export and test models

This commit is contained in:
pkufool 2023-06-16 11:19:58 +08:00
parent 28d3f6df55
commit 389e191478
18 changed files with 5254 additions and 106 deletions

View File

@ -160,6 +160,7 @@ from typing import List, Tuple
import sentencepiece as spm
import torch
from scaling_converter import convert_scaled_to_non_scaled
from torch import Tensor, nn
from train import add_model_arguments, get_params, get_transducer_model
@ -170,7 +171,6 @@ from icefall.checkpoint import (
load_checkpoint,
)
from icefall.utils import make_pad_mask, str2bool
from scaling_converter import convert_scaled_to_non_scaled
def get_parser():
@ -238,7 +238,7 @@ def get_parser():
type=str2bool,
default=False,
help="""True to save a model after applying torch.jit.script.
It will generate a file named cpu_jit.pt.
It will generate a file named jit_script.pt.
Check ./jit_pretrained.py for how to use it.
""",
)
@ -257,6 +257,7 @@ def get_parser():
class EncoderModel(nn.Module):
"""A wrapper for encoder and encoder_embed"""
def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None:
super().__init__()
self.encoder = encoder
@ -275,9 +276,7 @@ class EncoderModel(nn.Module):
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_out, encoder_out_lens = self.encoder(
x, x_lens, src_key_padding_mask
)
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
return encoder_out, encoder_out_lens

View File

@ -31,6 +31,7 @@ def greedy_search(
model: nn.Module,
encoder_out: torch.Tensor,
streams: List[DecodeStream],
blank_penalty: float = 0.0,
) -> None:
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
@ -71,6 +72,9 @@ def greedy_search(
# logits'shape (batch_size, vocab_size)
logits = logits.squeeze(1).squeeze(1)
if blank_penalty != 0.0:
logits[:, 0] -= blank_penalty
assert logits.ndim == 2, logits.shape
y = logits.argmax(dim=1).tolist()
emitted = False
@ -97,6 +101,7 @@ def modified_beam_search(
encoder_out: torch.Tensor,
streams: List[DecodeStream],
num_active_paths: int = 4,
blank_penalty: float = 0.0,
) -> None:
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
@ -158,6 +163,9 @@ def modified_beam_search(
logits = logits.squeeze(1).squeeze(1)
if blank_penalty != 0.0:
logits[:, 0] -= blank_penalty
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
log_probs.add_(ys_log_probs)
@ -205,6 +213,7 @@ def fast_beam_search_one_best(
beam: float,
max_states: int,
max_contexts: int,
blank_penalty: float = 0.0,
) -> None:
"""It limits the maximum number of symbols per frame to 1.
@ -269,6 +278,10 @@ def fast_beam_search_one_best(
project_input=False,
)
logits = logits.squeeze(1).squeeze(1)
if blank_penalty != 0.0:
logits[:, 0] -= blank_penalty
log_probs = logits.log_softmax(dim=-1)
decoding_streams.advance(log_probs)

View File

@ -28,17 +28,7 @@ Usage:
--max-duration 600 \
--decoding-method greedy_search
(2) beam search (not recommended)
./zipformer/decode.py \
--epoch 35 \
--avg 15 \
--exp-dir ./zipformer/exp \
--lang-dir data/lang_char \
--max-duration 600 \
--decoding-method beam_search \
--beam-size 4
(3) modified beam search
(2) modified beam search
./zipformer/decode.py \
--epoch 35 \
--avg 15 \
@ -48,7 +38,7 @@ Usage:
--decoding-method modified_beam_search \
--beam-size 4
(4) fast beam search (one best)
(3) fast beam search (trivial_graph)
./zipformer/decode.py \
--epoch 35 \
--avg 15 \
@ -60,21 +50,19 @@ Usage:
--max-contexts 8 \
--max-states 64
(5) fast beam search (nbest)
(4) fast beam search (LG)
./zipformer/decode.py \
--epoch 30 \
--avg 15 \
--exp-dir ./zipformer/exp \
--lang-dir data/lang_char \
--max-duration 600 \
--decoding-method fast_beam_search_nbest \
--decoding-method fast_beam_search_LG \
--beam 20.0 \
--max-contexts 8 \
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
--max-states 64
(6) fast beam search (nbest oracle WER)
(5) fast beam search (nbest oracle WER)
./zipformer/decode.py \
--epoch 35 \
--avg 15 \
@ -87,18 +75,6 @@ Usage:
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
(7) fast beam search (with LG)
./zipformer/decode.py \
--epoch 35 \
--avg 15 \
--exp-dir ./zipformer/exp \
--lang-dir data/lang_char \
--max-duration 600 \
--decoding-method fast_beam_search_nbest_LG \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
"""
@ -210,13 +186,11 @@ def get_parser():
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
- fast_beam_search_nbest
- fast_beam_search_LG
- fast_beam_search_nbest_oracle
- fast_beam_search_nbest_LG
If you use fast_beam_search_nbest_LG, you have to specify
If you use fast_beam_search_LG, you have to specify
`--lang-dir`, which should contain `LG.pt`.
""",
)
@ -238,7 +212,7 @@ def get_parser():
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is fast_beam_search,
fast_beam_search_nbest, fast_beam_search_nbest_LG,
fast_beam_search, fast_beam_search_LG,
and fast_beam_search_nbest_oracle
""",
)
@ -248,7 +222,7 @@ def get_parser():
type=float,
default=0.01,
help="""
Used only when --decoding_method is fast_beam_search_nbest_LG.
Used only when --decoding_method is fast_beam_search_LG.
It specifies the scale for n-gram LM scores.
""",
)
@ -258,7 +232,7 @@ def get_parser():
type=int,
default=8,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
fast_beam_search, fast_beam_search, fast_beam_search_LG,
and fast_beam_search_nbest_oracle""",
)
@ -267,15 +241,15 @@ def get_parser():
type=int,
default=64,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
fast_beam_search, fast_beam_search, fast_beam_search_LG,
and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--context-size",
type=int,
default=1,
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
@ -291,8 +265,7 @@ def get_parser():
type=int,
default=200,
help="""Number of paths for nbest decoding.
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
Used only when the decoding method is fast_beam_search_nbest_oracle""",
)
parser.add_argument(
@ -300,8 +273,7 @@ def get_parser():
type=float,
default=0.5,
help="""Scale applied to lattice scores when computing nbest paths.
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
Used only when the decoding method is and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
@ -399,8 +371,8 @@ def decode_one_batch(
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif params.decoding_method == "fast_beam_search_nbest_LG":
hyp_tokens = fast_beam_search_nbest_LG(
elif params.decoding_method == "fast_beam_search_LG":
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
@ -408,28 +380,11 @@ def decode_one_batch(
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
nbest_scale=params.nbest_scale,
blank_penalty=params.blank_penalty,
)
for hyp in hyp_tokens:
sentence = "".join([lexicon.word_table[i] for i in hyp])
hyps.append(list(sentence))
elif params.decoding_method == "fast_beam_search_nbest":
hyp_tokens = fast_beam_search_nbest(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
nbest_scale=params.nbest_scale,
blank_penalty=params.blank_penalty,
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif params.decoding_method == "fast_beam_search_nbest_oracle":
hyp_tokens = fast_beam_search_nbest_oracle(
model=model,
@ -639,11 +594,10 @@ def main():
assert params.decoding_method in (
"greedy_search",
"beam_search",
"fast_beam_search",
"fast_beam_search_nbest",
"fast_beam_search_nbest_LG",
"fast_beam_search_nbest_oracle",
"modified_beam_search",
"fast_beam_search",
"fast_beam_search_LG",
"fast_beam_search_nbest_oracle",
)
params.res_dir = params.exp_dir / params.decoding_method
@ -827,8 +781,6 @@ def main():
test_sets = ["DEV", "TEST_NET", "TEST_MEETING"]
test_dl = [dev_dl, test_net_dl, test_meeting_dl]
# test_sets = ["TEST_MEETING"]
# test_dl = [test_meeting_dl]
for test_set, test_dl in zip(test_sets, test_dl):
results_dict = decode_dataset(

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/decode_stream.py

View File

@ -0,0 +1,738 @@
#!/usr/bin/env python3
#
# Copyright 2023 Xiaomi Corporation (Author: Fangjun Kuang)
# Copyright 2023 Danqing Fu (danqing.fu@gmail.com)
"""
This script exports a transducer model from PyTorch to ONNX.
1. Export the model to ONNX
./zipformer/export-onnx-streaming.py \
--lang-dir data/lang_char \
--epoch 12 \
--avg 4 \
--exp-dir zipformer/exp \
--causal True \
--chunk-size 16 \
--left-context-frames 128
The --chunk-size in training is "16,32,64,-1", so we select one of them
(excluding -1) during streaming export. The same applies to `--left-context`,
whose value is "64,128,256,-1".
It will generate the following 3 files inside $repo/exp:
- encoder-epoch-12-avg-4.onnx
- decoder-epoch-12-avg-4.onnx
- joiner-epoch-12-avg-4.onnx
See ./onnx_pretrained-streaming.py for how to use the exported ONNX models.
"""
import argparse
import logging
from pathlib import Path
from typing import Dict, List, Tuple
import onnx
import torch
import torch.nn as nn
from decoder import Decoder
from onnxruntime.quantization import QuantType, quantize_dynamic
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_params, get_transducer_model
from zipformer import Zipformer2
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import make_pad_mask, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for averaging.
Note: Epoch counts from 0.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="zipformer/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_char",
help="Path to the lang dir(containing lexicon, tokens etc.)",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
add_model_arguments(parser)
return parser
def add_meta_data(filename: str, meta_data: Dict[str, str]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = value
onnx.save(model, filename)
class OnnxEncoder(nn.Module):
"""A wrapper for Zipformer and the encoder_proj from the joiner"""
def __init__(
self, encoder: Zipformer2, encoder_embed: nn.Module, encoder_proj: nn.Linear
):
"""
Args:
encoder:
A Zipformer encoder.
encoder_proj:
The projection layer for encoder from the joiner.
"""
super().__init__()
self.encoder = encoder
self.encoder_embed = encoder_embed
self.encoder_proj = encoder_proj
self.chunk_size = encoder.chunk_size[0]
self.left_context_len = encoder.left_context_frames[0]
self.pad_length = 7 + 2 * 3
def forward(
self,
x: torch.Tensor,
states: List[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]:
N = x.size(0)
T = self.chunk_size * 2 + self.pad_length
x_lens = torch.tensor([T] * N, device=x.device)
left_context_len = self.left_context_len
cached_embed_left_pad = states[-2]
x, x_lens, new_cached_embed_left_pad = self.encoder_embed.streaming_forward(
x=x,
x_lens=x_lens,
cached_left_pad=cached_embed_left_pad,
)
assert x.size(1) == self.chunk_size, (x.size(1), self.chunk_size)
src_key_padding_mask = make_pad_mask(x_lens)
# processed_mask is used to mask out initial states
processed_mask = torch.arange(left_context_len, device=x.device).expand(
x.size(0), left_context_len
)
processed_lens = states[-1] # (batch,)
# (batch, left_context_size)
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
# Update processed lengths
new_processed_lens = processed_lens + x_lens
# (batch, left_context_size + chunk_size)
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
x = x.permute(1, 0, 2)
encoder_states = states[:-2]
logging.info(f"len_encoder_states={len(encoder_states)}")
(
encoder_out,
encoder_out_lens,
new_encoder_states,
) = self.encoder.streaming_forward(
x=x,
x_lens=x_lens,
states=encoder_states,
src_key_padding_mask=src_key_padding_mask,
)
encoder_out = encoder_out.permute(1, 0, 2)
encoder_out = self.encoder_proj(encoder_out)
# Now encoder_out is of shape (N, T, joiner_dim)
new_states = new_encoder_states + [
new_cached_embed_left_pad,
new_processed_lens,
]
return encoder_out, new_states
def get_init_states(
self,
batch_size: int = 1,
device: torch.device = torch.device("cpu"),
) -> List[torch.Tensor]:
"""
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
states[-2] is the cached left padding for ConvNeXt module,
of shape (batch_size, num_channels, left_pad, num_freqs)
states[-1] is processed_lens of shape (batch,), which records the number
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
"""
states = self.encoder.get_init_states(batch_size, device)
embed_states = self.encoder_embed.get_init_states(batch_size, device)
states.append(embed_states)
processed_lens = torch.zeros(batch_size, dtype=torch.int64, device=device)
states.append(processed_lens)
return states
class OnnxDecoder(nn.Module):
"""A wrapper for Decoder and the decoder_proj from the joiner"""
def __init__(self, decoder: Decoder, decoder_proj: nn.Linear):
super().__init__()
self.decoder = decoder
self.decoder_proj = decoder_proj
def forward(self, y: torch.Tensor) -> torch.Tensor:
"""
Args:
y:
A 2-D tensor of shape (N, context_size).
