mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Batch decoding for models trained with optimized_transducer (#267)
* Add greedy search in batch mode. * Add modified beam search in batch mode.
This commit is contained in:
parent
3ae7265737
commit
395a3f952b
@ -55,18 +55,17 @@ from typing import List
|
||||
|
||||
import kaldifeat
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchaudio
|
||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from model import Transducer
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
from icefall.env import get_env_info
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import AttributeDict
|
||||
|
||||
|
||||
def get_parser():
|
||||
@ -111,6 +110,13 @@ def get_parser():
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
help="The sample rate of the input sound file",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
@ -137,70 +143,6 @@ def get_parser():
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"encoder_out_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
"env_info": get_env_info(),
|
||||
"sample_rate": 16000,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.encoder_out_dim,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
d_model=params.attention_dim,
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
)
|
||||
return encoder
|
||||
|
||||
|
||||
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.encoder_out_dim,
|
||||
blank_id=params.blank_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||
joiner = Joiner(
|
||||
input_dim=params.encoder_out_dim,
|
||||
output_dim=params.vocab_size,
|
||||
)
|
||||
return joiner
|
||||
|
||||
|
||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = get_encoder_model(params)
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
@ -225,6 +167,7 @@ def read_sound_files(
|
||||
return ans
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
@ -249,7 +192,7 @@ def main():
|
||||
model = get_transducer_model(params)
|
||||
|
||||
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||
model.load_state_dict(checkpoint["model"])
|
||||
model.load_state_dict(checkpoint["model"], strict=False)
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
@ -279,12 +222,22 @@ def main():
|
||||
features, batch_first=True, padding_value=math.log(1e-10)
|
||||
)
|
||||
|
||||
hyps = []
|
||||
with torch.no_grad():
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=features, x_lens=feature_lens
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=features, x_lens=feature_lens
|
||||
)
|
||||
hyp_list = []
|
||||
if params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_list = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
)
|
||||
|
||||
elif params.method == "modified_beam_search":
|
||||
hyp_list = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
for i in range(encoder_out.size(0)):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
@ -301,17 +254,15 @@ def main():
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
elif params.method == "modified_beam_search":
|
||||
hyp = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.method}"
|
||||
)
|
||||
hyps.append([lexicon.token_table[i] for i in hyp])
|
||||
hyp_list.append(hyp)
|
||||
|
||||
hyps = []
|
||||
for hyp in hyp_list:
|
||||
hyps.append([lexicon.token_table[i] for i in hyp])
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
|
@ -55,18 +55,17 @@ from typing import List
|
||||
|
||||
import kaldifeat
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchaudio
|
||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from model import Transducer
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
from icefall.env import get_env_info
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import AttributeDict
|
||||
|
||||
|
||||
def get_parser():
|
||||
@ -111,6 +110,13 @@ def get_parser():
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
help="The sample rate of the input sound file",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
@ -137,70 +143,6 @@ def get_parser():
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"encoder_out_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
"env_info": get_env_info(),
|
||||
"sample_rate": 16000,
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.encoder_out_dim,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
d_model=params.attention_dim,
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
)
|
||||
return encoder
|
||||
|
||||
|
||||
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.encoder_out_dim,
|
||||
blank_id=params.blank_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||
joiner = Joiner(
|
||||
input_dim=params.encoder_out_dim,
|
||||
output_dim=params.vocab_size,
|
||||
)
|
||||
return joiner
|
||||
|
||||
|
||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = get_encoder_model(params)
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
@ -225,6 +167,7 @@ def read_sound_files(
|
||||
return ans
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
@ -279,12 +222,22 @@ def main():
|
||||
features, batch_first=True, padding_value=math.log(1e-10)
|
||||
)
|
||||
|
||||
hyps = []
|
||||
with torch.no_grad():
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=features, x_lens=feature_lens
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=features, x_lens=feature_lens
|
||||
)
|
||||
hyp_list = []
|
||||
if params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_list = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
)
|
||||
|
||||
elif params.method == "modified_beam_search":
|
||||
hyp_list = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
for i in range(encoder_out.size(0)):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
@ -301,17 +254,15 @@ def main():
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
elif params.method == "modified_beam_search":
|
||||
hyp = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.method}"
|
||||
)
|
||||
hyps.append([lexicon.token_table[i] for i in hyp])
|
||||
hyp_list.append(hyp)
|
||||
|
||||
hyps = []
|
||||
for hyp in hyp_list:
|
||||
hyps.append([lexicon.token_table[i] for i in hyp])
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
|
@ -229,7 +229,11 @@ def greedy_search_batch(
|
||||
if emitted:
|
||||
# update decoder output
|
||||
decoder_input = [h[-context_size:] for h in hyps]
|
||||
decoder_input = torch.tensor(decoder_input, device=device)
|
||||
decoder_input = torch.tensor(
|
||||
decoder_input,
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
|
||||
ans = [h[context_size:] for h in hyps]
|
||||
|
@ -192,7 +192,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=3,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
@ -127,7 +127,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=3,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame. Used only when
|
||||
--method is greedy_search.
