mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-05 07:04:18 +00:00
change to sym link
This commit is contained in:
parent
3b50b975e4
commit
3805701cbe
@ -1,358 +0,0 @@
|
|||||||
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang,
|
|
||||||
# Wei Kang,
|
|
||||||
# Zengwei Yao)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from typing import Optional, Tuple
|
|
||||||
|
|
||||||
import k2
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
from encoder_interface import EncoderInterface
|
|
||||||
|
|
||||||
from icefall.utils import add_sos, make_pad_mask
|
|
||||||
from scaling import ScaledLinear
|
|
||||||
|
|
||||||
|
|
||||||
class AsrModel(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
encoder_embed: nn.Module,
|
|
||||||
encoder: EncoderInterface,
|
|
||||||
decoder: Optional[nn.Module] = None,
|
|
||||||
joiner: Optional[nn.Module] = None,
|
|
||||||
encoder_dim: int = 384,
|
|
||||||
decoder_dim: int = 512,
|
|
||||||
vocab_size: int = 500,
|
|
||||||
use_transducer: bool = True,
|
|
||||||
use_ctc: bool = False,
|
|
||||||
):
|
|
||||||
"""A joint CTC & Transducer ASR model.
|
|
||||||
|
|
||||||
- Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks (http://imagine.enpc.fr/~obozinsg/teaching/mva_gm/papers/ctc.pdf)
|
|
||||||
- Sequence Transduction with Recurrent Neural Networks (https://arxiv.org/pdf/1211.3711.pdf)
|
|
||||||
- Pruned RNN-T for fast, memory-efficient ASR training (https://arxiv.org/pdf/2206.13236.pdf)
|
|
||||||
|
|
||||||
Args:
|
|
||||||
encoder_embed:
|
|
||||||
It is a Convolutional 2D subsampling module. It converts
|
|
||||||
an input of shape (N, T, idim) to an output of of shape
|
|
||||||
(N, T', odim), where T' = (T-3)//2-2 = (T-7)//2.
|
|
||||||
encoder:
|
|
||||||
It is the transcription network in the paper. Its accepts
|
|
||||||
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
|
|
||||||
It returns two tensors: `logits` of shape (N, T, encoder_dim) and
|
|
||||||
`logit_lens` of shape (N,).
|
|
||||||
decoder:
|
|
||||||
It is the prediction network in the paper. Its input shape
|
|
||||||
is (N, U) and its output shape is (N, U, decoder_dim).
|
|
||||||
It should contain one attribute: `blank_id`.
|
|
||||||
It is used when use_transducer is True.
|
|
||||||
joiner:
|
|
||||||
It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim).
|
|
||||||
Its output shape is (N, T, U, vocab_size). Note that its output contains
|
|
||||||
unnormalized probs, i.e., not processed by log-softmax.
|
|
||||||
It is used when use_transducer is True.
|
|
||||||
use_transducer:
|
|
||||||
Whether use transducer head. Default: True.
|
|
||||||
use_ctc:
|
|
||||||
Whether use CTC head. Default: False.
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
assert (
|
|
||||||
use_transducer or use_ctc
|
|
||||||
), f"At least one of them should be True, but got use_transducer={use_transducer}, use_ctc={use_ctc}"
|
|
||||||
|
|
||||||
assert isinstance(encoder, EncoderInterface), type(encoder)
|
|
||||||
|
|
||||||
self.encoder_embed = encoder_embed
|
|
||||||
self.encoder = encoder
|
|
||||||
|
|
||||||
self.use_transducer = use_transducer
|
|
||||||
if use_transducer:
|
|
||||||
# Modules for Transducer head
|
|
||||||
assert decoder is not None
|
|
||||||
assert hasattr(decoder, "blank_id")
|
|
||||||
assert joiner is not None
|
|
||||||
|
|
||||||
self.decoder = decoder
|
|
||||||
self.joiner = joiner
|
|
||||||
|
|
||||||
self.simple_am_proj = ScaledLinear(
|
|
||||||
encoder_dim, vocab_size, initial_scale=0.25
|
|
||||||
)
|
|
||||||
self.simple_lm_proj = ScaledLinear(
|
|
||||||
decoder_dim, vocab_size, initial_scale=0.25
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
assert decoder is None
|
|
||||||
assert joiner is None
|
|
||||||
|
|
||||||
self.use_ctc = use_ctc
|
|
||||||
if use_ctc:
|
|
||||||
# Modules for CTC head
|
|
||||||
self.ctc_output = nn.Sequential(
|
|
||||||
nn.Dropout(p=0.1),
|
|
||||||
nn.Linear(encoder_dim, vocab_size),
|
|
||||||
nn.LogSoftmax(dim=-1),
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward_encoder(
|
|
||||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
"""Compute encoder outputs.