Returns
Return a 2-D tensor of shape (N, joiner_dim)
"""
need_pad = False
decoder_output = self.decoder(y, need_pad=need_pad)
decoder_output = decoder_output.squeeze(1)
output = self.decoder_proj(decoder_output)
return output
class OnnxJoiner(nn.Module):
"""A wrapper for the joiner"""
def __init__(self, output_linear: nn.Linear):
super().__init__()
self.output_linear = output_linear
def forward(
self,
encoder_out: torch.Tensor,
decoder_out: torch.Tensor,
) -> torch.Tensor:
"""
Args:
encoder_out:
A 2-D tensor of shape (N, joiner_dim)
decoder_out:
A 2-D tensor of shape (N, joiner_dim)
Returns:
Return a 2-D tensor of shape (N, vocab_size)
"""
logit = encoder_out + decoder_out
logit = self.output_linear(torch.tanh(logit))
return logit
def export_encoder_model_onnx(
encoder_model: OnnxEncoder,
encoder_filename: str,
opset_version: int = 11,
) -> None:
encoder_model.encoder.__class__.forward = (
encoder_model.encoder.__class__.streaming_forward
)
decode_chunk_len = encoder_model.chunk_size * 2
# The encoder_embed subsample features (T - 7) // 2
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
T = decode_chunk_len + encoder_model.pad_length
x = torch.rand(1, T, 80, dtype=torch.float32)
init_state = encoder_model.get_init_states()
num_encoders = len(encoder_model.encoder.encoder_dim)
logging.info(f"num_encoders: {num_encoders}")
logging.info(f"len(init_state): {len(init_state)}")
inputs = {}
input_names = ["x"]
outputs = {}
output_names = ["encoder_out"]
def build_inputs_outputs(tensors, i):
assert len(tensors) == 6, len(tensors)
# (downsample_left, batch_size, key_dim)
name = f"cached_key_{i}"
logging.info(f"{name}.shape: {tensors[0].shape}")
inputs[name] = {1: "N"}
outputs[f"new_{name}"] = {1: "N"}
input_names.append(name)
output_names.append(f"new_{name}")
# (1, batch_size, downsample_left, nonlin_attn_head_dim)
name = f"cached_nonlin_attn_{i}"
logging.info(f"{name}.shape: {tensors[1].shape}")
inputs[name] = {1: "N"}
outputs[f"new_{name}"] = {1: "N"}
input_names.append(name)
output_names.append(f"new_{name}")
# (downsample_left, batch_size, value_dim)
name = f"cached_val1_{i}"
logging.info(f"{name}.shape: {tensors[2].shape}")
inputs[name] = {1: "N"}
outputs[f"new_{name}"] = {1: "N"}
input_names.append(name)
output_names.append(f"new_{name}")
# (downsample_left, batch_size, value_dim)
name = f"cached_val2_{i}"
logging.info(f"{name}.shape: {tensors[3].shape}")
inputs[name] = {1: "N"}
outputs[f"new_{name}"] = {1: "N"}
input_names.append(name)
output_names.append(f"new_{name}")
# (batch_size, embed_dim, conv_left_pad)
name = f"cached_conv1_{i}"
logging.info(f"{name}.shape: {tensors[4].shape}")
inputs[name] = {0: "N"}
outputs[f"new_{name}"] = {0: "N"}
input_names.append(name)
output_names.append(f"new_{name}")
# (batch_size, embed_dim, conv_left_pad)
name = f"cached_conv2_{i}"
logging.info(f"{name}.shape: {tensors[5].shape}")
inputs[name] = {0: "N"}
outputs[f"new_{name}"] = {0: "N"}
input_names.append(name)
output_names.append(f"new_{name}")
num_encoder_layers = ",".join(map(str, encoder_model.encoder.num_encoder_layers))
encoder_dims = ",".join(map(str, encoder_model.encoder.encoder_dim))
cnn_module_kernels = ",".join(map(str, encoder_model.encoder.cnn_module_kernel))
ds = encoder_model.encoder.downsampling_factor
left_context_len = encoder_model.left_context_len
left_context_len = [left_context_len // k for k in ds]
left_context_len = ",".join(map(str, left_context_len))
query_head_dims = ",".join(map(str, encoder_model.encoder.query_head_dim))
value_head_dims = ",".join(map(str, encoder_model.encoder.value_head_dim))
num_heads = ",".join(map(str, encoder_model.encoder.num_heads))
meta_data = {
"model_type": "zipformer2",
"version": "1",
"model_author": "k2-fsa",
"comment": "streaming zipformer2",
"decode_chunk_len": str(decode_chunk_len), # 32
"T": str(T), # 32+7+2*3=45
"num_encoder_layers": num_encoder_layers,
"encoder_dims": encoder_dims,
"cnn_module_kernels": cnn_module_kernels,
"left_context_len": left_context_len,
"query_head_dims": query_head_dims,
"value_head_dims": value_head_dims,
"num_heads": num_heads,
}
logging.info(f"meta_data: {meta_data}")
for i in range(len(init_state[:-2]) // 6):
build_inputs_outputs(init_state[i * 6 : (i + 1) * 6], i)
# (batch_size, channels, left_pad, freq)
embed_states = init_state[-2]
name = "embed_states"
logging.info(f"{name}.shape: {embed_states.shape}")
inputs[name] = {0: "N"}
outputs[f"new_{name}"] = {0: "N"}
input_names.append(name)
output_names.append(f"new_{name}")
# (batch_size,)
processed_lens = init_state[-1]
name = "processed_lens"
logging.info(f"{name}.shape: {processed_lens.shape}")
inputs[name] = {0: "N"}
outputs[f"new_{name}"] = {0: "N"}
input_names.append(name)
output_names.append(f"new_{name}")
logging.info(inputs)
logging.info(outputs)
logging.info(input_names)
logging.info(output_names)
torch.onnx.export(
encoder_model,
(x, init_state),
encoder_filename,
verbose=False,
opset_version=opset_version,
input_names=input_names,
output_names=output_names,
dynamic_axes={
"x": {0: "N"},
"encoder_out": {0: "N"},
**inputs,
**outputs,
},
)
add_meta_data(filename=encoder_filename, meta_data=meta_data)
def export_decoder_model_onnx(
decoder_model: OnnxDecoder,
decoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the decoder model to ONNX format.
The exported model has one input:
- y: a torch.int64 tensor of shape (N, decoder_model.context_size)
and has one output:
- decoder_out: a torch.float32 tensor of shape (N, joiner_dim)
Args:
decoder_model:
The decoder model to be exported.
decoder_filename:
Filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
context_size = decoder_model.decoder.context_size
vocab_size = decoder_model.decoder.vocab_size
y = torch.zeros(10, context_size, dtype=torch.int64)
torch.onnx.export(
decoder_model,
y,
decoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["y"],
output_names=["decoder_out"],
dynamic_axes={
"y": {0: "N"},
"decoder_out": {0: "N"},
},
)
meta_data = {
"context_size": str(context_size),
"vocab_size": str(vocab_size),
}
add_meta_data(filename=decoder_filename, meta_data=meta_data)
def export_joiner_model_onnx(
joiner_model: nn.Module,
joiner_filename: str,
opset_version: int = 11,
) -> None:
"""Export the joiner model to ONNX format.
The exported joiner model has two inputs:
- encoder_out: a tensor of shape (N, joiner_dim)
- decoder_out: a tensor of shape (N, joiner_dim)
and produces one output:
- logit: a tensor of shape (N, vocab_size)
"""
joiner_dim = joiner_model.output_linear.weight.shape[1]
logging.info(f"joiner dim: {joiner_dim}")
projected_encoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
projected_decoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
torch.onnx.export(
joiner_model,
(projected_encoder_out, projected_decoder_out),
joiner_filename,
verbose=False,
opset_version=opset_version,
input_names=[
"encoder_out",
"decoder_out",
],
output_names=["logit"],
dynamic_axes={
"encoder_out": {0: "N"},
"decoder_out": {0: "N"},
"logit": {0: "N"},
},
)
meta_data = {
"joiner_dim": str(joiner_dim),
}
add_meta_data(filename=joiner_filename, meta_data=meta_data)
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
lexicon = Lexicon(params.lang_dir)
params.blank_id = lexicon.token_table["<blk>"]
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
model.to(device)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to("cpu")
model.eval()
convert_scaled_to_non_scaled(model, inplace=True)
encoder = OnnxEncoder(
encoder=model.encoder,
encoder_embed=model.encoder_embed,
encoder_proj=model.joiner.encoder_proj,
)
decoder = OnnxDecoder(
decoder=model.decoder,
decoder_proj=model.joiner.decoder_proj,
)
joiner = OnnxJoiner(output_linear=model.joiner.output_linear)
encoder_num_param = sum([p.numel() for p in encoder.parameters()])
decoder_num_param = sum([p.numel() for p in decoder.parameters()])
joiner_num_param = sum([p.numel() for p in joiner.parameters()])
total_num_param = encoder_num_param + decoder_num_param + joiner_num_param
logging.info(f"encoder parameters: {encoder_num_param}")
logging.info(f"decoder parameters: {decoder_num_param}")
logging.info(f"joiner parameters: {joiner_num_param}")
logging.info(f"total parameters: {total_num_param}")
if params.iter > 0:
suffix = f"iter-{params.iter}"
else:
suffix = f"epoch-{params.epoch}"
suffix += f"-avg-{params.avg}"
opset_version = 13
logging.info("Exporting encoder")
encoder_filename = params.exp_dir / f"encoder-{suffix}.onnx"
export_encoder_model_onnx(
encoder,
encoder_filename,
opset_version=opset_version,
)
logging.info(f"Exported encoder to {encoder_filename}")
logging.info("Exporting decoder")
decoder_filename = params.exp_dir / f"decoder-{suffix}.onnx"
export_decoder_model_onnx(
decoder,
decoder_filename,
opset_version=opset_version,
)
logging.info(f"Exported decoder to {decoder_filename}")
logging.info("Exporting joiner")
joiner_filename = params.exp_dir / f"joiner-{suffix}.onnx"
export_joiner_model_onnx(
joiner,
joiner_filename,
opset_version=opset_version,
)
logging.info(f"Exported joiner to {joiner_filename}")
# Generate int8 quantization models
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection
logging.info("Generate int8 quantization models")
encoder_filename_int8 = params.exp_dir / f"encoder-{suffix}.int8.onnx"
quantize_dynamic(
model_input=encoder_filename,
model_output=encoder_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
decoder_filename_int8 = params.exp_dir / f"decoder-{suffix}.int8.onnx"
quantize_dynamic(
model_input=decoder_filename,
model_output=decoder_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
joiner_filename_int8 = params.exp_dir / f"joiner-{suffix}.int8.onnx"
quantize_dynamic(
model_input=joiner_filename,
model_output=joiner_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,583 @@
#!/usr/bin/env python3
#
# Copyright 2023 Xiaomi Corporation (Author: Fangjun Kuang)
# Copyright 2023 Danqing Fu (danqing.fu@gmail.com)
"""
This script exports a transducer model from PyTorch to ONNX.
1. Export the model to ONNX
./zipformer/export-onnx.py \
--lang-dir lang_char \
--epoch 12 \
--avg 4 \
--exp-dir zipformer/exp \
It will generate the following 3 files inside $repo/exp:
- encoder-epoch-12-avg-4.onnx
- decoder-epoch-12-avg-4.onnx
- joiner-epoch-12-avg-4.onnx
See ./onnx_pretrained.py for how to
use the exported ONNX models.
"""
import argparse
import logging
from pathlib import Path
from typing import Dict, Tuple
import onnx
import torch
import torch.nn as nn
from decoder import Decoder
from onnxruntime.quantization import QuantType, quantize_dynamic
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_params, get_transducer_model
from zipformer import Zipformer2
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import make_pad_mask, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for averaging.
Note: Epoch counts from 0.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="zipformer/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_char",
help="Path to lang dir(containing lexicon, tokens etc.)",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
add_model_arguments(parser)
return parser
def add_meta_data(filename: str, meta_data: Dict[str, str]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = value
onnx.save(model, filename)
class OnnxEncoder(nn.Module):
"""A wrapper for Zipformer and the encoder_proj from the joiner"""
def __init__(
self, encoder: Zipformer2, encoder_embed: nn.Module, encoder_proj: nn.Linear
):
"""
Args:
encoder:
A Zipformer encoder.
encoder_proj:
The projection layer for encoder from the joiner.
"""
super().__init__()
self.encoder = encoder
self.encoder_embed = encoder_embed
self.encoder_proj = encoder_proj
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Please see the help information of Zipformer.forward
Args:
x:
A 3-D tensor of shape (N, T, C)
x_lens:
A 1-D tensor of shape (N,). Its dtype is torch.int64
Returns:
Return a tuple containing:
- encoder_out, A 3-D tensor of shape (N, T', joiner_dim)
- encoder_out_lens, A 1-D tensor of shape (N,)
"""
x, x_lens = self.encoder_embed(x, x_lens)
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2)
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
encoder_out = encoder_out.permute(1, 0, 2)
encoder_out = self.encoder_proj(encoder_out)
# Now encoder_out is of shape (N, T, joiner_dim)
return encoder_out, encoder_out_lens
class OnnxDecoder(nn.Module):
"""A wrapper for Decoder and the decoder_proj from the joiner"""
def __init__(self, decoder: Decoder, decoder_proj: nn.Linear):
super().__init__()
self.decoder = decoder
self.decoder_proj = decoder_proj
def forward(self, y: torch.Tensor) -> torch.Tensor:
"""
Args:
y:
A 2-D tensor of shape (N, context_size).