|
||||
""",
|
||||
|
@ -17,6 +17,7 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import k2
|
||||
import torch
|
||||
from model import Transducer
|
||||
|
||||
@ -24,7 +25,7 @@ from model import Transducer
|
||||
def greedy_search(
|
||||
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
|
||||
) -> List[int]:
|
||||
"""
|
||||
"""Greedy search for a single utterance.
|
||||
Args:
|
||||
model:
|
||||
An instance of `Transducer`.
|
||||
@ -80,7 +81,7 @@ def greedy_search(
|
||||
logits = model.joiner(
|
||||
current_encoder_out, decoder_out, encoder_out_len, decoder_out_len
|
||||
)
|
||||
# logits is (1, 1, 1, vocab_size)
|
||||
# logits is (1, vocab_size)
|
||||
|
||||
y = logits.argmax().item()
|
||||
if y != blank_id:
|
||||
@ -101,6 +102,75 @@ def greedy_search(
|
||||
return hyp
|
||||
|
||||
|
||||
def greedy_search_batch(
|
||||
model: Transducer, encoder_out: torch.Tensor
|
||||
) -> List[List[int]]:
|
||||
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||
Args:
|
||||
model:
|
||||
The transducer model.
|
||||
encoder_out:
|
||||
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
||||
Returns:
|
||||
Return a list-of-list of token IDs containing the decoded results.
|
||||
len(ans) equals to encoder_out.size(0).
|
||||
"""
|
||||
assert encoder_out.ndim == 3
|
||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||
|
||||
device = model.device
|
||||
|
||||
batch_size = encoder_out.size(0)
|
||||
T = encoder_out.size(1)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
|
||||
hyps = [[blank_id] * context_size for _ in range(batch_size)]
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
hyps,
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
) # (batch_size, context_size)
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
# decoder_out: (batch_size, 1, decoder_out_dim)
|
||||
|
||||
encoder_out_len = torch.ones(batch_size, dtype=torch.int32)
|
||||
decoder_out_len = torch.ones(batch_size, dtype=torch.int32)
|
||||
|
||||
for t in range(T):
|
||||
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
|
||||
# current_encoder_out's shape: (batch_size, 1, encoder_out_dim)
|
||||
logits = model.joiner(
|
||||
current_encoder_out, decoder_out, encoder_out_len, decoder_out_len
|
||||
) # (batch_size, vocab_size)
|
||||
|
||||
assert logits.ndim == 2, logits.shape
|
||||
y = logits.argmax(dim=1).tolist()
|
||||
emitted = False
|
||||
for i, v in enumerate(y):
|
||||
if v != blank_id:
|
||||
hyps[i].append(v)
|
||||
emitted = True
|
||||
|
||||
if emitted:
|
||||
# update decoder output
|
||||
decoder_input = [h[-context_size:] for h in hyps]
|
||||
decoder_input = torch.tensor(
|
||||
decoder_input,
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
) # (batch_size, context_size)
|
||||
decoder_out = model.decoder(
|
||||
decoder_input,
|
||||
need_pad=False,
|
||||
) # (batch_size, 1, decoder_out_dim)
|
||||
|
||||
ans = [h[context_size:] for h in hyps]
|
||||
return ans
|
||||
|
||||
|
||||
@dataclass
|
||||
class Hypothesis:
|
||||
# The predicted tokens so far.
|
||||
@ -252,9 +322,11 @@ def run_decoder(
|
||||
|
||||
device = model.device
|
||||
|
||||
decoder_input = torch.tensor([ys[-context_size:]], device=device).reshape(
|
||||
1, context_size
|
||||
)
|
||||
decoder_input = torch.tensor(
|
||||
[ys[-context_size:]],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
).reshape(1, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
decoder_cache[key] = decoder_out
|
||||
@ -314,13 +386,158 @@ def run_joiner(
|
||||
return log_prob
|
||||
|
||||
|
||||
def _get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
|
||||
"""Return a ragged shape with axes [utt][num_hyps].