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
A 3-D tensor of shape (N, T, C).
|
|
||||||
x_lens:
|
|
||||||
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
|
||||||
before padding.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
encoder_out:
|
|
||||||
Encoder output, of shape (N, T, C).
|
|
||||||
encoder_out_lens:
|
|
||||||
Encoder output lengths, of shape (N,).
|
|
||||||
"""
|
|
||||||
# logging.info(f"Memory allocated at entry: {torch.cuda.memory_allocated() // 1000000}M")
|
|
||||||
x, x_lens = self.encoder_embed(x, x_lens)
|
|
||||||
# logging.info(f"Memory allocated after encoder_embed: {torch.cuda.memory_allocated() // 1000000}M")
|
|
||||||
|
|
||||||
src_key_padding_mask = make_pad_mask(x_lens)
|
|
||||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
|
|
||||||
|
|
||||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
|
||||||
assert torch.all(encoder_out_lens > 0), (x_lens, encoder_out_lens)
|
|
||||||
|
|
||||||
return encoder_out, encoder_out_lens
|
|
||||||
|
|
||||||
def forward_ctc(
|
|
||||||
self,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
encoder_out_lens: torch.Tensor,
|
|
||||||
targets: torch.Tensor,
|
|
||||||
target_lengths: torch.Tensor,
|
|
||||||
) -> torch.Tensor:
|
|
||||||
"""Compute CTC loss.
|
|
||||||
Args:
|
|
||||||
encoder_out:
|
|
||||||
Encoder output, of shape (N, T, C).
|
|
||||||
encoder_out_lens:
|
|
||||||
Encoder output lengths, of shape (N,).
|
|
||||||
targets:
|
|
||||||
Target Tensor of shape (sum(target_lengths)). The targets are assumed
|
|
||||||
to be un-padded and concatenated within 1 dimension.
|
|
||||||
"""
|
|
||||||
# Compute CTC log-prob
|
|
||||||
ctc_output = self.ctc_output(encoder_out) # (N, T, C)
|
|
||||||
|
|
||||||
ctc_loss = torch.nn.functional.ctc_loss(
|
|
||||||
log_probs=ctc_output.permute(1, 0, 2), # (T, N, C)
|
|
||||||
targets=targets,
|
|
||||||
input_lengths=encoder_out_lens,
|
|
||||||
target_lengths=target_lengths,
|
|
||||||
reduction="sum",
|
|
||||||
)
|
|
||||||
return ctc_loss
|
|
||||||
|
|
||||||
def forward_transducer(
|
|
||||||
self,
|
|
||||||
encoder_out: torch.Tensor,
|
|
||||||
encoder_out_lens: torch.Tensor,
|
|
||||||
y: k2.RaggedTensor,
|
|
||||||
y_lens: torch.Tensor,
|
|
||||||
prune_range: int = 5,
|
|
||||||
am_scale: float = 0.0,
|
|
||||||
lm_scale: float = 0.0,
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
"""Compute Transducer loss.
|
|
||||||
Args:
|
|
||||||
encoder_out:
|
|
||||||
Encoder output, of shape (N, T, C).