Returns
Return a 2-D tensor of shape (N, joiner_dim)
"""
need_pad = False
decoder_output = self.decoder(y, need_pad=need_pad)
decoder_output = decoder_output.squeeze(1)
output = self.decoder_proj(decoder_output)
return output
class OnnxJoiner(nn.Module):
"""A wrapper for the joiner"""
def __init__(self, output_linear: nn.Linear):
super().__init__()
self.output_linear = output_linear
def forward(
self,
encoder_out: torch.Tensor,
decoder_out: torch.Tensor,
) -> torch.Tensor:
"""
Args:
encoder_out:
A 2-D tensor of shape (N, joiner_dim)
decoder_out:
A 2-D tensor of shape (N, joiner_dim)
Returns:
Return a 2-D tensor of shape (N, vocab_size)
"""
logit = encoder_out + decoder_out
logit = self.output_linear(torch.tanh(logit))
return logit
def export_encoder_model_onnx(
encoder_model: OnnxEncoder,
encoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the given encoder model to ONNX format.
The exported model has two inputs:
- x, a tensor of shape (N, T, C); dtype is torch.float32
- x_lens, a tensor of shape (N,); dtype is torch.int64
and it has two outputs:
- encoder_out, a tensor of shape (N, T', joiner_dim)
- encoder_out_lens, a tensor of shape (N,)
Args:
encoder_model:
The input encoder model
encoder_filename:
The filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
x = torch.zeros(1, 100, 80, dtype=torch.float32)
x_lens = torch.tensor([100], dtype=torch.int64)
encoder_model = torch.jit.trace(encoder_model, (x, x_lens))
torch.onnx.export(
encoder_model,
(x, x_lens),
encoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["x", "x_lens"],
output_names=["encoder_out", "encoder_out_lens"],
dynamic_axes={
"x": {0: "N", 1: "T"},
"x_lens": {0: "N"},
"encoder_out": {0: "N", 1: "T"},
"encoder_out_lens": {0: "N"},
},
)
meta_data = {
"model_type": "zipformer2",
"version": "1",
"model_author": "k2-fsa",
"comment": "non-streaming zipformer2",
}
logging.info(f"meta_data: {meta_data}")
add_meta_data(filename=encoder_filename, meta_data=meta_data)
def export_decoder_model_onnx(
decoder_model: OnnxDecoder,
decoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the decoder model to ONNX format.
The exported model has one input:
- y: a torch.int64 tensor of shape (N, decoder_model.context_size)
and has one output:
- decoder_out: a torch.float32 tensor of shape (N, joiner_dim)
Args:
decoder_model:
The decoder model to be exported.
decoder_filename:
Filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
context_size = decoder_model.decoder.context_size
vocab_size = decoder_model.decoder.vocab_size
y = torch.zeros(10, context_size, dtype=torch.int64)
torch.onnx.export(
decoder_model,
y,
decoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["y"],
output_names=["decoder_out"],
dynamic_axes={
"y": {0: "N"},
"decoder_out": {0: "N"},
},
)
meta_data = {
"context_size": str(context_size),
"vocab_size": str(vocab_size),
}
add_meta_data(filename=decoder_filename, meta_data=meta_data)
def export_joiner_model_onnx(
joiner_model: nn.Module,
joiner_filename: str,
opset_version: int = 11,
) -> None:
"""Export the joiner model to ONNX format.
The exported joiner model has two inputs:
- encoder_out: a tensor of shape (N, joiner_dim)
- decoder_out: a tensor of shape (N, joiner_dim)
and produces one output:
- logit: a tensor of shape (N, vocab_size)
"""
joiner_dim = joiner_model.output_linear.weight.shape[1]
logging.info(f"joiner dim: {joiner_dim}")
projected_encoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
projected_decoder_out = torch.rand(11, joiner_dim, dtype=torch.float32)
torch.onnx.export(
joiner_model,
(projected_encoder_out, projected_decoder_out),
joiner_filename,
verbose=False,
opset_version=opset_version,
input_names=[
"encoder_out",
"decoder_out",
],
output_names=["logit"],
dynamic_axes={
"encoder_out": {0: "N"},
"decoder_out": {0: "N"},
"logit": {0: "N"},
},
)
meta_data = {
"joiner_dim": str(joiner_dim),
}
add_meta_data(filename=joiner_filename, meta_data=meta_data)
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
lexicon = Lexicon(params.lang_dir)
params.blank_id = lexicon.token_table["<blk>"]
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
model.to(device)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to("cpu")
model.eval()
convert_scaled_to_non_scaled(model, inplace=True, is_onnx=True)
encoder = OnnxEncoder(
encoder=model.encoder,
encoder_embed=model.encoder_embed,
encoder_proj=model.joiner.encoder_proj,
)
decoder = OnnxDecoder(
decoder=model.decoder,
decoder_proj=model.joiner.decoder_proj,
)
joiner = OnnxJoiner(output_linear=model.joiner.output_linear)
encoder_num_param = sum([p.numel() for p in encoder.parameters()])
decoder_num_param = sum([p.numel() for p in decoder.parameters()])
joiner_num_param = sum([p.numel() for p in joiner.parameters()])
total_num_param = encoder_num_param + decoder_num_param + joiner_num_param
logging.info(f"encoder parameters: {encoder_num_param}")
logging.info(f"decoder parameters: {decoder_num_param}")
logging.info(f"joiner parameters: {joiner_num_param}")
logging.info(f"total parameters: {total_num_param}")
if params.iter > 0:
suffix = f"iter-{params.iter}"
else:
suffix = f"epoch-{params.epoch}"
suffix += f"-avg-{params.avg}"
opset_version = 13
logging.info("Exporting encoder")
encoder_filename = params.exp_dir / f"encoder-{suffix}.onnx"
export_encoder_model_onnx(
encoder,
encoder_filename,
opset_version=opset_version,
)
logging.info(f"Exported encoder to {encoder_filename}")
logging.info("Exporting decoder")
decoder_filename = params.exp_dir / f"decoder-{suffix}.onnx"
export_decoder_model_onnx(
decoder,
decoder_filename,
opset_version=opset_version,
)
logging.info(f"Exported decoder to {decoder_filename}")
logging.info("Exporting joiner")
joiner_filename = params.exp_dir / f"joiner-{suffix}.onnx"
export_joiner_model_onnx(
joiner,
joiner_filename,
opset_version=opset_version,
)
logging.info(f"Exported joiner to {joiner_filename}")
# Generate int8 quantization models
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection
logging.info("Generate int8 quantization models")
encoder_filename_int8 = params.exp_dir / f"encoder-{suffix}.int8.onnx"
quantize_dynamic(
model_input=encoder_filename,
model_output=encoder_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
decoder_filename_int8 = params.exp_dir / f"decoder-{suffix}.int8.onnx"
quantize_dynamic(
model_input=decoder_filename,
model_output=decoder_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
joiner_filename_int8 = params.exp_dir / f"joiner-{suffix}.int8.onnx"
quantize_dynamic(
model_input=joiner_filename,
model_output=joiner_filename_int8,
op_types_to_quantize=["MatMul"],
weight_type=QuantType.QInt8,
)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,517 @@
#!/usr/bin/env python3
#
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang, Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script converts several saved checkpoints
# to a single one using model averaging.
"""
Usage:
(1) Export to torchscript model using torch.jit.script()
- For non-streaming model:
./zipformer/export.py \
--exp-dir ./zipformer/exp \
--lang-dir data/lang_char \
--epoch 30 \
--avg 9 \
--jit 1
It will generate a file `jit_script.pt` in the given `exp_dir`. You can later
load it by `torch.jit.load("jit_script.pt")`.
Check ./jit_pretrained.py for its usage.
Check https://github.com/k2-fsa/sherpa
for how to use the exported models outside of icefall.
- For streaming model:
./zipformer/export.py \
--exp-dir ./zipformer/exp \
--causal 1 \
--chunk-size 16 \
--left-context-frames 128 \
--lang-dir data/lang_char \
--epoch 30 \
--avg 9 \
--jit 1
It will generate a file `jit_script_chunk_16_left_128.pt` in the given `exp_dir`.
You can later load it by `torch.jit.load("jit_script_chunk_16_left_128.pt")`.
Check ./jit_pretrained_streaming.py for its usage.
Check https://github.com/k2-fsa/sherpa
for how to use the exported models outside of icefall.
(2) Export `model.state_dict()`
- For non-streaming model:
./zipformer/export.py \
--exp-dir ./zipformer/exp \
--lang-dir data/lang_char \
--epoch 30 \
--avg 9
- For streaming model:
./zipformer/export.py \
--exp-dir ./zipformer/exp \
--causal 1 \
--lang-dir data/lang_char \
--epoch 30 \
--avg 9
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
load it by `icefall.checkpoint.load_checkpoint()`.
- For non-streaming model:
To use the generated file with `zipformer/decode.py`,
you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/wenetspeech/ASR
./zipformer/decode.py \
--exp-dir ./zipformer/exp \
--epoch 9999 \
--avg 1 \
--max-duration 600 \
--decoding-method greedy_search
- For streaming model:
To use the generated file with `zipformer/decode.py` and `zipformer/streaming_decode.py`, you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/wenetspeech/ASR
# simulated streaming decoding
./zipformer/decode.py \
--exp-dir ./zipformer/exp \
--epoch 9999 \
--avg 1 \
--max-duration 600 \
--causal 1 \
--chunk-size 16 \
--left-context-frames 128 \
--decoding-method greedy_search
# chunk-wise streaming decoding
./zipformer/streaming_decode.py \
--exp-dir ./zipformer/exp \
--epoch 9999 \
--avg 1 \
--max-duration 600 \
--causal 1 \
--chunk-size 16 \
--left-context-frames 128 \
--decoding-method greedy_search
Check ./pretrained.py for its usage.
Note: If you don't want to train a model from scratch, we have
provided one for you. You can get it at
- non-streaming model:
https://huggingface.co/pkufool/icefall-asr-zipformer-wenetspeech-20230615
- streaming model:
https://huggingface.co/pkufool/icefall-asr-zipformer-streaming-wenetspeech-20230615
with the following commands:
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/pkufool/icefall-asr-zipformer-wenetspeech-20230615
git clone https://huggingface.co/pkufool/icefall-asr-zipformer-streaming-wenetspeech-20230615
# You will find the pre-trained models in exp dir
"""
import argparse
import logging
from pathlib import Path
from typing import List, Tuple
import torch
from scaling_converter import convert_scaled_to_non_scaled
from torch import Tensor, nn
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import make_pad_mask, str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=9,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="zipformer/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_char",
help="The lang dir",
)
parser.add_argument(
"--jit",
type=str2bool,
default=False,
help="""True to save a model after applying torch.jit.script.
It will generate a file named jit_script.pt.
Check ./jit_pretrained.py for how to use it.
""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
add_model_arguments(parser)
return parser
class EncoderModel(nn.Module):
"""A wrapper for encoder and encoder_embed"""
def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None:
super().__init__()
self.encoder = encoder
self.encoder_embed = encoder_embed
def forward(
self, features: Tensor, feature_lengths: Tensor
) -> Tuple[Tensor, Tensor]:
"""
Args:
features: (N, T, C)
feature_lengths: (N,)
"""
x, x_lens = self.encoder_embed(features, feature_lengths)
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
return encoder_out, encoder_out_lens
class StreamingEncoderModel(nn.Module):
"""A wrapper for encoder and encoder_embed"""
def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None:
super().__init__()
assert len(encoder.chunk_size) == 1, encoder.chunk_size
assert len(encoder.left_context_frames) == 1, encoder.left_context_frames
self.chunk_size = encoder.chunk_size[0]
self.left_context_len = encoder.left_context_frames[0]
# The encoder_embed subsample features (T - 7) // 2
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
self.pad_length = 7 + 2 * 3
self.encoder = encoder
self.encoder_embed = encoder_embed
def forward(
self, features: Tensor, feature_lengths: Tensor, states: List[Tensor]
) -> Tuple[Tensor, Tensor, List[Tensor]]:
"""Streaming forward for encoder_embed and encoder.
Args:
features: (N, T, C)
feature_lengths: (N,)
states: a list of Tensors
Returns encoder outputs, output lengths, and updated states.
"""
chunk_size = self.chunk_size
left_context_len = self.left_context_len
cached_embed_left_pad = states[-2]
x, x_lens, new_cached_embed_left_pad = self.encoder_embed.streaming_forward(
x=features,
x_lens=feature_lengths,
cached_left_pad=cached_embed_left_pad,
)
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
src_key_padding_mask = make_pad_mask(x_lens)
# processed_mask is used to mask out initial states
processed_mask = torch.arange(left_context_len, device=x.device).expand(
x.size(0), left_context_len
)
processed_lens = states[-1] # (batch,)
# (batch, left_context_size)
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
# Update processed lengths
new_processed_lens = processed_lens + x_lens
# (batch, left_context_size + chunk_size)
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_states = states[:-2]
(
encoder_out,
encoder_out_lens,
new_encoder_states,
) = self.encoder.streaming_forward(
x=x,
x_lens=x_lens,
states=encoder_states,
src_key_padding_mask=src_key_padding_mask,
)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
new_states = new_encoder_states + [
new_cached_embed_left_pad,
new_processed_lens,
]
return encoder_out, encoder_out_lens, new_states
@torch.jit.export
def get_init_states(
self,
batch_size: int = 1,
device: torch.device = torch.device("cpu"),
) -> List[torch.Tensor]:
"""
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
states[-2] is the cached left padding for ConvNeXt module,
of shape (batch_size, num_channels, left_pad, num_freqs)
states[-1] is processed_lens of shape (batch,), which records the number
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
"""
states = self.encoder.get_init_states(batch_size, device)
embed_states = self.encoder_embed.get_init_states(batch_size, device)
states.append(embed_states)
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
states.append(processed_lens)
return states
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
# if torch.cuda.is_available():
# device = torch.device("cuda", 0)
logging.info(f"device: {device}")
lexicon = Lexicon(params.lang_dir)
params.blank_id = lexicon.token_table["<blk>"]
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.eval()
if params.jit is True:
convert_scaled_to_non_scaled(model, inplace=True)
# We won't use the forward() method of the model in C++, so just ignore
# it here.
# Otherwise, one of its arguments is a ragged tensor and is not
# torch scriptabe.
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
# Wrap encoder and encoder_embed as a module
if params.causal:
model.encoder = StreamingEncoderModel(model.encoder, model.encoder_embed)
chunk_size = model.encoder.chunk_size
left_context_len = model.encoder.left_context_len
filename = f"jit_script_chunk_{chunk_size}_left_{left_context_len}.pt"
else:
model.encoder = EncoderModel(model.encoder, model.encoder_embed)
filename = "jit_script.pt"
logging.info("Using torch.jit.script")
model = torch.jit.script(model)
model.save(str(params.exp_dir / filename))
logging.info(f"Saved to {filename}")
else:
logging.info("Not using torchscript. Export model.state_dict()")
# Save it using a format so that it can be loaded
# by :func:`load_checkpoint`
filename = params.exp_dir / "pretrained.pt"
torch.save({"model": model.state_dict()}, str(filename))
logging.info(f"Saved to {filename}")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,281 @@
#!/usr/bin/env python3
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang, Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads torchscript models, exported by `torch.jit.script()`
and uses them to decode waves.
