mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
refactor train to reuse code
This commit is contained in:
parent
e6e1f3fa4f
commit
39700d5c94
@ -59,9 +59,9 @@ class SPEECH_LLM(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
encoder: nn.Module,
|
||||
llm: nn.Module,
|
||||
encoder_projector: nn.Module,
|
||||
encoder: nn.Module = None,
|
||||
llm: nn.Module = None,
|
||||
encoder_projector: nn.Module = None,
|
||||
codec_lm: nn.Module = None,
|
||||
codec_lm_padding_side: str = "left",
|
||||
teacher_llm: nn.Module = None,
|
||||
@ -330,20 +330,19 @@ class SPEECH_LLM(nn.Module):
|
||||
labels: torch.LongTensor = None,
|
||||
speech_codec_ids: torch.LongTensor = None,
|
||||
):
|
||||
encoder_outs = self.encoder(fbank)
|
||||
|
||||
speech_features = self.encoder_projector(encoder_outs)
|
||||
|
||||
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
||||
if fbank is not None:
|
||||
encoder_outs = self.encoder(fbank)
|
||||
speech_features = self.encoder_projector(encoder_outs)
|
||||
(
|
||||
inputs_embeds,
|
||||
attention_mask,
|
||||
labels,
|
||||
_,
|
||||
) = self._merge_input_ids_with_speech_features(
|
||||
speech_features, inputs_embeds, input_ids, attention_mask, labels
|
||||
)
|
||||
|
||||
(
|
||||
inputs_embeds,
|
||||
attention_mask,
|
||||
labels,
|
||||
_,
|
||||
) = self._merge_input_ids_with_speech_features(
|
||||
speech_features, inputs_embeds, input_ids, attention_mask, labels
|
||||
)
|
||||
input_seq_len = attention_mask.sum(dim=1) # shape, B
|
||||
(
|
||||
text_label_start_index_list,
|
||||
|
@ -69,8 +69,6 @@ from transformers import (
|
||||
Qwen2ForCausalLM,
|
||||
)
|
||||
|
||||
# from icefall.env import get_env_info
|
||||
# from icefall import diagnostics
|
||||
from utils import ( # filter_uneven_sized_batch,
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
@ -137,6 +135,13 @@ def add_model_arguments(parser: argparse.ArgumentParser):
|
||||
help="Whether to enable speech codec output.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--enable-speech-input",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to enable speech fbank input.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--speech-tokenizer-type",
|
||||
type=str,
|
||||
@ -145,11 +150,7 @@ def add_model_arguments(parser: argparse.ArgumentParser):
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
def add_training_arguments(parser: argparse.ArgumentParser):
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
type=str2bool,
|
||||
@ -243,6 +244,12 @@ def get_parser():
|
||||
help="The name of the dataset.",
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--loss-type",
|
||||
type=str,
|
||||
@ -252,7 +259,7 @@ def get_parser():
|
||||
|
||||
parser = deepspeed.add_config_arguments(parser)
|
||||
add_model_arguments(parser)
|
||||
|
||||
add_training_arguments(parser)
|
||||
return parser
|
||||
|
||||
|
||||
@ -532,7 +539,6 @@ def compute_loss(
|
||||
feature = feature.to(device)
|
||||
feature = feature.transpose(1, 2) # (N, C, T)
|
||||
|
||||
# WAR: TODO FIXME merge process_batch_slam_omni and process_batch_vocalnet
|
||||
messages, answer_cosyvoice_speech_token = extract_text_and_speech_token(
|
||||
batch, params.enable_speech_output
|
||||
)
|
||||
@ -686,9 +692,9 @@ def train_one_epoch(
|
||||
The rank of the node in DDP training. If no DDP is used, it should
|
||||
be set to 0.
