Merge branch 'spec-augment-change' of https://github.com/luomingshuang/icefall into attention_relu_specaug

This commit is contained in:
Daniel Povey 2022-02-08 19:40:33 +08:00
commit 395065eb11

View File

@ -28,7 +28,6 @@ from lhotse.dataset import (
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import OnTheFlyFeatures
from torch.utils.data import DataLoader
@ -219,10 +218,11 @@ class LibriSpeechAsrDataModule:
input_transforms.append(
SpecAugment(
time_warp_factor=self.args.spec_aug_time_warp_factor,
num_frame_masks=2,
num_frame_masks=10,
features_mask_size=27,
num_feature_masks=2,
frames_mask_size=100,
max_frames_mask_fraction=0.4,
)
)
else:
@ -383,3 +383,212 @@ class LibriSpeechAsrDataModule:
def test_other_cuts(self) -> CutSet:
logging.info("About to get test-other cuts")
return load_manifest(self.args.manifest_dir / "cuts_test-other.json.gz")
import math
import random
import numpy as np
from typing import Optional, Dict
import torch
from lhotse import CutSet
class SpecAugment(torch.nn.Module):
"""
SpecAugment performs three augmentations:
- time warping of the feature matrix
- masking of ranges of features (frequency bands)
- masking of ranges of frames (time)
The current implementation works with batches, but processes each example separately
in a loop rather than simultaneously to achieve different augmentation parameters for
each example.
"""
def __init__(
self,
time_warp_factor: Optional[int] = 80,
num_feature_masks: int = 1,
features_mask_size: int = 13,
num_frame_masks: int = 1,
frames_mask_size: int = 70,
max_frames_mask_fraction: float = 0.2,
p=0.5,
):
"""
SpecAugment's constructor.
:param time_warp_factor: parameter for the time warping; larger values mean more warping.
Set to ``None``, or less than ``1``, to disable.
:param num_feature_masks: how many feature masks should be applied. Set to ``0`` to disable.
:param features_mask_size: the width of the feature mask (expressed in the number of masked feature bins).
This is the ``F`` parameter from the SpecAugment paper.
:param num_frame_masks: how many frame (temporal) masks should be applied. Set to ``0`` to disable.
:param frames_mask_size: the width of the frame (temporal) masks (expressed in the number of masked frames).
This is the ``T`` parameter from the SpecAugment paper.
:param max_frames_mask_fraction: limits the size of the frame (temporal) mask to this value times the length
of the utterance (or supervision segment).
This is the parameter denoted by ``p`` in the SpecAugment paper.
:param p: the probability of applying this transform.
It is different from ``p`` in the SpecAugment paper!
"""
super().__init__()
assert 0 <= p <= 1
assert num_feature_masks >= 0
assert num_frame_masks >= 0
assert features_mask_size > 0
assert frames_mask_size > 0
self.time_warp_factor = time_warp_factor
self.num_feature_masks = num_feature_masks
self.features_mask_size = features_mask_size
self.num_frame_masks = num_frame_masks
self.frames_mask_size = frames_mask_size
self.max_frames_mask_fraction = max_frames_mask_fraction
self.p = p
def forward(
self,
features: torch.Tensor,
supervision_segments: Optional[torch.IntTensor] = None,
*args,
**kwargs,
) -> torch.Tensor:
"""
Computes SpecAugment for a batch of feature matrices.
Since the batch will usually already be padded, the user can optionally
provide a ``supervision_segments`` tensor that will be used to apply SpecAugment
only to selected areas of the input. The format of this input is described below.
:param features: a batch of feature matrices with shape ``(B, T, F)``.
:param supervision_segments: an int tensor of shape ``(S, 3)``. ``S`` is the number of
supervision segments that exist in ``features`` -- there may be either
less or more than the batch size.
The second dimension encoder three kinds of information:
the sequence index of the corresponding feature matrix in `features`,
the start frame index, and the number of frames for each segment.
:return: an augmented tensor of shape ``(B, T, F)``.
"""
assert len(features.shape) == 3, (