You can use the following command to get the exported models:
./zipformer/export.py \
--exp-dir ./zipformer/exp \
--lang-dir data/lang_char \
--epoch 30 \
--avg 9 \
--jit 1
Usage of this script:
./zipformer/jit_pretrained.py \
--nn-model-filename ./zipformer/exp/cpu_jit.pt \
--lang-dir data/lang_char \
/path/to/foo.wav \
/path/to/bar.wav
"""
import argparse
import logging
import math
from typing import List
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
from icefall.lexicon import Lexicon
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--nn-model-filename",
type=str,
required=True,
help="Path to the torchscript model jit_script.pt",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_char",
help="""Path to lang(containing lexicon, tokens).""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float = 16000
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
def greedy_search(
model: torch.jit.ScriptModule,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
) -> List[List[int]]:
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
Args:
model:
The transducer model.
encoder_out:
A 3-D tensor of shape (N, T, C)
encoder_out_lens:
A 1-D tensor of shape (N,).
Returns:
Return the decoded results for each utterance.
"""
assert encoder_out.ndim == 3
assert encoder_out.size(0) >= 1, encoder_out.size(0)
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
device = encoder_out.device
blank_id = 0 # hard-code to 0
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
context_size = model.decoder.context_size
hyps = [[blank_id] * context_size for _ in range(N)]
decoder_input = torch.tensor(
hyps,
device=device,
dtype=torch.int64,
) # (N, context_size)
decoder_out = model.decoder(
decoder_input,
need_pad=torch.tensor([False]),
).squeeze(1)
offset = 0
for batch_size in batch_size_list:
start = offset
end = offset + batch_size
current_encoder_out = packed_encoder_out.data[start:end]
current_encoder_out = current_encoder_out
# current_encoder_out's shape: (batch_size, encoder_out_dim)
offset = end
decoder_out = decoder_out[:batch_size]
logits = model.joiner(
current_encoder_out,
decoder_out,
)
# logits'shape (batch_size, vocab_size)
assert logits.ndim == 2, logits.shape
y = logits.argmax(dim=1).tolist()
emitted = False
for i, v in enumerate(y):
if v != blank_id:
hyps[i].append(v)
emitted = True
if emitted:
# update decoder output
decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
decoder_input = torch.tensor(
decoder_input,
device=device,
dtype=torch.int64,
)
decoder_out = model.decoder(
decoder_input,
need_pad=torch.tensor([False]),
)
decoder_out = decoder_out.squeeze(1)
sorted_ans = [h[context_size:] for h in hyps]
ans = []
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
for i in range(N):
ans.append(sorted_ans[unsorted_indices[i]])
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
model = torch.jit.load(args.nn_model_filename)
model.eval()
model.to(device)
lexicon = Lexicon(args.lang_dir)
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {args.sound_files}")
waves = read_sound_files(
filenames=args.sound_files,
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(
features,
batch_first=True,
padding_value=math.log(1e-10),
)
feature_lengths = torch.tensor(feature_lengths, device=device)
encoder_out, encoder_out_lens = model.encoder(
features=features,
feature_lengths=feature_lengths,
)
hyps = greedy_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
def token_ids_to_words(token_ids: List[int]) -> str:
text = ""
for i in token_ids:
text += lexicon.token_table[i]
return text.replace("", " ").strip()
s = "\n"
for filename, hyp in zip(args.sound_files, hyps):
words = token_ids_to_words(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,277 @@
#!/usr/bin/env python3
# flake8: noqa
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads torchscript models exported by `torch.jit.script()`
and uses them to decode waves.
You can use the following command to get the exported models:
./zipformer/export.py \
--exp-dir ./zipformer/exp \
--causal 1 \
--chunk-size 16 \
--left-context-frames 128 \
--lang-dir data/lang_char \
--epoch 30 \
--avg 9 \
--jit 1
Usage of this script:
./zipformer/jit_pretrained_streaming.py \
--nn-model-filename ./zipformer/exp-causal/jit_script_chunk_16_left_128.pt \
--lang-dir data/lang_char \
/path/to/foo.wav \
"""
import argparse
import logging
import math
from typing import List, Optional
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
from torch.nn.utils.rnn import pad_sequence
from icefall.lexicon import Lexicon
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--nn-model-filename",
type=str,
required=True,
help="Path to the torchscript model cpu_jit.pt",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_char",
help="""Path to lang(containing lexicon, tokens).""",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"sound_file",
type=str,
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
def greedy_search(
decoder: torch.jit.ScriptModule,
joiner: torch.jit.ScriptModule,
encoder_out: torch.Tensor,
decoder_out: Optional[torch.Tensor] = None,
hyp: Optional[List[int]] = None,
device: torch.device = torch.device("cpu"),
):
assert encoder_out.ndim == 2
context_size = 2
blank_id = 0
if decoder_out is None:
assert hyp is None, hyp
hyp = [blank_id] * context_size
decoder_input = torch.tensor(hyp, dtype=torch.int32, device=device).unsqueeze(0)
# decoder_input.shape (1,, 1 context_size)
decoder_out = decoder(decoder_input, torch.tensor([False])).squeeze(1)
else:
assert decoder_out.ndim == 2
assert hyp is not None, hyp
T = encoder_out.size(0)
for i in range(T):
cur_encoder_out = encoder_out[i : i + 1]
joiner_out = joiner(cur_encoder_out, decoder_out).squeeze(0)
y = joiner_out.argmax(dim=0).item()
if y != blank_id:
hyp.append(y)
decoder_input = hyp[-context_size:]
decoder_input = torch.tensor(
decoder_input, dtype=torch.int32, device=device
).unsqueeze(0)
decoder_out = decoder(decoder_input, torch.tensor([False])).squeeze(1)
return hyp, decoder_out
def create_streaming_feature_extractor(sample_rate) -> OnlineFeature:
"""Create a CPU streaming feature extractor.
At present, we assume it returns a fbank feature extractor with
fixed options. In the future, we will support passing in the options
from outside.
Returns:
Return a CPU streaming feature extractor.
"""
opts = FbankOptions()
opts.device = "cpu"
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = sample_rate
opts.mel_opts.num_bins = 80
return OnlineFbank(opts)
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
model = torch.jit.load(args.nn_model_filename)
model.eval()
model.to(device)
encoder = model.encoder
decoder = model.decoder
joiner = model.joiner
lexicon = Lexicon(args.lang_dir)
logging.info("Constructing Fbank computer")
online_fbank = create_streaming_feature_extractor(args.sample_rate)
logging.info(f"Reading sound files: {args.sound_file}")
wave_samples = read_sound_files(
filenames=[args.sound_file],
expected_sample_rate=args.sample_rate,
)[0]
logging.info(wave_samples.shape)
logging.info("Decoding started")
chunk_length = encoder.chunk_size * 2
T = chunk_length + encoder.pad_length
logging.info(f"chunk_length: {chunk_length}")
logging.info(f"T: {T}")
states = encoder.get_init_states(device=device)
tail_padding = torch.zeros(int(0.3 * args.sample_rate), dtype=torch.float32)
wave_samples = torch.cat([wave_samples, tail_padding])
chunk = int(0.25 * args.sample_rate) # 0.2 second
num_processed_frames = 0
hyp = None
decoder_out = None
start = 0
while start < wave_samples.numel():
logging.info(f"{start}/{wave_samples.numel()}")
end = min(start + chunk, wave_samples.numel())
samples = wave_samples[start:end]
start += chunk
online_fbank.accept_waveform(
sampling_rate=args.sample_rate,
waveform=samples,
)
while online_fbank.num_frames_ready - num_processed_frames >= T:
frames = []
for i in range(T):
frames.append(online_fbank.get_frame(num_processed_frames + i))
frames = torch.cat(frames, dim=0).to(device).unsqueeze(0)
x_lens = torch.tensor([T], dtype=torch.int32, device=device)
encoder_out, out_lens, states = encoder(
features=frames,
feature_lengths=x_lens,
states=states,
)
num_processed_frames += chunk_length
hyp, decoder_out = greedy_search(
decoder, joiner, encoder_out.squeeze(0), decoder_out, hyp, device=device
)
context_size = 2
text = ""
for i in hyp[context_size:]:
text += lexicon.token_table[i]
text = text.replace("", " ").strip()
logging.info(args.sound_file)
logging.info(text)
logging.info("Decoding Done")
torch.set_num_threads(4)
torch.set_num_interop_threads(1)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_set_profiling_mode(False)
torch._C._set_graph_executor_optimize(False)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,235 @@
#!/usr/bin/env python3
#
# Copyright 2022 Xiaomi Corporation (Author: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script checks that exported onnx models produce the same output
with the given torchscript model for the same input.
We use the pre-trained model from
https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless5_offline/
as an example to show how to use this file.
1. Download the pre-trained model
cd egs/wenetspeech/ASR
repo_url=https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless5_offline/
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_char/Linv.pt"
git lfs pull --include "exp/pretrained_epoch_4_avg_1.pt"
git lfs pull --include "exp/cpu_jit_epoch_4_avg_1_torch.1.7.1.pt"
cd exp
ln -s pretrained_epoch_9_avg_1_torch.1.7.1.pt epoch-99.pt
popd
2. Export the model to ONNX
./pruned_transducer_stateless5/export-onnx.py \
--lang-dir $repo/data/lang_char \
--epoch 99 \
--avg 1 \
--use-averaged-model 0 \
--exp-dir $repo/exp \
--num-encoder-layers 24 \
--dim-feedforward 1536 \
--nhead 8 \
--encoder-dim 384 \
--decoder-dim 512 \
--joiner-dim 512
It will generate the following 3 files inside $repo/exp:
- encoder-epoch-99-avg-1.onnx
- decoder-epoch-99-avg-1.onnx
- joiner-epoch-99-avg-1.onnx
4. Run this file
./pruned_transducer_stateless5/onnx_check.py \
--jit-filename $repo/exp/cpu_jit_epoch_4_avg_1_torch.1.7.1.pt \
--onnx-encoder-filename $repo/exp/encoder-epoch-99-avg-1.onnx \
--onnx-decoder-filename $repo/exp/decoder-epoch-99-avg-1.onnx \
--onnx-joiner-filename $repo/exp/joiner-epoch-99-avg-1.onnx
"""
import argparse
import logging
import torch
from onnx_pretrained import OnnxModel
from icefall import is_module_available
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--jit-filename",
required=True,
type=str,
help="Path to the torchscript model",
)
parser.add_argument(
"--onnx-encoder-filename",
required=True,
type=str,
help="Path to the onnx encoder model",
)
parser.add_argument(
"--onnx-decoder-filename",
required=True,
type=str,
help="Path to the onnx decoder model",
)
parser.add_argument(
"--onnx-joiner-filename",
required=True,
type=str,
help="Path to the onnx joiner model",
)
return parser
def test_encoder(
torch_model: torch.jit.ScriptModule,
onnx_model: OnnxModel,
):
C = 80
for i in range(3):
N = torch.randint(low=1, high=20, size=(1,)).item()
T = torch.randint(low=30, high=50, size=(1,)).item()
logging.info(f"test_encoder: iter {i}, N={N}, T={T}")
x = torch.rand(N, T, C)
x_lens = torch.randint(low=30, high=T + 1, size=(N,))
x_lens[0] = T
torch_encoder_out, torch_encoder_out_lens = torch_model.encoder(x, x_lens)
torch_encoder_out = torch_model.joiner.encoder_proj(torch_encoder_out)
onnx_encoder_out, onnx_encoder_out_lens = onnx_model.run_encoder(x, x_lens)
assert torch.allclose(torch_encoder_out, onnx_encoder_out, atol=1e-05), (
(torch_encoder_out - onnx_encoder_out).abs().max()
)
def test_decoder(
torch_model: torch.jit.ScriptModule,
onnx_model: OnnxModel,
):
context_size = onnx_model.context_size
vocab_size = onnx_model.vocab_size
for i in range(10):
N = torch.randint(1, 100, size=(1,)).item()
logging.info(f"test_decoder: iter {i}, N={N}")
x = torch.randint(
low=1,
high=vocab_size,
size=(N, context_size),
dtype=torch.int64,
)
torch_decoder_out = torch_model.decoder(x, need_pad=torch.tensor([False]))
torch_decoder_out = torch_model.joiner.decoder_proj(torch_decoder_out)
torch_decoder_out = torch_decoder_out.squeeze(1)
onnx_decoder_out = onnx_model.run_decoder(x)
assert torch.allclose(torch_decoder_out, onnx_decoder_out, atol=1e-4), (
(torch_decoder_out - onnx_decoder_out).abs().max()
)
def test_joiner(
torch_model: torch.jit.ScriptModule,
onnx_model: OnnxModel,
):
encoder_dim = torch_model.joiner.encoder_proj.weight.shape[1]
decoder_dim = torch_model.joiner.decoder_proj.weight.shape[1]
for i in range(10):
N = torch.randint(1, 100, size=(1,)).item()
logging.info(f"test_joiner: iter {i}, N={N}")
encoder_out = torch.rand(N, encoder_dim)
decoder_out = torch.rand(N, decoder_dim)
projected_encoder_out = torch_model.joiner.encoder_proj(encoder_out)
projected_decoder_out = torch_model.joiner.decoder_proj(decoder_out)
torch_joiner_out = torch_model.joiner(encoder_out, decoder_out)
onnx_joiner_out = onnx_model.run_joiner(
projected_encoder_out, projected_decoder_out
)
assert torch.allclose(torch_joiner_out, onnx_joiner_out, atol=1e-4), (
(torch_joiner_out - onnx_joiner_out).abs().max()
)
@torch.no_grad()
def main():
args = get_parser().parse_args()
logging.info(vars(args))
torch_model = torch.jit.load(args.jit_filename)
onnx_model = OnnxModel(
encoder_model_filename=args.onnx_encoder_filename,
decoder_model_filename=args.onnx_decoder_filename,
joiner_model_filename=args.onnx_joiner_filename,
)
logging.info("Test encoder")
test_encoder(torch_model, onnx_model)
logging.info("Test decoder")
test_decoder(torch_model, onnx_model)
logging.info("Test joiner")
test_joiner(torch_model, onnx_model)
logging.info("Finished checking ONNX models")