|
|
||||||
encoder_out_lens:
|
|
||||||
Encoder output lengths, of shape (N,).
|
|
||||||
y:
|
|
||||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
|
||||||
utterance.
|
|
||||||
prune_range:
|
|
||||||
The prune range for rnnt loss, it means how many symbols(context)
|
|
||||||
we are considering for each frame to compute the loss.
|
|
||||||
am_scale:
|
|
||||||
The scale to smooth the loss with am (output of encoder network)
|
|
||||||
part
|
|
||||||
lm_scale:
|
|
||||||
The scale to smooth the loss with lm (output of predictor network)
|
|
||||||
part
|
|
||||||
"""
|
|
||||||
# Now for the decoder, i.e., the prediction network
|
|
||||||
blank_id = self.decoder.blank_id
|
|
||||||
sos_y = add_sos(y, sos_id=blank_id)
|
|
||||||
|
|
||||||
# sos_y_padded: [B, S + 1], start with SOS.
|
|
||||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
|
||||||
|
|
||||||
# decoder_out: [B, S + 1, decoder_dim]
|
|
||||||
decoder_out = self.decoder(sos_y_padded)
|
|
||||||
|
|
||||||
# Note: y does not start with SOS
|
|
||||||
# y_padded : [B, S]
|
|
||||||
y_padded = y.pad(mode="constant", padding_value=0)
|
|
||||||
|
|
||||||
y_padded = y_padded.to(torch.int64)
|
|
||||||
boundary = torch.zeros(
|
|
||||||
(encoder_out.size(0), 4),
|
|
||||||
dtype=torch.int64,
|
|
||||||
device=encoder_out.device,
|
|
||||||
)
|
|
||||||
boundary[:, 2] = y_lens
|
|
||||||
boundary[:, 3] = encoder_out_lens
|
|
||||||
|
|
||||||
lm = self.simple_lm_proj(decoder_out)
|
|
||||||
am = self.simple_am_proj(encoder_out)
|
|
||||||
|
|
||||||
# if self.training and random.random() < 0.25:
|
|
||||||
# lm = penalize_abs_values_gt(lm, 100.0, 1.0e-04)
|
|
||||||
# if self.training and random.random() < 0.25:
|
|
||||||
# am = penalize_abs_values_gt(am, 30.0, 1.0e-04)
|
|
||||||
|
|
||||||
with torch.cuda.amp.autocast(enabled=False):
|
|
||||||
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
|
||||||
lm=lm.float(),
|
|
||||||
am=am.float(),
|
|
||||||
symbols=y_padded,
|
|
||||||
termination_symbol=blank_id,
|
|
||||||
lm_only_scale=lm_scale,
|
|
||||||
am_only_scale=am_scale,
|
|
||||||
boundary=boundary,
|
|
||||||
reduction="sum",
|
|
||||||
return_grad=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# ranges : [B, T, prune_range]
|
|
||||||
ranges = k2.get_rnnt_prune_ranges(
|
|
||||||
px_grad=px_grad,
|
|
||||||
py_grad=py_grad,
|
|
||||||
boundary=boundary,
|
|
||||||
s_range=prune_range,
|
|
||||||
)
|
|
||||||
|
|
||||||
# am_pruned : [B, T, prune_range, encoder_dim]
|
|
||||||
# lm_pruned : [B, T, prune_range, decoder_dim]
|
|
||||||
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
|
||||||
am=self.joiner.encoder_proj(encoder_out),
|
|
||||||
lm=self.joiner.decoder_proj(decoder_out),
|
|
||||||
ranges=ranges,
|
|
||||||
)