"SpecAugment only supports batches of " "single-channel feature matrices."
)
features = features.clone()
if supervision_segments is None:
# No supervisions - apply spec augment to full feature matrices.
for sequence_idx in range(features.size(0)):
features[sequence_idx] = self._forward_single(features[sequence_idx])
else:
# Supervisions provided - we will apply time warping only on the supervised areas.
for sequence_idx, start_frame, num_frames in supervision_segments:
end_frame = start_frame + num_frames
features[sequence_idx, start_frame:end_frame] = self._forward_single(
features[sequence_idx, start_frame:end_frame], warp=True, mask=False
)
# ... and then time-mask the full feature matrices. Note that in this mode,
# it might happen that masks are applied to different sequences/examples
# than the time warping.
for sequence_idx in range(features.size(0)):
features[sequence_idx] = self._forward_single(
features[sequence_idx], warp=False, mask=True
)
return features
def _forward_single(
self, features: torch.Tensor, warp: bool = True, mask: bool = True
) -> torch.Tensor:
"""
Apply SpecAugment to a single feature matrix of shape (T, F).
"""
if random.random() > self.p:
# Randomly choose whether this transform is applied
return features
if warp:
if self.time_warp_factor is not None and self.time_warp_factor >= 1:
features = time_warp(features, factor=self.time_warp_factor)
if mask:
from torchaudio.functional import mask_along_axis
mean = features.mean()
for _ in range(self.num_feature_masks):
features = mask_along_axis(
features.unsqueeze(0),
mask_param=self.features_mask_size,
mask_value=mean,
axis=2,
).squeeze(0)
for _ in range(self.num_frame_masks):
_max_tot_mask_frames = self.max_frames_mask_fraction * features.size(0)
num_frame_masks = min(self.num_frame_masks, math.ceil(_max_tot_mask_frames / self.frames_mask_size))
max_mask_frames = min(self.frames_mask_size, _max_tot_mask_frames // num_frame_masks)
features = mask_along_axis(
features.unsqueeze(0),
mask_param=max_mask_frames,
mask_value=mean,
axis=1,
).squeeze(0)
return features
def state_dict(self) -> Dict:
return dict(
time_warp_factor=self.time_warp_factor,
num_feature_masks=self.num_feature_masks,
features_mask_size=self.features_mask_size,
num_frame_masks=self.num_frame_masks,
frames_mask_size=self.frames_mask_size,
max_frames_mask_fraction=self.max_frames_mask_fraction,
p=self.p,
)
def load_state_dict(self, state_dict: Dict):
self.time_warp_factor = state_dict.get(
"time_warp_factor", self.time_warp_factor
)
self.num_feature_masks = state_dict.get(
"num_feature_masks", self.num_feature_masks
)
self.features_mask_size = state_dict.get(
"features_mask_size", self.features_mask_size
)
self.num_frame_masks = state_dict.get("num_frame_masks", self.num_frame_masks)
self.frames_mask_size = state_dict.get(
"frames_mask_size", self.frames_mask_size
)
self.max_frames_mask_fraction = state_dict.get(
"max_frames_mask_fraction", self.max_frames_mask_fraction
)
self.p = state_dict.get("p", self.p)
def time_warp(features: torch.Tensor, factor: int) -> torch.Tensor:
"""
Time warping as described in the SpecAugment paper.
Implementation based on Espresso:
https://github.com/freewym/espresso/blob/master/espresso/tools/specaug_interpolate.py#L51
:param features: input tensor of shape ``(T, F)``
:param factor: time warping parameter.
:return: a warped tensor of shape ``(T, F)``
"""
t = features.size(0)
if t - factor <= factor + 1:
return features
center = np.random.randint(factor + 1, t - factor)
warped = np.random.randint(center - factor, center + factor + 1)
if warped == center:
return features
features = features.unsqueeze(0).unsqueeze(0)
left = torch.nn.functional.interpolate(
features[:, :, :center, :],
size=(warped, features.size(3)),
mode="bicubic",
align_corners=False,
)
right = torch.nn.functional.interpolate(
features[:, :, center:, :],
size=(t - warped, features.size(3)),
mode="bicubic",
align_corners=False,
)
return torch.cat((left, right), dim=2).squeeze(0).squeeze(0)