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
# See https://github.com/pytorch/pytorch/issues/38342
# and https://github.com/pytorch/pytorch/issues/33354
#
# If we don't do this, the delay increases whenever there is
# a new request that changes the actual batch size.
# If you use `py-spy dump --pid <server-pid> --native`, you will
# see a lot of time is spent in re-compiling the torch script model.
torch._C._jit_set_profiling_executor(False)
torch._C._jit_set_profiling_mode(False)
torch._C._set_graph_executor_optimize(False)
if __name__ == "__main__":
torch.manual_seed(20220727)
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,334 @@
#!/usr/bin/env python3
#
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
# Zengwei Yao,
# Xiaoyu Yang,
# Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads ONNX exported models and uses them to decode the test sets.
We use the pre-trained model from
https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11
as an example to show how to use this file.
1. Download the pre-trained model
cd egs/librispeech/ASR
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained-epoch-30-avg-9.pt"
cd exp
ln -s pretrained-epoch-30-avg-9.pt epoch-9999.pt
popd
2. Export the model to ONNX
./pruned_transducer_stateless7/export-onnx.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--epoch 9999 \
--avg 1 \
--exp-dir $repo/exp/
It will generate the following 3 files inside $repo/exp:
- encoder-epoch-9999-avg-1.onnx
- decoder-epoch-9999-avg-1.onnx
- joiner-epoch-9999-avg-1.onnx
2. Run this file
./pruned_transducer_stateless7/onnx_decode.py \
--exp-dir ./pruned_transducer_stateless7/exp \
--max-duration 600 \
--encoder-model-filename $repo/exp/encoder-epoch-9999-avg-1.onnx \
--decoder-model-filename $repo/exp/decoder-epoch-9999-avg-1.onnx \
--joiner-model-filename $repo/exp/joiner-epoch-9999-avg-1.onnx \
"""
import argparse
import logging
import time
from pathlib import Path
from typing import List, Tuple
import k2
import torch
import torch.nn as nn
from asr_datamodule import WenetSpeechAsrDataModule
from lhotse.cut import Cut
from onnx_pretrained import OnnxModel, greedy_search
from icefall.utils import setup_logger, store_transcripts, write_error_stats
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--encoder-model-filename",
type=str,
required=True,
help="Path to the encoder onnx model. ",
)
parser.add_argument(
"--decoder-model-filename",
type=str,
required=True,
help="Path to the decoder onnx model. ",
)
parser.add_argument(
"--joiner-model-filename",
type=str,
required=True,
help="Path to the joiner onnx model. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless7/exp",
help="The experiment dir",
)
parser.add_argument(
"--tokens",
type=str,
default="data/lang_char/tokens.txt",
help="Path to the tokens.txt",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="Valid values are greedy_search and modified_beam_search",
)
return parser
def decode_one_batch(
model: OnnxModel, symbol_table: k2.SymbolTable, batch: dict
) -> List[List[str]]:
"""Decode one batch and return the result.
Currently it only greedy_search is supported.
Args:
model:
The neural model.
symbol_table:
Mapping ids to tokens.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
Returns:
Return the decoded results for each utterance.
"""
feature = batch["inputs"]
assert feature.ndim == 3
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(dtype=torch.int64)
encoder_out, encoder_out_lens = model.run_encoder(x=feature, x_lens=feature_lens)
hyps = greedy_search(
model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens
)
hyps = [[symbol_table[h] for h in hyp] for hyp in hyps]
return hyps
def decode_dataset(
dl: torch.utils.data.DataLoader,
model: nn.Module,
symbol_table: k2.SymbolTable,
) -> Tuple[List[Tuple[str, List[str], List[str]]], float]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
model:
The neural model.
symbol_table:
Mapping ids to tokens.
Returns:
- A list of tuples. Each tuple contains three elements:
- cut_id,
- reference transcript,
- predicted result.
- The total duration (in seconds) of the dataset.
"""
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
log_interval = 10
total_duration = 0
results = []
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
total_duration += sum([cut.duration for cut in batch["supervisions"]["cut"]])
hyps = decode_one_batch(model=model, symbol_table=symbol_table, batch=batch)
this_batch = []
assert len(hyps) == len(texts)
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_words = list(ref_text)
this_batch.append((cut_id, ref_words, hyp_words))
results.extend(this_batch)
num_cuts += len(texts)
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
return results, total_duration
def save_results(
res_dir: Path,
test_set_name: str,
results: List[Tuple[str, List[str], List[str]]],
):
recog_path = res_dir / f"recogs-{test_set_name}.txt"
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = res_dir / f"errs-{test_set_name}.txt"
with open(errs_filename, "w") as f:
wer = write_error_stats(f, f"{test_set_name}", results, enable_log=True)
logging.info("Wrote detailed error stats to {}".format(errs_filename))
errs_info = res_dir / f"wer-summary-{test_set_name}.txt"
with open(errs_info, "w") as f:
print("WER", file=f)
print(wer, file=f)
s = "\nFor {}, WER is {}:\n".format(test_set_name, wer)
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
WenetSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
assert (
args.decoding_method == "greedy_search"
), "Only supports greedy_search currently."
res_dir = Path(args.exp_dir) / f"onnx-{args.decoding_method}"
setup_logger(f"{res_dir}/log-decode")
logging.info("Decoding started")
device = torch.device("cpu")
logging.info(f"Device: {device}")
symbol_table = k2.SymbolTable.from_file(args.tokens)
assert symbol_table[0] == "<blk>"
logging.info(vars(args))
logging.info("About to create model")
model = OnnxModel(
encoder_model_filename=args.encoder_model_filename,
decoder_model_filename=args.decoder_model_filename,
joiner_model_filename=args.joiner_model_filename,
)
# we need cut ids to display recognition results.
args.return_cuts = True
wenetspeech = WenetSpeechAsrDataModule(args)
def remove_short_utt(c: Cut):
T = ((c.num_frames - 7) // 2 + 1) // 2
if T <= 0:
logging.warning(
f"Exclude cut with ID {c.id} from decoding, num_frames : {c.num_frames}."
)
return T > 0
dev_cuts = wenetspeech.valid_cuts()
dev_cuts = dev_cuts.filter(remove_short_utt)
dev_dl = wenetspeech.valid_dataloaders(dev_cuts)
test_net_cuts = wenetspeech.test_net_cuts()
test_net_cuts = test_net_cuts.filter(remove_short_utt)
test_net_dl = wenetspeech.test_dataloaders(test_net_cuts)
test_meeting_cuts = wenetspeech.test_meeting_cuts()
test_meeting_cuts = test_meeting_cuts.filter(remove_short_utt)
test_meeting_dl = wenetspeech.test_dataloaders(test_meeting_cuts)
test_sets = ["DEV", "TEST_NET", "TEST_MEETING"]
test_dl = [dev_dl, test_net_dl, test_meeting_dl]
for test_set, test_dl in zip(test_sets, test_dl):
start_time = time.time()
results, total_duration = decode_dataset(
dl=test_dl, model=model, symbol_table=symbol_table
)
end_time = time.time()
elapsed_seconds = end_time - start_time
rtf = elapsed_seconds / total_duration
logging.info(f"Elapsed time: {elapsed_seconds:.3f} s")
logging.info(f"Wave duration: {total_duration:.3f} s")
logging.info(
f"Real time factor (RTF): {elapsed_seconds:.3f}/{total_duration:.3f} = {rtf:.3f}"
)
save_results(res_dir=res_dir, test_set_name=test_set, results=results)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,544 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
# Copyright 2023 Danqing Fu (danqing.fu@gmail.com)
"""
This script loads ONNX models exported by ./export-onnx-streaming.py
and uses them to decode waves.
We use the pre-trained model from
https://huggingface.co/Zengwei/icefall-asr-librispeech-streaming-zipformer-2023-05-17
as an example to show how to use this file.
1. Download the pre-trained model
cd egs/librispeech/ASR
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-streaming-zipformer-2023-05-17
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained.pt"
cd exp
ln -s pretrained.pt epoch-99.pt
popd
2. Export the model to ONNX
./zipformer/export-onnx-streaming.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
--exp-dir $repo/exp \
--num-encoder-layers "2,2,3,4,3,2" \
--downsampling-factor "1,2,4,8,4,2" \
--feedforward-dim "512,768,1024,1536,1024,768" \
--num-heads "4,4,4,8,4,4" \
--encoder-dim "192,256,384,512,384,256" \
--query-head-dim 32 \
--value-head-dim 12 \
--pos-head-dim 4 \
--pos-dim 48 \
--encoder-unmasked-dim "192,192,256,256,256,192" \
--cnn-module-kernel "31,31,15,15,15,31" \
--decoder-dim 512 \
--joiner-dim 512 \
--causal True \
--chunk-size 16 \
--left-context-frames 64
It will generate the following 3 files inside $repo/exp:
- encoder-epoch-99-avg-1.onnx
- decoder-epoch-99-avg-1.onnx
- joiner-epoch-99-avg-1.onnx
3. Run this file with the exported ONNX models
./zipformer/onnx_pretrained-streaming.py \
--encoder-model-filename $repo/exp/encoder-epoch-99-avg-1.onnx \
--decoder-model-filename $repo/exp/decoder-epoch-99-avg-1.onnx \
--joiner-model-filename $repo/exp/joiner-epoch-99-avg-1.onnx \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav
Note: Even though this script only supports decoding a single file,
the exported ONNX models do support batch processing.