|
|
||||||
|
|
||||||
# logits : [B, T, prune_range, vocab_size]
|
|
||||||
|
|
||||||
# project_input=False since we applied the decoder's input projections
|
|
||||||
# prior to do_rnnt_pruning (this is an optimization for speed).
|
|
||||||
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
|
|
||||||
|
|
||||||
with torch.cuda.amp.autocast(enabled=False):
|
|
||||||
pruned_loss = k2.rnnt_loss_pruned(
|
|
||||||
logits=logits.float(),
|
|
||||||
symbols=y_padded,
|
|
||||||
ranges=ranges,
|
|
||||||
termination_symbol=blank_id,
|
|
||||||
boundary=boundary,
|
|
||||||
reduction="sum",
|
|
||||||
)
|
|
||||||
|
|
||||||
return simple_loss, pruned_loss
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
x: torch.Tensor,
|
|
||||||
x_lens: torch.Tensor,
|
|
||||||
y: k2.RaggedTensor,
|
|
||||||
prune_range: int = 5,
|
|
||||||
am_scale: float = 0.0,
|
|
||||||
lm_scale: float = 0.0,
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
x:
|
|
||||||
A 3-D tensor of shape (N, T, C).
|
|
||||||
x_lens:
|
|
||||||
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
|
||||||
before padding.
|
|
||||||
y:
|
|
||||||
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
|
||||||
utterance.
|
|
||||||
prune_range:
|
|
||||||
The prune range for rnnt loss, it means how many symbols(context)
|
|
||||||
we are considering for each frame to compute the loss.
|
|
||||||
am_scale:
|
|
||||||
The scale to smooth the loss with am (output of encoder network)
|
|
||||||
part
|
|
||||||
lm_scale:
|
|
||||||
The scale to smooth the loss with lm (output of predictor network)
|
|
||||||
part
|
|
||||||
Returns:
|
|
||||||
Return the transducer losses and CTC loss,
|
|
||||||
in form of (simple_loss, pruned_loss, ctc_loss)
|
|
||||||
|
|
||||||
Note:
|
|
||||||
Regarding am_scale & lm_scale, it will make the loss-function one of
|
|
||||||
the form:
|
|
||||||
lm_scale * lm_probs + am_scale * am_probs +
|
|
||||||
(1-lm_scale-am_scale) * combined_probs
|
|
||||||
"""
|
|
||||||
assert x.ndim == 3, x.shape
|
|
||||||
assert x_lens.ndim == 1, x_lens.shape
|
|
||||||
assert y.num_axes == 2, y.num_axes
|
|
||||||
|
|
||||||
assert x.size(0) == x_lens.size(0) == y.dim0, (x.shape, x_lens.shape, y.dim0)
|
|
||||||
|
|
||||||
# Compute encoder outputs
|
|
||||||
encoder_out, encoder_out_lens = self.forward_encoder(x, x_lens)
|
|
||||||
|
|
||||||
row_splits = y.shape.row_splits(1)
|
|
||||||
y_lens = row_splits[1:] - row_splits[:-1]
|
|
||||||
|
|
||||||
if self.use_transducer:
|
|
||||||
# Compute transducer loss
|
|
||||||
simple_loss, pruned_loss = self.forward_transducer(
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
y=y.to(x.device),
|
|
||||||
y_lens=y_lens,
|
|
||||||
prune_range=prune_range,
|
|
||||||
am_scale=am_scale,
|
|
||||||
lm_scale=lm_scale,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
simple_loss = torch.empty(0)
|
|
||||||
pruned_loss = torch.empty(0)
|
|
||||||
|
|
||||||
if self.use_ctc:
|
|
||||||
# Compute CTC loss
|
|
||||||
targets = y.values
|
|
||||||
ctc_loss = self.forward_ctc(
|
|
||||||
encoder_out=encoder_out,
|
|
||||||
encoder_out_lens=encoder_out_lens,
|
|
||||||
targets=targets,
|
|
||||||
target_lengths=y_lens,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
ctc_loss = torch.empty(0)
|
|
||||||
|
|
||||||
return simple_loss, pruned_loss, ctc_loss
|
|
1
egs/spgispeech/ASR/zipformer/model.py
Symbolic link
1
egs/spgispeech/ASR/zipformer/model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/zipformer/model.py
|
Loading…
x
Reference in New Issue
Block a user