|
||||
"""
|
||||
# model.encoder_projector.train()
|
||||
model.train()
|
||||
model.encoder.eval()
|
||||
if params.enable_speech_input:
|
||||
model.encoder.eval()
|
||||
if not params.unfreeze_llm:
|
||||
model.llm.eval()
|
||||
tot_loss = MetricsTracker()
|
||||
@ -706,7 +712,8 @@ def train_one_epoch(
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
model.encoder.eval()
|
||||
if params.enable_speech_input:
|
||||
model.encoder.eval()
|
||||
if not params.unfreeze_llm:
|
||||
model.llm.eval()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
@ -796,36 +803,11 @@ def train_one_epoch(
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
|
||||
if rank == 0:
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info(params)
|
||||
logging.info("About to create model")
|
||||
|
||||
replace_whisper_encoder_forward()
|
||||
whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu")
|
||||
speech_encoder = whisper_model.encoder
|
||||
speech_encoder_dim = whisper_model.dims.n_audio_state
|
||||
for name, param in speech_encoder.named_parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def get_model(params):
|
||||
"""Load and prepare the speech-to-speech model."""
|
||||
tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name)
|
||||
special_tokens_dict = {"additional_special_tokens": [DEFAULT_SPEECH_TOKEN]}
|
||||
tokenizer.add_special_tokens(special_tokens_dict)
|
||||
|
||||
if params.use_flash_attn:
|
||||
attn_implementation = "flash_attention_2"
|
||||
@ -842,11 +824,9 @@ def run(rank, world_size, args):
|
||||
attn_implementation=attn_implementation,
|
||||
torch_dtype=torch_dtype,
|
||||
)
|
||||
|
||||
if not params.unfreeze_llm:
|
||||
for name, param in llm.named_parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
else:
|
||||
if params.use_lora:
|
||||
lora_config = LoraConfig(
|
||||
@ -867,21 +847,29 @@ def run(rank, world_size, args):
|
||||
llm = get_peft_model(llm, lora_config)
|
||||
llm.print_trainable_parameters()
|
||||
|
||||
special_tokens_dict = {"additional_special_tokens": [DEFAULT_SPEECH_TOKEN]}
|
||||
tokenizer.add_special_tokens(special_tokens_dict)
|
||||
|
||||
llm.config.pad_token_id = tokenizer.pad_token_id
|
||||
llm.config.default_speech_token_id = tokenizer.convert_tokens_to_ids(
|
||||
DEFAULT_SPEECH_TOKEN
|
||||
)
|
||||
|
||||
encoder_projector = EncoderProjector(
|
||||
speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate
|
||||
)
|
||||
if not params.unfreeze_speech_projector:
|
||||
for name, param in encoder_projector.named_parameters():
|
||||
if params.enable_speech_input:
|
||||
if params.remove_whisper_encoder_input_length_restriction:
|
||||
replace_whisper_encoder_forward()
|
||||
whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu")
|
||||
speech_encoder = whisper_model.encoder
|
||||
speech_encoder_dim = whisper_model.dims.n_audio_state
|
||||
for name, param in speech_encoder.named_parameters():