"""
import argparse
import logging
from typing import Dict, List, Optional, Tuple
import k2
import numpy as np
import onnxruntime as ort
import torch
import torchaudio
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--encoder-model-filename",
type=str,
required=True,
help="Path to the encoder onnx model. ",
)
parser.add_argument(
"--decoder-model-filename",
type=str,
required=True,
help="Path to the decoder onnx model. ",
)
parser.add_argument(
"--joiner-model-filename",
type=str,
required=True,
help="Path to the joiner onnx model. ",
)
parser.add_argument(
"--tokens",
type=str,
help="""Path to tokens.txt.""",
)
parser.add_argument(
"sound_file",
type=str,
help="The input sound file to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
return parser
class OnnxModel:
def __init__(
self,
encoder_model_filename: str,
decoder_model_filename: str,
joiner_model_filename: str,
):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 1
self.session_opts = session_opts
self.init_encoder(encoder_model_filename)
self.init_decoder(decoder_model_filename)
self.init_joiner(joiner_model_filename)
def init_encoder(self, encoder_model_filename: str):
self.encoder = ort.InferenceSession(
encoder_model_filename,
sess_options=self.session_opts,
)
self.init_encoder_states()
def init_encoder_states(self, batch_size: int = 1):
encoder_meta = self.encoder.get_modelmeta().custom_metadata_map
logging.info(f"encoder_meta={encoder_meta}")
model_type = encoder_meta["model_type"]
assert model_type == "zipformer2", model_type
decode_chunk_len = int(encoder_meta["decode_chunk_len"])
T = int(encoder_meta["T"])
num_encoder_layers = encoder_meta["num_encoder_layers"]
encoder_dims = encoder_meta["encoder_dims"]
cnn_module_kernels = encoder_meta["cnn_module_kernels"]
left_context_len = encoder_meta["left_context_len"]
query_head_dims = encoder_meta["query_head_dims"]
value_head_dims = encoder_meta["value_head_dims"]
num_heads = encoder_meta["num_heads"]
def to_int_list(s):
return list(map(int, s.split(",")))
num_encoder_layers = to_int_list(num_encoder_layers)
encoder_dims = to_int_list(encoder_dims)
cnn_module_kernels = to_int_list(cnn_module_kernels)
left_context_len = to_int_list(left_context_len)
query_head_dims = to_int_list(query_head_dims)
value_head_dims = to_int_list(value_head_dims)
num_heads = to_int_list(num_heads)
logging.info(f"decode_chunk_len: {decode_chunk_len}")
logging.info(f"T: {T}")
logging.info(f"num_encoder_layers: {num_encoder_layers}")
logging.info(f"encoder_dims: {encoder_dims}")
logging.info(f"cnn_module_kernels: {cnn_module_kernels}")
logging.info(f"left_context_len: {left_context_len}")
logging.info(f"query_head_dims: {query_head_dims}")
logging.info(f"value_head_dims: {value_head_dims}")
logging.info(f"num_heads: {num_heads}")
num_encoders = len(num_encoder_layers)
self.states = []
for i in range(num_encoders):
num_layers = num_encoder_layers[i]
key_dim = query_head_dims[i] * num_heads[i]
embed_dim = encoder_dims[i]
nonlin_attn_head_dim = 3 * embed_dim // 4
value_dim = value_head_dims[i] * num_heads[i]
conv_left_pad = cnn_module_kernels[i] // 2
for layer in range(num_layers):
cached_key = torch.zeros(
left_context_len[i], batch_size, key_dim
).numpy()
cached_nonlin_attn = torch.zeros(
1, batch_size, left_context_len[i], nonlin_attn_head_dim
).numpy()
cached_val1 = torch.zeros(
left_context_len[i], batch_size, value_dim
).numpy()
cached_val2 = torch.zeros(
left_context_len[i], batch_size, value_dim
).numpy()
cached_conv1 = torch.zeros(batch_size, embed_dim, conv_left_pad).numpy()
cached_conv2 = torch.zeros(batch_size, embed_dim, conv_left_pad).numpy()
self.states += [
cached_key,
cached_nonlin_attn,
cached_val1,
cached_val2,
cached_conv1,
cached_conv2,
]
embed_states = torch.zeros(batch_size, 128, 3, 19).numpy()
self.states.append(embed_states)
processed_lens = torch.zeros(batch_size, dtype=torch.int64).numpy()
self.states.append(processed_lens)
self.num_encoders = num_encoders
self.segment = T
self.offset = decode_chunk_len
def init_decoder(self, decoder_model_filename: str):
self.decoder = ort.InferenceSession(
decoder_model_filename,
sess_options=self.session_opts,
)
decoder_meta = self.decoder.get_modelmeta().custom_metadata_map
self.context_size = int(decoder_meta["context_size"])
self.vocab_size = int(decoder_meta["vocab_size"])
logging.info(f"context_size: {self.context_size}")
logging.info(f"vocab_size: {self.vocab_size}")
def init_joiner(self, joiner_model_filename: str):
self.joiner = ort.InferenceSession(
joiner_model_filename,
sess_options=self.session_opts,
)
joiner_meta = self.joiner.get_modelmeta().custom_metadata_map
self.joiner_dim = int(joiner_meta["joiner_dim"])
logging.info(f"joiner_dim: {self.joiner_dim}")
def _build_encoder_input_output(
self,
x: torch.Tensor,
) -> Tuple[Dict[str, np.ndarray], List[str]]:
encoder_input = {"x": x.numpy()}
encoder_output = ["encoder_out"]
def build_inputs_outputs(tensors, i):
assert len(tensors) == 6, len(tensors)
# (downsample_left, batch_size, key_dim)
name = f"cached_key_{i}"
encoder_input[name] = tensors[0]
encoder_output.append(f"new_{name}")
# (1, batch_size, downsample_left, nonlin_attn_head_dim)
name = f"cached_nonlin_attn_{i}"
encoder_input[name] = tensors[1]
encoder_output.append(f"new_{name}")
# (downsample_left, batch_size, value_dim)
name = f"cached_val1_{i}"
encoder_input[name] = tensors[2]
encoder_output.append(f"new_{name}")
# (downsample_left, batch_size, value_dim)
name = f"cached_val2_{i}"
encoder_input[name] = tensors[3]
encoder_output.append(f"new_{name}")
# (batch_size, embed_dim, conv_left_pad)
name = f"cached_conv1_{i}"
encoder_input[name] = tensors[4]
encoder_output.append(f"new_{name}")
# (batch_size, embed_dim, conv_left_pad)
name = f"cached_conv2_{i}"
encoder_input[name] = tensors[5]
encoder_output.append(f"new_{name}")
for i in range(len(self.states[:-2]) // 6):
build_inputs_outputs(self.states[i * 6 : (i + 1) * 6], i)
# (batch_size, channels, left_pad, freq)
name = "embed_states"
embed_states = self.states[-2]
encoder_input[name] = embed_states
encoder_output.append(f"new_{name}")
# (batch_size,)
name = "processed_lens"
processed_lens = self.states[-1]
encoder_input[name] = processed_lens
encoder_output.append(f"new_{name}")
return encoder_input, encoder_output
def _update_states(self, states: List[np.ndarray]):
self.states = states
def run_encoder(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x:
A 3-D tensor of shape (N, T, C)
Returns:
Return a 3-D tensor of shape (N, T', joiner_dim) where
T' is usually equal to ((T-7)//2+1)//2
"""
encoder_input, encoder_output_names = self._build_encoder_input_output(x)
out = self.encoder.run(encoder_output_names, encoder_input)
self._update_states(out[1:])
return torch.from_numpy(out[0])
def run_decoder(self, decoder_input: torch.Tensor) -> torch.Tensor:
"""
Args:
decoder_input:
A 2-D tensor of shape (N, context_size)
Returns:
Return a 2-D tensor of shape (N, joiner_dim)
"""
out = self.decoder.run(
[self.decoder.get_outputs()[0].name],
{self.decoder.get_inputs()[0].name: decoder_input.numpy()},
)[0]
return torch.from_numpy(out)
def run_joiner(
self, encoder_out: torch.Tensor, decoder_out: torch.Tensor
) -> torch.Tensor:
"""
Args:
encoder_out:
A 2-D tensor of shape (N, joiner_dim)
decoder_out:
A 2-D tensor of shape (N, joiner_dim)
Returns:
Return a 2-D tensor of shape (N, vocab_size)
"""
out = self.joiner.run(
[self.joiner.get_outputs()[0].name],
{
self.joiner.get_inputs()[0].name: encoder_out.numpy(),
self.joiner.get_inputs()[1].name: decoder_out.numpy(),
},
)[0]
return torch.from_numpy(out)
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0].contiguous())
return ans
def create_streaming_feature_extractor() -> OnlineFeature:
"""Create a CPU streaming feature extractor.
At present, we assume it returns a fbank feature extractor with
fixed options. In the future, we will support passing in the options
from outside.
Returns:
Return a CPU streaming feature extractor.
"""
opts = FbankOptions()
opts.device = "cpu"
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
return OnlineFbank(opts)
def greedy_search(
model: OnnxModel,
encoder_out: torch.Tensor,
context_size: int,
decoder_out: Optional[torch.Tensor] = None,
hyp: Optional[List[int]] = None,
) -> List[int]:
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
Args:
model:
The transducer model.
encoder_out:
A 3-D tensor of shape (1, T, joiner_dim)
context_size:
The context size of the decoder model.
decoder_out:
Optional. Decoder output of the previous chunk.
hyp:
Decoding results for previous chunks.
Returns:
Return the decoded results so far.
"""
blank_id = 0
if decoder_out is None:
assert hyp is None, hyp
hyp = [blank_id] * context_size
decoder_input = torch.tensor([hyp], dtype=torch.int64)
decoder_out = model.run_decoder(decoder_input)
else:
assert hyp is not None, hyp
encoder_out = encoder_out.squeeze(0)
T = encoder_out.size(0)
for t in range(T):
cur_encoder_out = encoder_out[t : t + 1]
joiner_out = model.run_joiner(cur_encoder_out, decoder_out).squeeze(0)
y = joiner_out.argmax(dim=0).item()
if y != blank_id:
hyp.append(y)
decoder_input = hyp[-context_size:]
decoder_input = torch.tensor([decoder_input], dtype=torch.int64)
decoder_out = model.run_decoder(decoder_input)
return hyp, decoder_out
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))
model = OnnxModel(
encoder_model_filename=args.encoder_model_filename,
decoder_model_filename=args.decoder_model_filename,
joiner_model_filename=args.joiner_model_filename,
)
sample_rate = 16000
logging.info("Constructing Fbank computer")
online_fbank = create_streaming_feature_extractor()
logging.info(f"Reading sound files: {args.sound_file}")
waves = read_sound_files(
filenames=[args.sound_file],
expected_sample_rate=sample_rate,
)[0]
tail_padding = torch.zeros(int(0.3 * sample_rate), dtype=torch.float32)
wave_samples = torch.cat([waves, tail_padding])
num_processed_frames = 0
segment = model.segment
offset = model.offset
context_size = model.context_size
hyp = None
decoder_out = None
chunk = int(1 * sample_rate) # 1 second
start = 0
while start < wave_samples.numel():
end = min(start + chunk, wave_samples.numel())
samples = wave_samples[start:end]
start += chunk
online_fbank.accept_waveform(
sampling_rate=sample_rate,
waveform=samples,
)
while online_fbank.num_frames_ready - num_processed_frames >= segment:
frames = []
for i in range(segment):
frames.append(online_fbank.get_frame(num_processed_frames + i))
num_processed_frames += offset
frames = torch.cat(frames, dim=0)
frames = frames.unsqueeze(0)
encoder_out = model.run_encoder(frames)
hyp, decoder_out = greedy_search(
model,
encoder_out,
context_size,
decoder_out,
hyp,
)
symbol_table = k2.SymbolTable.from_file(args.tokens)
text = ""
for i in hyp[context_size:]:
text += symbol_table[i]
text = text.replace("", " ").strip()
logging.info(args.sound_file)
logging.info(text)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,417 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads ONNX models and uses them to decode waves.
You can use the following command to get the exported models:
We use the pre-trained model from
https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
as an example to show how to use this file.
1. Download the pre-trained model
cd egs/librispeech/ASR
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained-iter-1224000-avg-14.pt"
cd exp
ln -s pretrained-iter-1224000-avg-14.pt epoch-9999.pt
popd
2. Export the model to ONNX
./pruned_transducer_stateless3/export-onnx.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--epoch 9999 \
--avg 1 \
--exp-dir $repo/exp/
It will generate the following 3 files inside $repo/exp:
- encoder-epoch-9999-avg-1.onnx
- decoder-epoch-9999-avg-1.onnx
- joiner-epoch-9999-avg-1.onnx
3. Run this file
./pruned_transducer_stateless3/onnx_pretrained.py \
--encoder-model-filename $repo/exp/encoder-epoch-9999-avg-1.onnx \
--decoder-model-filename $repo/exp/decoder-epoch-9999-avg-1.onnx \
--joiner-model-filename $repo/exp/joiner-epoch-9999-avg-1.onnx \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
"""
import argparse
import logging
import math
from typing import List, Tuple
import k2
import kaldifeat
import onnxruntime as ort
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--encoder-model-filename",
type=str,
required=True,
help="Path to the encoder onnx model. ",
)
parser.add_argument(
"--decoder-model-filename",
type=str,
required=True,
help="Path to the decoder onnx model. ",
)
parser.add_argument(
"--joiner-model-filename",
type=str,
required=True,
help="Path to the joiner onnx model. ",
)
parser.add_argument(
"--tokens",
type=str,
help="""Path to tokens.txt.""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
return parser
class OnnxModel:
def __init__(
self,
encoder_model_filename: str,
decoder_model_filename: str,
joiner_model_filename: str,
):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 4
self.session_opts = session_opts
self.init_encoder(encoder_model_filename)
self.init_decoder(decoder_model_filename)
self.init_joiner(joiner_model_filename)
def init_encoder(self, encoder_model_filename: str):
self.encoder = ort.InferenceSession(
encoder_model_filename,
sess_options=self.session_opts,
)
def init_decoder(self, decoder_model_filename: str):
self.decoder = ort.InferenceSession(
decoder_model_filename,
sess_options=self.session_opts,
)
decoder_meta = self.decoder.get_modelmeta().custom_metadata_map
self.context_size = int(decoder_meta["context_size"])
self.vocab_size = int(decoder_meta["vocab_size"])
logging.info(f"context_size: {self.context_size}")
logging.info(f"vocab_size: {self.vocab_size}")
def init_joiner(self, joiner_model_filename: str):
self.joiner = ort.InferenceSession(
joiner_model_filename,
sess_options=self.session_opts,
)
joiner_meta = self.joiner.get_modelmeta().custom_metadata_map
self.joiner_dim = int(joiner_meta["joiner_dim"])
logging.info(f"joiner_dim: {self.joiner_dim}")
def run_encoder(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x:
A 3-D tensor of shape (N, T, C)
x_lens:
A 2-D tensor of shape (N,). Its dtype is torch.int64
Returns:
Return a tuple containing:
- encoder_out, its shape is (N, T', joiner_dim)
- encoder_out_lens, its shape is (N,)
"""
out = self.encoder.run(
[
self.encoder.get_outputs()[0].name,
self.encoder.get_outputs()[1].name,
],
{
self.encoder.get_inputs()[0].name: x.numpy(),
self.encoder.get_inputs()[1].name: x_lens.numpy(),
},
)
return torch.from_numpy(out[0]), torch.from_numpy(out[1])
def run_decoder(self, decoder_input: torch.Tensor) -> torch.Tensor:
"""
Args:
decoder_input:
A 2-D tensor of shape (N, context_size)
Returns:
Return a 2-D tensor of shape (N, joiner_dim)
"""
out = self.decoder.run(
[self.decoder.get_outputs()[0].name],
{self.decoder.get_inputs()[0].name: decoder_input.numpy()},
)[0]
return torch.from_numpy(out)
def run_joiner(
self, encoder_out: torch.Tensor, decoder_out: torch.Tensor
) -> torch.Tensor:
"""
Args:
encoder_out:
A 2-D tensor of shape (N, joiner_dim)
decoder_out:
A 2-D tensor of shape (N, joiner_dim)
Returns:
Return a 2-D tensor of shape (N, vocab_size)
"""
out = self.joiner.run(
[self.joiner.get_outputs()[0].name],
{
self.joiner.get_inputs()[0].name: encoder_out.numpy(),
self.joiner.get_inputs()[1].name: decoder_out.numpy(),
},
)[0]
return torch.from_numpy(out)
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
def greedy_search(
model: OnnxModel,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
) -> List[List[int]]:
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
Args:
model:
The transducer model.
encoder_out:
A 3-D tensor of shape (N, T, joiner_dim)
encoder_out_lens:
A 1-D tensor of shape (N,).