|
||||
|
||||
Args:
|
||||
hyps:
|
||||
len(hyps) == batch_size. It contains the current hypothesis for
|
||||
each utterance in the batch.
|
||||
Returns:
|
||||
Return a ragged shape with 2 axes [utt][num_hyps]. Note that
|
||||
the shape is on CPU.
|
||||
"""
|
||||
num_hyps = [len(h) for h in hyps]
|
||||
|
||||
# torch.cumsum() is inclusive sum, so we put a 0 at the beginning
|
||||
# to get exclusive sum later.
|
||||
num_hyps.insert(0, 0)
|
||||
|
||||
num_hyps = torch.tensor(num_hyps)
|
||||
row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32)
|
||||
ans = k2.ragged.create_ragged_shape2(
|
||||
row_splits=row_splits, cached_tot_size=row_splits[-1].item()
|
||||
)
|
||||
return ans
|
||||
|
||||
|
||||
def modified_beam_search(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
beam: int = 4,
|
||||
) -> List[List[int]]:
|
||||
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcodded.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The transducer model.
|
||||
encoder_out:
|
||||
Output from the encoder. Its shape is (N, T, C).
|
||||
beam:
|
||||
Number of active paths during the beam search.
|
||||
Returns:
|
||||
Return a list-of-list of token IDs. ans[i] is the decoding results
|
||||
for the i-th utterance.
|
||||
"""
|
||||
assert encoder_out.ndim == 3, encoder_out.shape
|
||||
|
||||
batch_size = encoder_out.size(0)
|
||||
T = encoder_out.size(1)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
device = model.device
|
||||
B = [HypothesisList() for _ in range(batch_size)]
|
||||
for i in range(batch_size):
|
||||
B[i].add(
|
||||
Hypothesis(
|
||||
ys=[blank_id] * context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
)
|
||||
)
|
||||
|
||||
encoder_out_len = torch.tensor([1])
|
||||
decoder_out_len = torch.tensor([1])
|
||||
for t in range(T):
|
||||
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
|
||||
# current_encoder_out's shape is: (batch_size, 1, encoder_out_dim)
|
||||
|
||||
hyps_shape = _get_hyps_shape(B).to(device)
|
||||
|
||||
A = [list(b) for b in B]
|
||||
B = [HypothesisList() for _ in range(batch_size)]
|
||||
|
||||
ys_log_probs = torch.cat(
|
||||
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
|
||||
) # (num_hyps, 1)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
) # (num_hyps, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
# decoder_output is of shape (num_hyps, 1, decoder_output_dim)
|
||||
|
||||
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
||||
# as index, so we use `to(torch.int64)` below.
|
||||
current_encoder_out = torch.index_select(
|
||||
current_encoder_out,
|
||||
dim=0,
|
||||
index=hyps_shape.row_ids(1).to(torch.int64),
|
||||
) # (num_hyps, 1, encoder_out_dim)
|
||||
|
||||
logits = model.joiner(
|
||||
current_encoder_out,
|
||||
decoder_out,
|
||||
encoder_out_len.expand(decoder_out.size(0)),
|
||||
decoder_out_len.expand(decoder_out.size(0)),
|
||||
)
|
||||
# logits is of shape (num_hyps, vocab_size)
|
||||
|
||||
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs.add_(ys_log_probs)
|
||||
|
||||
vocab_size = log_probs.size(-1)
|
||||
|
||||
log_probs = log_probs.reshape(-1)
|
||||
|
||||
row_splits = hyps_shape.row_splits(1) * vocab_size
|
||||
log_probs_shape = k2.ragged.create_ragged_shape2(
|
||||
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
||||
)
|
||||
ragged_log_probs = k2.RaggedTensor(
|
||||
shape=log_probs_shape, value=log_probs
|
||||
)
|
||||
|
||||
for i in range(batch_size):
|
||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||
|
||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||
|
||||
for k in range(len(topk_hyp_indexes)):
|
||||
hyp_idx = topk_hyp_indexes[k]
|
||||
hyp = A[i][hyp_idx]
|
||||
|
||||
new_ys = hyp.ys[:]
|
||||
new_token = topk_token_indexes[k]
|
||||
if new_token != blank_id:
|
||||
new_ys.append(new_token)
|
||||
|
||||
new_log_prob = topk_log_probs[k]
|
||||
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||
B[i].add(new_hyp)
|
||||
|
||||
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
|
||||
ans = [h.ys[context_size:] for h in best_hyps]
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
def _deprecated_modified_beam_search(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
beam: int = 4,
|
||||
) -> List[int]:
|
||||
"""It limits the maximum number of symbols per frame to 1.