|
||||
param.requires_grad = False
|
||||
encoder_projector.eval()
|
||||
encoder_projector = EncoderProjector(
|
||||
speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate
|
||||
)
|
||||
if not params.unfreeze_speech_projector:
|
||||
for name, param in encoder_projector.named_parameters():
|
||||
param.requires_grad = False
|
||||
encoder_projector.eval()
|
||||
else:
|
||||
speech_encoder = None
|
||||
encoder_projector = None
|
||||
|
||||
if params.enable_speech_output:
|
||||
# Determine attn_implementation and torch_dtype based on use_flash_attn
|
||||
@ -922,17 +910,6 @@ def run(rank, world_size, args):
|
||||
codec_lm.config.mask_token_id = codec_vocab_size - 4
|
||||
else:
|
||||
codec_lm = None
|
||||
if params.loss_type == "kl_div":
|
||||
teacher_llm = AutoModelForCausalLM.from_pretrained(
|
||||
params.llm_path_or_name,
|
||||
attn_implementation=attn_implementation,
|
||||
torch_dtype=torch_dtype,
|
||||
)
|
||||
for name, param in teacher_llm.named_parameters():
|
||||
param.requires_grad = False
|
||||
teacher_llm.eval()
|
||||
else:
|
||||
teacher_llm = None
|
||||
|
||||
model = SPEECH_LLM(
|
||||
speech_encoder,
|
||||
@ -940,9 +917,7 @@ def run(rank, world_size, args):
|
||||
encoder_projector,
|
||||
codec_lm,
|
||||
codec_lm_padding_side="left" if params.use_flash_attn else "right",
|
||||
teacher_llm=teacher_llm,
|
||||
)
|
||||
|
||||
if params.pretrained_model_path or params.last_stage_model_path:
|
||||
if params.pretrained_model_path is None:
|
||||
checkpoint = torch.load(params.last_stage_model_path, map_location="cpu")
|
||||
@ -963,6 +938,32 @@ def run(rank, world_size, args):
|
||||
if param.requires_grad:
|
||||
logging.info(f"{name}: {param.shape}")
|
||||
|
||||
return model, tokenizer
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
|
||||
if rank == 0:
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info(params)
|
||||
logging.info("About to create model")
|
||||
|
||||
model, tokenizer = get_model(params)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", get_local_rank())
|
||||
else:
|
||||
@ -1032,9 +1033,6 @@ def run(rank, world_size, args):
|
||||
elif params.dataset == "gigaspeech":
|
||||
train_cuts = data_module.train_cuts_gigaspeech()
|
||||
valid_cuts = data_module.valid_cuts_ultravox()
|
||||
elif params.dataset == "emilia_en":
|
||||
train_cuts = data_module.train_cuts_emilia_en()
|
||||
valid_cuts = data_module.valid_cuts_emilia_en()
|
||||
else:
|
||||
raise ValueError(f"Unknown dataset: {params.dataset}")
|
||||
|
||||
@ -1049,7 +1047,6 @@ def run(rank, world_size, args):
|
||||
train_dl = data_module.train_dataloaders(
|
||||
train_cuts, sampler_state_dict=sampler_state_dict
|
||||
)
|
||||
# train_dl = data_module.valid_dataloaders(train_cuts)
|
||||
valid_dl = data_module.valid_dataloaders(valid_cuts)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