Returns:
Return the decoded results for each utterance.
"""
assert encoder_out.ndim == 3, encoder_out.shape
assert encoder_out.size(0) >= 1, encoder_out.size(0)
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
blank_id = 0 # hard-code to 0
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
context_size = model.context_size
hyps = [[blank_id] * context_size for _ in range(N)]
decoder_input = torch.tensor(
hyps,
dtype=torch.int64,
) # (N, context_size)
decoder_out = model.run_decoder(decoder_input)
offset = 0
for batch_size in batch_size_list:
start = offset
end = offset + batch_size
current_encoder_out = packed_encoder_out.data[start:end]
# current_encoder_out's shape: (batch_size, joiner_dim)
offset = end
decoder_out = decoder_out[:batch_size]
logits = model.run_joiner(current_encoder_out, decoder_out)
# logits'shape (batch_size, vocab_size)
assert logits.ndim == 2, logits.shape
y = logits.argmax(dim=1).tolist()
emitted = False
for i, v in enumerate(y):
if v != blank_id:
hyps[i].append(v)
emitted = True
if emitted:
# update decoder output
decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
decoder_input = torch.tensor(
decoder_input,
dtype=torch.int64,
)
decoder_out = model.run_decoder(decoder_input)
sorted_ans = [h[context_size:] for h in hyps]
ans = []
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
for i in range(N):
ans.append(sorted_ans[unsorted_indices[i]])
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))
model = OnnxModel(
encoder_model_filename=args.encoder_model_filename,
decoder_model_filename=args.decoder_model_filename,
joiner_model_filename=args.joiner_model_filename,
)
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = "cpu"
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = args.sample_rate
opts.mel_opts.num_bins = 80
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {args.sound_files}")
waves = read_sound_files(
filenames=args.sound_files,
expected_sample_rate=args.sample_rate,
)
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(
features,
batch_first=True,
padding_value=math.log(1e-10),
)
feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64)
encoder_out, encoder_out_lens = model.run_encoder(features, feature_lengths)
hyps = greedy_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
s = "\n"
symbol_table = k2.SymbolTable.from_file(args.tokens)
def token_ids_to_words(token_ids: List[int]) -> str:
text = ""
for i in token_ids:
text += symbol_table[i]
return text.replace("", " ").strip()
for filename, hyp in zip(args.sound_files, hyps):
words = token_ids_to_words(hyp)
s += f"{filename}:\n{words}\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1,378 @@
#!/usr/bin/env python3
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads a checkpoint and uses it to decode waves.
You can generate the checkpoint with the following command:
- For non-streaming model:
./zipformer/export.py \
--exp-dir ./zipformer/exp \
--lang-dir data/lang_char \
--epoch 30 \
--avg 9
- For streaming model:
./zipformer/export.py \
--exp-dir ./zipformer/exp \
--causal 1 \
--lang-dir data/lang_char \
--epoch 30 \
--avg 9
Usage of this script:
- For non-streaming model:
(1) greedy search
./zipformer/pretrained.py \
--checkpoint ./zipformer/exp/pretrained.pt \
--lang-dir data/lang_char \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav
(2) modified beam search
./zipformer/pretrained.py \
--checkpoint ./zipformer/exp/pretrained.pt \
--lang-dir data/lang_char \
--method modified_beam_search \
/path/to/foo.wav \
/path/to/bar.wav
(3) fast beam search
./zipformer/pretrained.py \
--checkpoint ./zipformer/exp/pretrained.pt \
--lang-dir data/lang_char \
--method fast_beam_search \
/path/to/foo.wav \
/path/to/bar.wav
- For streaming model:
(1) greedy search
./zipformer/pretrained.py \
--checkpoint ./zipformer/exp/pretrained.pt \
--causal 1 \
--chunk-size 16 \
--left-context-frames 128 \
--lang-dir data/lang_char \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav
(2) modified beam search
./zipformer/pretrained.py \
--checkpoint ./zipformer/exp/pretrained.pt \
--causal 1 \
--chunk-size 16 \
--left-context-frames 128 \
--lang-dir data/lang_char \
--method modified_beam_search \
/path/to/foo.wav \
/path/to/bar.wav
(3) fast beam search
./zipformer/pretrained.py \
--checkpoint ./zipformer/exp/pretrained.pt \
--causal 1 \
--chunk-size 16 \
--left-context-frames 128 \
--lang-dir data/lang_char \
--method fast_beam_search \
/path/to/foo.wav \
/path/to/bar.wav
You can also use `./zipformer/exp/epoch-xx.pt`.
Note: ./zipformer/exp/pretrained.pt is generated by ./zipformer/export.py
"""
import argparse
import logging
import math
from typing import List
import k2
import kaldifeat
import torch
import torchaudio
from beam_search import (
fast_beam_search_one_best,
greedy_search_batch,
modified_beam_search,
)
from torch.nn.utils.rnn import pad_sequence
from train import add_model_arguments, get_params, get_transducer_model
from icefall.lexicon import Lexicon
from icefall.utils import make_pad_mask
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to the checkpoint. "
"The checkpoint is assumed to be saved by "
"icefall.checkpoint.save_checkpoint().",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_char",
help="""Path to lang.
""",
)
parser.add_argument(
"--method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- modified_beam_search
- fast_beam_search
""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame. Used only when
--method is greedy_search.
""",
)
add_model_arguments(parser)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
params.update(vars(args))
lexicon = Lexicon(params.lang_dir)
params.blank_id = lexicon.token_table["<blk>"]
params.vocab_size = max(lexicon.tokens) + 1
logging.info(f"{params}")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
if params.causal:
assert (
"," not in params.chunk_size
), "chunk_size should be one value in decoding."
assert (
"," not in params.left_context_frames
), "left_context_frames should be one value in decoding."
logging.info("Creating model")
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = params.sample_rate
opts.mel_opts.num_bins = params.feature_dim
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {params.sound_files}")
waves = read_sound_files(
filenames=params.sound_files, expected_sample_rate=params.sample_rate
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
feature_lengths = torch.tensor(feature_lengths, device=device)
# model forward
x, x_lens = model.encoder_embed(features, feature_lengths)
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_out, encoder_out_lens = model.encoder(x, x_lens, src_key_padding_mask)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
hyps = []
msg = f"Using {params.method}"
logging.info(msg)
if params.method == "fast_beam_search":
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif params.method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
else:
raise ValueError(f"Unsupported method: {params.method}")
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/scaling_converter.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer/streaming_beam_search.py

View File

@ -0,0 +1,881 @@
#!/usr/bin/env python3
# Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang,
# Fangjun Kuang,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
./zipformer/streaming_decode.py \
--epoch 28 \
--avg 15 \
--causal 1 \
--chunk-size 16 \
--left-context-frames 256 \
--exp-dir ./zipformer/exp \
--decoding-method greedy_search \
--num-decode-streams 2000
"""
import argparse
import logging
import math
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import numpy as np
import torch
from asr_datamodule import WenetSpeechAsrDataModule
from decode_stream import DecodeStream
from kaldifeat import Fbank, FbankOptions
from lhotse import CutSet
from streaming_beam_search import (
fast_beam_search_one_best,
greedy_search,
modified_beam_search,
)
from torch import Tensor, nn
from torch.nn.utils.rnn import pad_sequence
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
make_pad_mask,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
LOG_EPS = math.log(1e-10)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="zipformer/exp",
help="The experiment dir",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_char",
help="Path to the lang dir(containing lexicon, tokens, etc.)",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Supported decoding methods are:
greedy_search
modified_beam_search
fast_beam_search
""",
)
parser.add_argument(
"--num_active_paths",
type=int,
default=4,
help="""An interger indicating how many candidates we will keep for each
frame. Used only when --decoding-method is modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=32,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--blank-penalty",
type=float,
default=0.0,
help="""
The penalty applied on blank symbol during decoding.
Note: It is a positive value that would be applied to logits like
this `logits[:, 0] -= blank_penalty` (suppose logits.shape is
[batch_size, vocab] and blank id is 0).
""",
)
parser.add_argument(
"--num-decode-streams",
type=int,
default=2000,
help="The number of streams that can be decoded parallel.",
)
add_model_arguments(parser)
return parser
def get_init_states(
model: nn.Module,
batch_size: int = 1,
device: torch.device = torch.device("cpu"),
) -> List[torch.Tensor]:
"""
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
states[-2] is the cached left padding for ConvNeXt module,
of shape (batch_size, num_channels, left_pad, num_freqs)
states[-1] is processed_lens of shape (batch,), which records the number
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
"""
states = model.encoder.get_init_states(batch_size, device)
embed_states = model.encoder_embed.get_init_states(batch_size, device)
states.append(embed_states)
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
states.append(processed_lens)
return states
def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
"""Stack list of zipformer states that correspond to separate utterances
into a single emformer state, so that it can be used as an input for
zipformer when those utterances are formed into a batch.
Args:
state_list:
Each element in state_list corresponding to the internal state
of the zipformer model for a single utterance. For element-n,
state_list[n] is a list of cached tensors of all encoder layers. For layer-i,
state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1,
cached_val2, cached_conv1, cached_conv2).
state_list[n][-2] is the cached left padding for ConvNeXt module,
of shape (batch_size, num_channels, left_pad, num_freqs)
state_list[n][-1] is processed_lens of shape (batch,), which records the number
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
Note:
It is the inverse of :func:`unstack_states`.
"""
batch_size = len(state_list)
assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0])
tot_num_layers = (len(state_list[0]) - 2) // 6
batch_states = []
for layer in range(tot_num_layers):
layer_offset = layer * 6
# cached_key: (left_context_len, batch_size, key_dim)
cached_key = torch.cat(
[state_list[i][layer_offset] for i in range(batch_size)], dim=1
)
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
cached_nonlin_attn = torch.cat(
[state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1
)
# cached_val1: (left_context_len, batch_size, value_dim)
cached_val1 = torch.cat(
[state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1
)
# cached_val2: (left_context_len, batch_size, value_dim)
cached_val2 = torch.cat(
[state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1
)
# cached_conv1: (#batch, channels, left_pad)
cached_conv1 = torch.cat(
[state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0
)
# cached_conv2: (#batch, channels, left_pad)
cached_conv2 = torch.cat(
[state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0
)
batch_states += [
cached_key,
cached_nonlin_attn,
cached_val1,
cached_val2,
cached_conv1,
cached_conv2,
]
cached_embed_left_pad = torch.cat(
[state_list[i][-2] for i in range(batch_size)], dim=0
)
batch_states.append(cached_embed_left_pad)
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
batch_states.append(processed_lens)
return batch_states
def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
"""Unstack the zipformer state corresponding to a batch of utterances
into a list of states, where the i-th entry is the state from the i-th
utterance in the batch.
Note:
It is the inverse of :func:`stack_states`.
Args:
batch_states: A list of cached tensors of all encoder layers. For layer-i,
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
cached_conv1, cached_conv2).
state_list[-2] is the cached left padding for ConvNeXt module,
of shape (batch_size, num_channels, left_pad, num_freqs)
states[-1] is processed_lens of shape (batch,), which records the number
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
Returns:
state_list: A list of list. Each element in state_list corresponding to the internal state
of the zipformer model for a single utterance.
"""
assert (len(batch_states) - 2) % 6 == 0, len(batch_states)
tot_num_layers = (len(batch_states) - 2) // 6
processed_lens = batch_states[-1]
batch_size = processed_lens.shape[0]
state_list = [[] for _ in range(batch_size)]
for layer in range(tot_num_layers):
layer_offset = layer * 6
# cached_key: (left_context_len, batch_size, key_dim)
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
chunks=batch_size, dim=1
)
# cached_val1: (left_context_len, batch_size, value_dim)
cached_val1_list = batch_states[layer_offset + 2].chunk(
chunks=batch_size, dim=1
)
# cached_val2: (left_context_len, batch_size, value_dim)
cached_val2_list = batch_states[layer_offset + 3].chunk(
chunks=batch_size, dim=1
)
# cached_conv1: (#batch, channels, left_pad)
cached_conv1_list = batch_states[layer_offset + 4].chunk(
chunks=batch_size, dim=0
)
# cached_conv2: (#batch, channels, left_pad)
cached_conv2_list = batch_states[layer_offset + 5].chunk(
chunks=batch_size, dim=0
)
for i in range(batch_size):
state_list[i] += [
cached_key_list[i],
cached_nonlin_attn_list[i],
cached_val1_list[i],
cached_val2_list[i],
cached_conv1_list[i],
cached_conv2_list[i],
]
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
for i in range(batch_size):
state_list[i].append(cached_embed_left_pad_list[i])
processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0)
for i in range(batch_size):
state_list[i].append(processed_lens_list[i])
return state_list
def streaming_forward(
features: Tensor,
feature_lens: Tensor,
model: nn.Module,
states: List[Tensor],
chunk_size: int,
left_context_len: int,
) -> Tuple[Tensor, Tensor, List[Tensor]]:
"""
Returns encoder outputs, output lengths, and updated states.