|
||||
|
||||
It decodes only one utterance at a time. We keep it only for reference.
|
||||
The function :func:`modified_beam_search` should be preferred as it
|
||||
supports batch decoding.
|
||||
|
||||
Args:
|
||||
model:
|
||||
An instance of `Transducer`.
|
||||
@ -341,12 +558,6 @@ def modified_beam_search(
|
||||
|
||||
device = model.device
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[blank_id] * context_size, device=device
|
||||
).reshape(1, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
|
||||
T = encoder_out.size(1)
|
||||
|
||||
B = HypothesisList()
|
||||
|
@ -55,14 +55,15 @@ import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from model import Transducer
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
@ -135,7 +136,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=3,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
@ -143,70 +144,6 @@ def get_parser():
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"encoder_out_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def get_encoder_model(params: AttributeDict):
|
||||
# TODO: We can add an option to switch between Conformer and Transformer
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.encoder_out_dim,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
d_model=params.attention_dim,
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
)
|
||||
return encoder
|
||||
|
||||
|
||||
def get_decoder_model(params: AttributeDict):
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.encoder_out_dim,
|
||||
blank_id=params.blank_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
||||
def get_joiner_model(params: AttributeDict):
|
||||
joiner = Joiner(
|
||||
input_dim=params.encoder_out_dim,
|
||||
output_dim=params.vocab_size,
|
||||
)
|
||||
return joiner
|
||||
|
||||
|
||||
def get_transducer_model(params: AttributeDict):
|
||||
encoder = get_encoder_model(params)
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
@ -251,32 +188,47 @@ def decode_one_batch(
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=feature, x_lens=feature_lens
|
||||
)
|
||||
hyps = []
|
||||
batch_size = encoder_out.size(0)
|
||||
hyp_list: List[List[int]] = []
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp = modified_beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
if (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
):
|
||||
hyp_list = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_list = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyp_list.append(hyp)
|
||||
|
||||
hyps = [sp.decode(hyp).split() for hyp in hyp_list]
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
@ -487,8 +439,5 @@ def main():
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -59,17 +59,15 @@ from typing import List
|
||||
import kaldifeat
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchaudio
|
||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from model import Transducer
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import AttributeDict
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
|
||||
def get_parser():
|
||||
@ -115,6 +113,13 @@ def get_parser():
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
help="The sample rate of the input sound file",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
@ -132,7 +137,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=3,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame. Used only when
|
||||
--method is greedy_search.
|
||||
""",
|
||||
@ -141,70 +146,6 @@ def get_parser():
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"sample_rate": 16000,
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"encoder_out_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.encoder_out_dim,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
d_model=params.attention_dim,
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
)
|
||||
return encoder
|
||||
|
||||
|
||||
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.encoder_out_dim,
|
||||
blank_id=params.blank_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||
joiner = Joiner(
|
||||
input_dim=params.encoder_out_dim,
|
||||
output_dim=params.vocab_size,
|
||||
)
|
||||
return joiner
|
||||
|
||||
|
||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = get_encoder_model(params)
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
@ -294,33 +235,45 @@ def main():
|
||||
)
|
||||
|
||||
num_waves = encoder_out.size(0)
|
||||
hyps = []
|
||||
hyp_list = []
|
||||
msg = f"Using {params.method}"
|
||||
if params.method == "beam_search":
|
||||
msg += f" with beam size {params.beam_size}"
|
||||
logging.info(msg)
|
||||
for i in range(num_waves):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
)
|
||||
elif params.method == "modified_beam_search":
|
||||
hyp = modified_beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported method: {params.method}")
|
||||
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
if params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_list = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
)
|
||||
elif params.method == "modified_beam_search":
|
||||
hyp_list = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
for i in range(num_waves):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported method: {params.method}")
|
||||
hyp_list.append(hyp)
|
||||
|
||||
hyps = [sp.decode(hyp).split() for hyp in hyp_list]
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
|
@ -46,15 +46,16 @@ import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import AsrDataModule
|
||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from librispeech import LibriSpeech
|
||||
from model import Transducer
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
@ -127,7 +128,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=3,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