|
552
egs/speech_llm/SPEECH2SPEECH/qwen_omni/train_tts.py
Executable file
552
egs/speech_llm/SPEECH2SPEECH/qwen_omni/train_tts.py
Executable file
@ -0,0 +1,552 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||
# 2024 Yuekai Zhang
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
# For Chinese dataset, you can use the following command to download the Chinese fine-tuned whisper model.
|
||||
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper
|
||||
# Qwen Pretrained model
|
||||
huggingface-cli download --local-dir models/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct
|
||||
|
||||
torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \
|
||||
--max-duration 50 \
|
||||
--enable-musan False \
|
||||
--exp-dir $exp_dir \
|
||||
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
||||
--llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \
|
||||
--manifest-dir data/fbank \
|
||||
--deepspeed \
|
||||
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
||||
--use-flash-attn True \
|
||||
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import deepspeed
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import transformers
|
||||
|
||||
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
||||
from label_smoothing import LabelSmoothingLoss
|
||||
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import IGNORE_TOKEN_ID, SPEECH_LLM
|
||||
from peft import LoraConfig, get_peft_model
|
||||
from torch import Tensor
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from transformers import (
|
||||
AutoModelForCausalLM,
|
||||
AutoTokenizer,
|
||||
Qwen2Config,
|
||||
Qwen2ForCausalLM,
|
||||
)
|
||||
from torchdata.stateful_dataloader import StatefulDataLoader
|
||||
from torch.utils.data import DistributedSampler, DataLoader
|
||||
|
||||
from train import add_model_arguments, add_training_arguments, get_params, compute_validation_loss, get_model, display_and_save_batch
|
||||
from utils import ( # filter_uneven_sized_batch,
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
get_local_rank,
|
||||
get_rank,
|
||||
get_world_size,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
|
||||
DEFAULT_SPEECH_TOKEN = "<speech>"
|
||||
try:
|
||||
torch.multiprocessing.set_start_method("spawn")
|
||||
except RuntimeError:
|
||||
pass
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
# parser.add_argument(
|
||||
# "--loss-type",
|
||||
# type=str,
|
||||
# default="ce",
|
||||
# help="The type of loss to use.",
|
||||
# )
|
||||
|
||||
parser = deepspeed.add_config_arguments(parser)
|
||||
add_model_arguments(parser)
|
||||
add_training_arguments(parser)
|
||||
return parser
|
||||
|
||||
def preprocess(
|
||||
messages,
|
||||
tokenizer: transformers.PreTrainedTokenizer,
|
||||
) -> Dict:
|
||||
"""Preprocesses the data for supervised fine-tuning."""
|
||||
texts = []
|
||||
TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{ '<|im_end|>'}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}"
|
||||
for i, msg in enumerate(messages):
|
||||
texts.append(
|
||||
tokenizer.apply_chat_template(
|
||||
msg,
|
||||
tokenize=True,
|
||||
chat_template=TEMPLATE,
|
||||
add_generation_prompt=False,
|
||||
padding="longest", # FIX me change padding to longest
|
||||
truncation=False,
|
||||
)
|
||||
)
|
||||
if len(texts) != len(messages):
|
||||
logging.warning(f"Remove too long text, {messages} ")
|
||||
max_len_texts = max([len(text) for text in texts])
|
||||
if tokenizer.padding_side == "right":
|
||||
texts = [
|
||||
text + [tokenizer.pad_token_id] * (max_len_texts - len(text))
|
||||
for text in texts
|
||||
]
|
||||
else:
|
||||
texts = [
|
||||
[tokenizer.pad_token_id] * (max_len_texts - len(text)) + text
|
||||
for text in texts
|
||||
]
|
||||
input_ids = torch.tensor(texts, dtype=torch.int)
|
||||
|
||||
target_ids = input_ids.clone()
|
||||
target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID
|
||||
# mask all tokens before token_id <speech> with IGNORE_TOKEN_ID
|
||||
# first get the indices of the tokens
|
||||
mask_prompt = True
|
||||
if mask_prompt:
|
||||
default_speech_token_id = tokenizer.convert_tokens_to_ids(DEFAULT_SPEECH_TOKEN)
|
||||
mask_indices = torch.where(input_ids == default_speech_token_id)
|
||||
for i in range(mask_indices[0].size(0)):
|
||||
row = mask_indices[0][i]
|
||||
col = mask_indices[1][i]
|