"""
cached_embed_left_pad = states[-2]
(x, x_lens, new_cached_embed_left_pad,) = model.encoder_embed.streaming_forward(
x=features,
x_lens=feature_lens,
cached_left_pad=cached_embed_left_pad,
)
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
src_key_padding_mask = make_pad_mask(x_lens)
# processed_mask is used to mask out initial states
processed_mask = torch.arange(left_context_len, device=x.device).expand(
x.size(0), left_context_len
)
processed_lens = states[-1] # (batch,)
# (batch, left_context_size)
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
# Update processed lengths
new_processed_lens = processed_lens + x_lens
# (batch, left_context_size + chunk_size)
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_states = states[:-2]
(
encoder_out,
encoder_out_lens,
new_encoder_states,
) = model.encoder.streaming_forward(
x=x,
x_lens=x_lens,
states=encoder_states,
src_key_padding_mask=src_key_padding_mask,
)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
new_states = new_encoder_states + [
new_cached_embed_left_pad,
new_processed_lens,
]
return encoder_out, encoder_out_lens, new_states
def decode_one_chunk(
params: AttributeDict,
model: nn.Module,
decode_streams: List[DecodeStream],
) -> List[int]:
"""Decode one chunk frames of features for each decode_streams and
return the indexes of finished streams in a List.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
decode_streams:
A List of DecodeStream, each belonging to a utterance.
Returns:
Return a List containing which DecodeStreams are finished.
"""
device = model.device
chunk_size = int(params.chunk_size)
left_context_len = int(params.left_context_frames)
features = []
feature_lens = []
states = []
processed_lens = [] # Used in fast-beam-search
for stream in decode_streams:
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
features.append(feat)
feature_lens.append(feat_len)
states.append(stream.states)
processed_lens.append(stream.done_frames)
feature_lens = torch.tensor(feature_lens, device=device)
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
# Make sure the length after encoder_embed is at least 1.
# The encoder_embed subsample features (T - 7) // 2
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
tail_length = chunk_size * 2 + 7 + 2 * 3
if features.size(1) < tail_length:
pad_length = tail_length - features.size(1)
feature_lens += pad_length
features = torch.nn.functional.pad(
features,
(0, 0, 0, pad_length),
mode="constant",
value=LOG_EPS,
)
states = stack_states(states)
encoder_out, encoder_out_lens, new_states = streaming_forward(
features=features,
feature_lens=feature_lens,
model=model,
states=states,
chunk_size=chunk_size,
left_context_len=left_context_len,
)
encoder_out = model.joiner.encoder_proj(encoder_out)
if params.decoding_method == "greedy_search":
greedy_search(
model=model,
encoder_out=encoder_out,
streams=decode_streams,
blank_penalty=params.blank_penalty,
)
elif params.decoding_method == "fast_beam_search":
processed_lens = torch.tensor(processed_lens, device=device)
processed_lens = processed_lens + encoder_out_lens
fast_beam_search_one_best(
model=model,
encoder_out=encoder_out,
processed_lens=processed_lens,
streams=decode_streams,
beam=params.beam,
max_states=params.max_states,
max_contexts=params.max_contexts,
blank_penalty=params.blank_penalty,
)
elif params.decoding_method == "modified_beam_search":
modified_beam_search(
model=model,
streams=decode_streams,
encoder_out=encoder_out,
num_active_paths=params.num_active_paths,
blank_penalty=params.blank_penalty,
)
else:
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
states = unstack_states(new_states)
finished_streams = []
for i in range(len(decode_streams)):
decode_streams[i].states = states[i]
decode_streams[i].done_frames += encoder_out_lens[i]
if decode_streams[i].done:
finished_streams.append(i)
return finished_streams
def decode_dataset(
cuts: CutSet,
params: AttributeDict,
model: nn.Module,
lexicon: Lexicon,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:
cuts:
Lhotse Cutset containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
lexicon:
The Lexicon.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
device = model.device
opts = FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = 16000
opts.mel_opts.num_bins = 80
log_interval = 100
decode_results = []
# Contain decode streams currently running.
decode_streams = []
for num, cut in enumerate(cuts):
# each utterance has a DecodeStream.
initial_states = get_init_states(model=model, batch_size=1, device=device)
decode_stream = DecodeStream(
params=params,
cut_id=cut.id,
initial_states=initial_states,
decoding_graph=decoding_graph,
device=device,
)
audio: np.ndarray = cut.load_audio()
# audio.shape: (1, num_samples)
assert len(audio.shape) == 2
assert audio.shape[0] == 1, "Should be single channel"
assert audio.dtype == np.float32, audio.dtype
# The trained model is using normalized samples
if audio.max() > 1:
logging.warning(
f"The audio should be normalized to [-1, 1], audio.max : {audio.max()}."
f"Clipping to [-1, 1]."
)
audio = np.clip(audio, -1, 1)
samples = torch.from_numpy(audio).squeeze(0)
fbank = Fbank(opts)
feature = fbank(samples.to(device))
decode_stream.set_features(feature, tail_pad_len=30)
decode_stream.ground_truth = cut.supervisions[0].text
decode_streams.append(decode_stream)
while len(decode_streams) >= params.num_decode_streams:
finished_streams = decode_one_chunk(
params=params, model=model, decode_streams=decode_streams
)
for i in sorted(finished_streams, reverse=True):
decode_results.append(
(
decode_streams[i].id,
list(decode_streams[i].ground_truth.strip()),
[
lexicon.token_table[idx]
for idx in decode_streams[i].decoding_result()
],
)
)
del decode_streams[i]
if num % log_interval == 0:
logging.info(f"Cuts processed until now is {num}.")
# decode final chunks of last sequences
while len(decode_streams):
finished_streams = decode_one_chunk(
params=params, model=model, decode_streams=decode_streams
)
for i in sorted(finished_streams, reverse=True):
decode_results.append(
(
decode_streams[i].id,
decode_streams[i].ground_truth.split(),
[
lexicon.token_table[idx]
for idx in decode_streams[i].decoding_result()
],
)
)
del decode_streams[i]
key = f"blank_penalty_{params.blank_penalty}"
if params.decoding_method == "greedy_search":
key = f"greedy_search_{key}"
elif params.decoding_method == "fast_beam_search":
key = (
f"beam_{params.beam}_"
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}_{key}"
)
elif params.decoding_method == "modified_beam_search":
key = f"num_active_paths_{params.num_active_paths}_{key}"
else:
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
return {key: decode_results}
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = (
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = (
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = (
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
WenetSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
assert params.causal, params.causal
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
assert (
"," not in params.left_context_frames
), "left_context_frames should be one value in decoding."
params.suffix += f"-chunk-{params.chunk_size}"
params.suffix += f"-left-context-{params.left_context_frames}"
params.suffix += f"-blank-penalty-{params.blank_penalty}"
# for fast_beam_search
if params.decoding_method == "fast_beam_search":
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
lexicon = Lexicon(params.lang_dir)
params.blank_id = lexicon.token_table["<blk>"]
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
model.device = device
decoding_graph = None
if params.decoding_method == "fast_beam_search":
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
wenetspeech = WenetSpeechAsrDataModule(args)
dev_cuts = wenetspeech.valid_cuts()
test_net_cuts = wenetspeech.test_net_cuts()
test_meeting_cuts = wenetspeech.test_meeting_cuts()
test_sets = ["DEV", "TEST_NET", "TEST_MEETING"]
test_cuts = [dev_cuts, test_net_cuts, test_meeting_cuts]
for test_set, test_cut in zip(test_sets, test_cuts):
results_dict = decode_dataset(
cuts=test_cut,
params=params,
model=model,
lexicon=lexicon,
decoding_graph=decoding_graph,
)
save_results(
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -139,42 +139,42 @@ def add_model_arguments(parser: argparse.ArgumentParser):
"--feedforward-dim",
type=str,
default="512,768,1024,1536,1024,768",
help="Feedforward dimension of the zipformer encoder layers, per stack, comma separated.",
help="""Feedforward dimension of the zipformer encoder layers, per stack, comma separated.""",
)
parser.add_argument(
"--num-heads",
type=str,
default="4,4,4,8,4,4",
help="Number of attention heads in the zipformer encoder layers: a single int or comma-separated list.",
help="""Number of attention heads in the zipformer encoder layers: a single int or comma-separated list.""",
)
parser.add_argument(
"--encoder-dim",
type=str,
default="192,256,384,512,384,256",
help="Embedding dimension in encoder stacks: a single int or comma-separated list.",
help="""Embedding dimension in encoder stacks: a single int or comma-separated list.""",
)
parser.add_argument(
"--query-head-dim",
type=str,
default="32",
help="Query/key dimension per head in encoder stacks: a single int or comma-separated list.",
help="""Query/key dimension per head in encoder stacks: a single int or comma-separated list.""",
)
parser.add_argument(
"--value-head-dim",
type=str,
default="12",
help="Value dimension per head in encoder stacks: a single int or comma-separated list.",
help="""Value dimension per head in encoder stacks: a single int or comma-separated list.""",
)
parser.add_argument(
"--pos-head-dim",
type=str,
default="4",
help="Positional-encoding dimension per head in encoder stacks: a single int or comma-separated list.",
help="""Positional-encoding dimension per head in encoder stacks: a single int or comma-separated list.""",
)
parser.add_argument(
@ -188,16 +188,14 @@ def add_model_arguments(parser: argparse.ArgumentParser):
"--encoder-unmasked-dim",
type=str,
default="192,192,256,256,256,192",
help="Unmasked dimensions in the encoders, relates to augmentation during training. "
"A single int or comma-separated list. Must be <= each corresponding encoder_dim.",
help="""Unmasked dimensions in the encoders, relates to augmentation during training. A single int or comma-separated list. Must be <= each corresponding encoder_dim.""",
)
parser.add_argument(
"--cnn-module-kernel",
type=str,
default="31,31,15,15,15,31",
help="Sizes of convolutional kernels in convolution modules in each encoder stack: "
"a single int or comma-separated list.",
help="""Sizes of convolutional kernels in convolution modules in each encoder stack: a single int or comma-separated list.""",
)
parser.add_argument(
@ -228,17 +226,16 @@ def add_model_arguments(parser: argparse.ArgumentParser):
"--chunk-size",
type=str,
default="16,32,64,-1",
help="Chunk sizes (at 50Hz frame rate) will be chosen randomly from this list during training. "
" Must be just -1 if --causal=False",
help="""Chunk sizes (at 50Hz frame rate) will be chosen randomly from this list during training. Must be just -1 if --causal=False""",
)
parser.add_argument(
"--left-context-frames",
type=str,
default="64,128,256,-1",
help="Maximum left-contexts for causal training, measured in frames which will "
"be converted to a number of chunks. If splitting into chunks, "
"chunk left-context frames will be chosen randomly from this list; else not relevant.",
help="""Maximum left-contexts for causal training, measured in frames which will
be converted to a number of chunks. If splitting into chunks,
chunk left-context frames will be chosen randomly from this list; else not relevant.""",
)
@ -338,48 +335,47 @@ def get_parser():
"--ref-duration",
type=float,
default=600,
help="Reference batch duration for purposes of adjusting batch counts for setting various "
"schedules inside the model",
help="""Reference batch duration for purposes of adjusting batch counts for setting various schedules inside the model""",
)
parser.add_argument(
"--context-size",
type=int,
default=1,
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
default=2,
help="""The context size in the decoder. 1 means bigram; 2 means tri-gram""",
)
parser.add_argument(
"--prune-range",
type=int,
default=5,
help="The prune range for rnnt loss, it means how many symbols(context)"
"we are using to compute the loss",
help="""The prune range for rnnt loss, it means how many symbols(context)
we are using to compute the loss""",
)
parser.add_argument(
"--lm-scale",
type=float,
default=0.25,
help="The scale to smooth the loss with lm "
"(output of prediction network) part.",
help="""The scale to smooth the loss with lm
(output of prediction network) part.""",
)
parser.add_argument(
"--am-scale",
type=float,
default=0.0,
help="The scale to smooth the loss with am (output of encoder network)" "part.",
help="""The scale to smooth the loss with am (output of encoder network) part.""",
)
parser.add_argument(
"--simple-loss-scale",
type=float,
default=0.5,
help="To get pruning ranges, we will calculate a simple version"
"loss(joiner is just addition), this simple loss also uses for"
"training (as a regularization item). We will scale the simple loss"
"with this parameter before adding to the final loss.",
help="""To get pruning ranges, we will calculate a simple version
loss(joiner is just addition), this simple loss also uses for
training (as a regularization item). We will scale the simple loss
with this parameter before adding to the final loss.""",
)
parser.add_argument(