence of words. + """ with open(name, "r") as f: lines = [line.strip().split(" ") for line in f.readlines()] txt = [line[2] for line in lines] @@ -109,6 +127,15 @@ class dataset_visual(Dataset): return txt def _padding(self, array, length): + """Pad zeros for the feature array. + Args: + array: + The feature arry. (Audio or Visual feature) + length: + The length for padding. + Return: + A new feature array after padding. + """ array = [array[_] for _ in range(array.shape[0])] size = array[0].shape for i in range(length - len(array)): diff --git a/egs/grid/AVSR/visualnet2_ctc_vsr/decode.py b/egs/grid/AVSR/visualnet2_ctc_vsr/decode.py index 1fbfd7650..a47c2b126 100644 --- a/egs/grid/AVSR/visualnet2_ctc_vsr/decode.py +++ b/egs/grid/AVSR/visualnet2_ctc_vsr/decode.py @@ -30,7 +30,7 @@ import torch import torch.nn as nn from torch.utils.data import DataLoader -from local.dataset_visual import dataset_visual +from local.dataset_visual import VisualDataset from model import VisualNet2 @@ -463,7 +463,7 @@ def main(): model.to(device) model.eval() - grid = dataset_visual( + grid = VisualDataset( params.video_path, params.anno_path, params.val_list, diff --git a/egs/grid/AVSR/visualnet2_ctc_vsr/train.py b/egs/grid/AVSR/visualnet2_ctc_vsr/train.py index af9bdec9e..35b691a5a 100644 --- a/egs/grid/AVSR/visualnet2_ctc_vsr/train.py +++ b/egs/grid/AVSR/visualnet2_ctc_vsr/train.py @@ -32,7 +32,7 @@ import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader -from local.dataset_visual import dataset_visual +from local.dataset_visual import VisualDataset from lhotse.utils import fix_random_seed from model import VisualNet2 @@ -529,7 +529,7 @@ def run(rank, world_size, args): optimizer.load_state_dict(checkpoints["optimizer"]) scheduler.load_state_dict(checkpoints["scheduler"]) - grid = dataset_visual( + grid = VisualDataset( params.video_path, params.anno_path, params.train_list, diff --git a/egs/grid/AVSR/visualnet2_ctc_vsr/utils.py b/egs/grid/AVSR/visualnet2_ctc_vsr/utils.py index cf68944bf..17889a31c 100644 --- a/egs/grid/AVSR/visualnet2_ctc_vsr/utils.py +++ b/egs/grid/AVSR/visualnet2_ctc_vsr/utils.py @@ -14,22 +14,32 @@ # See the License for the specific language governing permissions and # limitations under the License. +""" +This script is to encodes the supervisions as Tuple list. +The supervision tensor has shape ``(batch_size, 3)``. +Its second dimension contains information about sequence index [0], +start frames [1] and num frames [2]. +In GRID, the start frame of each audio sample is 0. +""" import torch -def encode_supervisions(nnet_output_shape, batch): +def encode_supervisions(nnet_output_shape: int, batch: dict): """ - In GRID, the lengths of all samples are same. - And here, we don't deploy cut operation on it. - So, the start frame is always 0 among all samples. + Args: + nnet_output_shape: + The shape of nnet_output, e.g: (N, T, D). + batch: + A batch of dataloader, it's a dict file + including text and aud/vid arrays. + Return: + The tuple list of supervisions and the text in batch. """ N, T, D = nnet_output_shape - supervisions_idx = torch.arange(0, N).to(torch.int32) - start_frames = [0 for _ in range(N)] - supervisions_start_frame = torch.tensor(start_frames).to(torch.int32) - num_frames = [T for _ in range(N)] - supervisions_num_frames = torch.tensor(num_frames).to(torch.int32) + supervisions_idx = torch.arange(0, N, dtype=torch.int32) + supervisions_start_frame = torch.full((1, N), 0, dtype=torch.int32)[0] + supervisions_num_frames = torch.full((1, N), T, dtype=torch.int32)[0] supervision_segments = torch.stack( ( @@ -38,8 +48,7 @@ def encode_supervisions(nnet_output_shape, batch): supervisions_num_frames, ), 1, - ).to(torch.int32) - + ) texts = batch["txt"] return supervision_segments, texts diff --git a/egs/grid/AVSR/visualnet_ctc_vsr/decode.py b/egs/grid/AVSR/visualnet_ctc_vsr/decode.py index 80b4d8b87..2373ada2c 100644 --- a/egs/grid/AVSR/visualnet_ctc_vsr/decode.py +++ b/egs/grid/AVSR/visualnet_ctc_vsr/decode.py @@ -30,7 +30,7 @@ import torch import torch.nn as nn from torch.utils.data import DataLoader -from local.dataset_visual import dataset_visual +from local.dataset_visual import VisualDataset from model import VisualNet from icefall.checkpoint import average_checkpoints, load_checkpoint @@ -462,7 +462,7 @@ def main(): model.to(device) model.eval() - grid = dataset_visual( + grid = VisualDataset( params.video_path, params.anno_path, params.val_list, diff --git a/egs/grid/AVSR/visualnet_ctc_vsr/train.py b/egs/grid/AVSR/visualnet_ctc_vsr/train.py index 55e1b3b53..df66b5cc9 100644 --- a/egs/grid/AVSR/visualnet_ctc_vsr/train.py +++ b/egs/grid/AVSR/visualnet_ctc_vsr/train.py @@ -32,7 +32,7 @@ import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader -from local.dataset_visual import dataset_visual +from local.dataset_visual import VisualDataset from lhotse.utils import fix_random_seed from model import VisualNet from torch import Tensor @@ -528,7 +528,7 @@ def run(rank, world_size, args): optimizer.load_state_dict(checkpoints["optimizer"]) scheduler.load_state_dict(checkpoints["scheduler"]) - grid = dataset_visual( + grid = VisualDataset( params.video_path, params.anno_path, params.train_list, diff --git a/egs/grid/AVSR/visualnet_ctc_vsr/utils.py b/egs/grid/AVSR/visualnet_ctc_vsr/utils.py index cf68944bf..17889a31c 100644 --- a/egs/grid/AVSR/visualnet_ctc_vsr/utils.py +++ b/egs/grid/AVSR/visualnet_ctc_vsr/utils.py @@ -14,22 +14,32 @@ # See the License for the specific language governing permissions and # limitations under the License. +""" +This script is to encodes the supervisions as Tuple list. +The supervision tensor has shape ``(batch_size, 3)``. +Its second dimension contains information about sequence index [0], +start frames [1] and num frames [2]. +In GRID, the start frame of each audio sample is 0. +""" import torch -def encode_supervisions(nnet_output_shape, batch): +def encode_supervisions(nnet_output_shape: int, batch: dict): """ - In GRID, the lengths of all samples are same. - And here, we don't deploy cut operation on it. - So, the start frame is always 0 among all samples. + Args: + nnet_output_shape: + The shape of nnet_output, e.g: (N, T, D). + batch: + A batch of dataloader, it's a dict file + including text and aud/vid arrays. + Return: + The tuple list of supervisions and the text in batch. """ N, T, D = nnet_output_shape - supervisions_idx = torch.arange(0, N).to(torch.int32) - start_frames = [0 for _ in range(N)] - supervisions_start_frame = torch.tensor(start_frames).to(torch.int32) - num_frames = [T for _ in range(N)] - supervisions_num_frames = torch.tensor(num_frames).to(torch.int32) + supervisions_idx = torch.arange(0, N, dtype=torch.int32) + supervisions_start_frame = torch.full((1, N), 0, dtype=torch.int32)[0] + supervisions_num_frames = torch.full((1, N), T, dtype=torch.int32)[0] supervision_segments = torch.stack( ( @@ -38,8 +48,7 @@ def encode_supervisions(nnet_output_shape, batch): supervisions_num_frames, ), 1, - ).to(torch.int32) - + ) texts = batch["txt"] return supervision_segments, texts