||||
# + 2 to skip: 'assistant', '\n'
|
||||
# WAR: TODO FIXME check qwen3
|
||||
# THIS IS THE ONLY DIFFERENCE FROM preprocess
|
||||
target_ids[row, : col + 6] = IGNORE_TOKEN_ID
|
||||
target_ids[row, col] = default_speech_token_id
|
||||
# remove default_speech_token_id from target_ids and input_ids
|
||||
batch_size = target_ids.size(0)
|
||||
|
||||
target_ids = target_ids[target_ids != default_speech_token_id].view(batch_size, -1)
|
||||
input_ids = input_ids[input_ids != default_speech_token_id].view(batch_size, -1)
|
||||
|
||||
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
||||
return input_ids, attention_mask, target_ids
|
||||
|
||||
def data_collator(batch, tokenizer, cut_off_len=2048):
|
||||
speech_tokens, messages, durations, ids, lang, dnsmos = [], [], [], [], [], []
|
||||
for i, item in enumerate(batch):
|
||||
speech_tokens.append(item["code"])
|
||||
message_list_item = []
|
||||
message_list_item += [
|
||||
{"role": "user", "content": f"Generate a speech from the following text:\n\n{item['text']}{DEFAULT_SPEECH_TOKEN}"},
|
||||
{"role": "assistant", "content": item["text"]},
|
||||
]
|
||||
messages.append(message_list_item)
|
||||
durations.append(item["duration"])
|
||||
ids.append(item["id"])
|
||||
lang.append(item["language"])
|
||||
dnsmos.append(item["dnsmos"])
|
||||
|
||||
input_ids, attention_mask, target_ids = preprocess(messages, tokenizer)
|
||||
target_ids = target_ids.type(torch.LongTensor)
|
||||
input_ids = input_ids.type(torch.LongTensor)
|
||||
|
||||
return {
|
||||
"speech_tokens": speech_tokens,
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"target_ids": target_ids,
|
||||
"durations": durations,
|
||||
"ids": ids,
|
||||
"lang": lang,
|
||||
"dnsmos": dnsmos,
|
||||
}
|
||||
|
||||
def compute_loss(
|
||||
params: AttributeDict,
|
||||
tokenizer: AutoTokenizer,
|
||||
model: nn.Module,
|
||||
batch: dict,
|
||||
is_training: bool,
|
||||
) -> Tuple[Tensor, MetricsTracker]:
|
||||
"""
|
||||
Compute the loss for the given batch.
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
tokenizer:
|
||||
The tokenizer used to encode the text.
|
||||
model:
|
||||
The model for training.
|
||||
batch:
|
||||
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||
for the content in it.
|
||||
is_training:
|
||||
Whether it is training.
|
||||
Returns:
|
||||
Return a tuple of two elements. The first element is the loss tensor.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
input_ids, attention_mask, target_ids, answer_cosyvoice_speech_token = batch["input_ids"], batch["attention_mask"], batch["target_ids"], batch["speech_tokens"]
|
||||
|
||||
with torch.set_grad_enabled(is_training):
|
||||
(
|
||||
text_loss,
|
||||
acc,
|
||||
codec_loss,
|
||||
codec_acc,
|
||||
codec_topk_acc,
|
||||
) = model.forward_with_speech_output(
|
||||
input_ids=input_ids.to(device),
|
||||
attention_mask=attention_mask.to(device),
|
||||
labels=target_ids.to(device),
|
||||
speech_codec_ids=answer_cosyvoice_speech_token,
|
||||
)
|
||||
loss = text_loss + codec_loss
|
||||
assert loss.requires_grad == is_training
|
||||
|
||||
info = MetricsTracker()
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
feature_lens = batch["supervisions"]["num_frames"]
|
||||
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
|
||||
|
||||
# Note: We use reduction=sum while computing the loss.
|
||||
info["loss"] = loss.detach().cpu().item()
|
||||
info["acc"] = (
|
||||
acc * info["frames"]
|
||||
) # WAR: to avoid normalization by the number of frames
|
||||
|
||||
info["codec_acc"] = codec_acc * info["frames"]
|
||||
info["codec_topk_acc"] = codec_topk_acc * info["frames"]
|
||||
info["codec_loss"] = codec_loss.detach().cpu().item()
|
||||
info["text_loss"] = text_loss.detach().cpu().item()
|
||||
return loss, info
|
||||
|
||||
|
||||
def train_one_epoch(
|
||||
params: AttributeDict,
|
||||
tokenizer: AutoTokenizer,
|
||||
model: nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
scheduler: torch.optim.lr_scheduler,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Train the model for one epoch.
|
||||
|
||||
The training loss from the mean of all frames is saved in
|
||||
`params.train_loss`. It runs the validation process every
|
||||
`params.valid_interval` batches.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The model for training.
