diff --git a/egs/aishell/ASR/conformer_ctc/.transformer.py.swp b/egs/aishell/ASR/conformer_ctc/.transformer.py.swp index 08932d237..0ea38276f 100644 Binary files a/egs/aishell/ASR/conformer_ctc/.transformer.py.swp and b/egs/aishell/ASR/conformer_ctc/.transformer.py.swp differ diff --git a/egs/aishell/ASR/conformer_ctc/transformer.py b/egs/aishell/ASR/conformer_ctc/transformer.py index b82cc486f..d70abb6d2 100644 --- a/egs/aishell/ASR/conformer_ctc/transformer.py +++ b/egs/aishell/ASR/conformer_ctc/transformer.py @@ -23,8 +23,6 @@ import torch.nn as nn from label_smoothing import LabelSmoothingLoss from subsampling import Conv2dSubsampling, VggSubsampling from torch.nn.utils.rnn import pad_sequence -from torch.nn.modules import Module -from torch import Tensor # Note: TorchScript requires Dict/List/etc. to be fully typed. Supervisions = Dict[str, torch.Tensor] @@ -382,7 +380,7 @@ class Transformer(nn.Module): return nll -class TransformerEncoder(Module): +class TransformerEncoder(nn.TransformerEncoder): r"""TransformerEncoder is a stack of N encoder layers. Users can build the BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.