@ -135,71 +136,6 @@ def get_parser():
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"encoder_out_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def get_encoder_model(params: AttributeDict):
|
||||
# TODO: We can add an option to switch between Conformer and Transformer
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.encoder_out_dim,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
d_model=params.attention_dim,
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
)
|
||||
return encoder
|
||||
|
||||
|
||||
def get_decoder_model(params: AttributeDict):
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.encoder_out_dim,
|
||||
blank_id=params.blank_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
||||
def get_joiner_model(params: AttributeDict):
|
||||
joiner = Joiner(
|
||||
input_dim=params.encoder_out_dim,
|
||||
output_dim=params.vocab_size,
|
||||
)
|
||||
return joiner
|
||||
|
||||
|
||||
def get_transducer_model(params: AttributeDict):
|
||||
encoder = get_encoder_model(params)
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
@ -244,32 +180,47 @@ def decode_one_batch(
|
||||
encoder_out, encoder_out_lens = model.encoder(
|
||||
x=feature, x_lens=feature_lens
|
||||
)
|
||||
hyps = []
|
||||
hyp_list = []
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp = modified_beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
if (
|
||||
params.decoding_method == "greedy_search"
|
||||
and params.max_sym_per_frame == 1
|
||||
):
|
||||
hyp_list = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_list = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyp_list.append(sp.decode(hyp).split())
|
||||
|
||||
hyps = [sp.decode(hyp).split() for hyp in hyp_list]
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
@ -483,8 +434,5 @@ def main():
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -59,17 +59,15 @@ from typing import List
|
||||
import kaldifeat
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchaudio
|
||||
from beam_search import beam_search, greedy_search, modified_beam_search
|
||||
from conformer import Conformer
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from model import Transducer
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from icefall.env import get_env_info
|
||||
from icefall.utils import AttributeDict
|
||||
from train import get_params, get_transducer_model
|
||||
|
||||
|
||||
def get_parser():
|
||||
@ -115,6 +113,13 @@ def get_parser():
|
||||
"The sample rate has to be 16kHz.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
help="The sample rate of the input sound file",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
@ -132,7 +137,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=3,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame. Used only when
|
||||
--method is greedy_search.
|
||||
""",
|
||||
@ -141,70 +146,6 @@ def get_parser():
|
||||
return parser
|
||||
|
||||
|
||||
def get_params() -> AttributeDict:
|
||||
params = AttributeDict(
|
||||
{
|
||||
"sample_rate": 16000,
|
||||
# parameters for conformer
|
||||
"feature_dim": 80,
|
||||
"encoder_out_dim": 512,
|
||||
"subsampling_factor": 4,
|
||||
"attention_dim": 512,
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
)
|
||||
return params
|
||||
|
||||
|
||||
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = Conformer(
|
||||
num_features=params.feature_dim,
|
||||
output_dim=params.encoder_out_dim,
|
||||
subsampling_factor=params.subsampling_factor,
|
||||
d_model=params.attention_dim,
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
)
|
||||
return encoder
|
||||
|
||||
|
||||
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
||||
decoder = Decoder(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.encoder_out_dim,
|
||||
blank_id=params.blank_id,
|
||||
context_size=params.context_size,
|
||||
)
|
||||
return decoder
|
||||
|
||||
|
||||
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||
joiner = Joiner(
|
||||
input_dim=params.encoder_out_dim,
|
||||
output_dim=params.vocab_size,
|
||||
)
|
||||
return joiner
|
||||
|
||||
|
||||
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||
encoder = get_encoder_model(params)
|
||||
decoder = get_decoder_model(params)
|
||||
joiner = get_joiner_model(params)
|
||||
|
||||
model = Transducer(
|
||||
encoder=encoder,
|
||||
decoder=decoder,
|
||||
joiner=joiner,
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def read_sound_files(
|
||||
filenames: List[str], expected_sample_rate: float
|
||||
) -> List[torch.Tensor]:
|
||||
@ -294,33 +235,46 @@ def main():
|
||||
)
|
||||
|
||||
num_waves = encoder_out.size(0)
|
||||
hyps = []
|
||||
hyp_list = []
|
||||
msg = f"Using {params.method}"
|
||||
if params.method == "beam_search":
|
||||
msg += f" with beam size {params.beam_size}"
|
||||
logging.info(msg)
|
||||
for i in range(num_waves):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
)
|
||||
elif params.method == "modified_beam_search":
|
||||
hyp = modified_beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported method: {params.method}")
|
||||
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
if params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_list = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
)
|
||||
elif params.method == "modified_beam_search":
|
||||
hyp_list = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
|
||||
else:
|
||||
for i in range(num_waves):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported method: {params.method}")
|
||||
hyp_list.append(hyp)
|
||||
|
||||
hyps = [sp.decode(hyp).split() for hyp in hyp_list]
|
||||
|
||||
s = "\n"
|
||||
for filename, hyp in zip(params.sound_files, hyps):
|
||||
|
Loading…
x
Reference in New Issue
Block a user