|
||||
optimizer:
|
||||
The optimizer we are using.
|
||||
scheduler:
|
||||
The learning rate scheduler, we call step() every step.
|
||||
train_dl:
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
scaler:
|
||||
The scaler used for mix precision training.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||
rank:
|
||||
The rank of the node in DDP training. If no DDP is used, it should
|
||||
be set to 0.
|
||||
"""
|
||||
model.train()
|
||||
model.encoder.eval()
|
||||
if not params.unfreeze_llm:
|
||||
model.llm.eval()
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
if batch_idx % params.valid_interval == 0:
|
||||
logging.info("Computing validation loss")
|
||||
valid_info = compute_validation_loss(
|
||||
params=params,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
valid_dl=valid_dl,
|
||||
world_size=world_size,
|
||||
)
|
||||
model.train()
|
||||
model.encoder.eval()
|
||||
if not params.unfreeze_llm:
|
||||
model.llm.eval()
|
||||
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||
logging.info(
|
||||
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
||||
)
|
||||
if tb_writer is not None:
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
if batch_idx != 0:
|
||||
model.save_checkpoint(
|
||||
save_dir=params.exp_dir,
|
||||
tag=f"zero-checkpoint-{params.batch_idx_train}",
|
||||
client_state={},
|
||||
exclude_frozen_parameters=True,
|
||||
)
|
||||
|
||||
if rank == 0:
|
||||
convert_zero_checkpoint_to_fp32_state_dict(
|
||||
params.exp_dir,
|
||||
f"{params.exp_dir}/checkpoint-{params.batch_idx_train}",
|
||||
tag=f"zero-checkpoint-{params.batch_idx_train}",
|
||||
exclude_frozen_parameters=True,
|
||||
)
|
||||
# save sampler state dict into checkpoint
|
||||
# sampler_state_dict = train_dl.sampler.state_dict()
|
||||
sampler_state_dict = train_dl.state_dict()
|
||||
torch.save(
|
||||
sampler_state_dict,
|
||||
f"{params.exp_dir}/checkpoint-{params.batch_idx_train}/sampler.pt",
|
||||
)
|
||||
os.system(
|
||||
f"rm -rf {params.exp_dir}/zero-checkpoint-{params.batch_idx_train}"
|
||||
)
|
||||
try:
|
||||
with torch.amp.autocast("cuda", enabled=params.use_fp16):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
)
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
|
||||
# deepspeed's backward() is different from torch's backward()
|
||||
# in that it does not accept a loss tensor as input.
|
||||
# It computes the loss internally.
|
||||
model.backward(loss)
|
||||
model.step()
|
||||
|
||||
except: # noqa
|
||||
display_and_save_batch(batch, params=params)
|
||||
raise
|
||||
|
||||
if batch_idx % params.log_interval == 0:
|
||||
try:
|
||||
cur_lr = scheduler.get_last_lr()[0]
|
||||
except: # noqa
|
||||
cur_lr = 0.0
|
||||
|
||||
logging.info(
|
||||
f"Epoch {params.cur_epoch}, "
|
||||
f"batch {batch_idx}, loss[{loss_info}], "
|
||||
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
||||
f"lr: {cur_lr:.2e}, "
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar(
|
||||
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||
)
|
||||
|
||||
loss_info.write_summary(
|
||||
tb_writer, "train/current_", params.batch_idx_train
|
||||
)
|
||||
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||
|
||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||
params.train_loss = loss_value
|
||||
if params.train_loss < params.best_train_loss:
|
||||
params.best_train_epoch = params.cur_epoch
|
||||
params.best_train_loss = params.train_loss
|
||||
|
||||
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
|
||||
if rank == 0:
|
||||
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||
logging.info(params)
|
||||
logging.info("About to create model")
|
||||
|
||||
model, tokenizer = get_model(params)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", get_local_rank())
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
logging.info(f"Device: {device}")
|
||||
model.to(device)
|
||||
|
||||
assert params.deepspeed and world_size > 1
|
||||
logging.info("Using DeepSpeed")
|
||||
model, optimizer, _, scheduler = deepspeed.initialize(
|
||||
args=params, model=model, model_parameters=model.parameters()
|
||||
)
|
||||
|
||||
sampler_state_dict = None
|
||||
if params.sampler_state_dict_path:
|
||||
sampler_state_dict = torch.load(params.sampler_state_dict_path)
|
||||
|
||||
data_path = "/lustre/fsw/general_sa/yuekaiz/s2s" + "/emilia_en"
|
||||
ds = load_dataset(data_path, split="train")
|
||||
train_test_split = dataset.train_test_split(test_size=1000, seed=42)
|
||||
train_dataset, eval_dataset = train_test_split["train"], train_test_split["test"]
|
||||
|
||||
sampler = DistributedSampler(train_dataset, num_replicas=world_size, rank=rank)
|
||||
train_dl = StatefulDataLoader(
|
||||
train_dataset,
|
||||
batch_size=2,
|
||||
sampler=sampler,
|
||||
shuffle=False,
|
||||
num_workers=1,
|
||||
prefetch_factor=1,
|
||||
collate_fn=lambda features: data_collator(
|
||||
features, tokenizer
|
||||
),
|
||||
)
|
||||
train_dl.load_state_dict(sampler_state_dict)
|
||||
valid_sampler = DistributedSampler(eval_dataset, num_replicas=world_size, rank=rank)
|
||||
valid_dl = DataLoader(
|
||||
eval_dataset,
|
||||
batch_size=2,
|
||||
sampler=valid_sampler,
|
||||
shuffle=False,
|
||||
num_workers=1,
|
||||
prefetch_factor=1,
|
||||
collate_fn=lambda features: data_collator(
|
||||
features
|
||||
),
|
||||
)
|
||||
|
||||
if args.tensorboard and rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||
else:
|
||||
tb_writer = None
|
||||
|
||||
logging.info(f"start training from epoch {params.start_epoch}")
|
||||
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
||||
|
||||
fix_random_seed(params.seed + epoch - 1)
|
||||
train_dl.sampler.set_epoch(epoch - 1)
|
||||
|
||||
if tb_writer is not None:
|
||||
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||
|
||||
params.cur_epoch = epoch
|
||||
|
||||
train_one_epoch(
|
||||
params=params,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
train_dl=train_dl,
|
||||
valid_dl=valid_dl,
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
model.save_checkpoint(
|
||||
save_dir=params.exp_dir,
|
||||
tag=f"zero-epoch-{params.cur_epoch}",
|
||||
client_state={},
|
||||
exclude_frozen_parameters=True,
|
||||
)
|
||||
if rank == 0:
|
||||
convert_zero_checkpoint_to_fp32_state_dict(
|
||||
params.exp_dir,
|
||||
f"{params.exp_dir}/epoch-{params.cur_epoch}",
|
||||
tag=f"zero-epoch-{params.cur_epoch}",
|
||||
exclude_frozen_parameters=True,
|
||||
)
|
||||
# save sampler state dict into checkpoint
|
||||
# sampler_state_dict = train_dl.sampler.state_dict()
|
||||
sampler_state_dict = train_dl.state_dict()
|
||||
torch.save(
|
||||
sampler_state_dict,
|
||||
f"{params.exp_dir}/epoch-{params.cur_epoch}/sampler.pt",
|
||||
)
|
||||
|
||||
os.system(f"rm -rf {params.exp_dir}/zero-epoch-{params.cur_epoch}")
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
world_size = get_world_size()
|
||||
rank = get_rank()
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
warnings.filterwarnings("ignore", category=FutureWarning)
|
||||
run(rank=rank, world_size=world_size, args=args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user