Fix preparing char based lang and add multiprocessing for wenetspeech text segmentation (#513)

* add multiprocessing for wenetspeech text segmentation

* Fix preparing char based lang for wenetspeech

* fix style

Co-authored-by: WeijiZhuang <zhuangweiji@xiaomi.com>
This commit is contained in:
Weiji Zhuang 2022-08-03 19:19:40 +08:00 committed by GitHub
parent 6af5a82d8f
commit 36eacaccb2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 54 additions and 27 deletions

View File

@ -2,6 +2,7 @@
# -*- coding: utf-8 -*-
# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo)
# 2022 Xiaomi Corp. (authors: Weiji Zhuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
@ -29,10 +30,18 @@ with word segmenting:
import argparse
from multiprocessing import Pool
import jieba
import paddle
from tqdm import tqdm
# In PaddlePaddle 2.x, dynamic graph mode is turned on by default,
# and 'data()' is only supported in static graph mode. So if you
# want to use this api, should call 'paddle.enable_static()' before
# this api to enter static graph mode.
paddle.enable_static()
paddle.disable_signal_handler()
jieba.enable_paddle()
@ -41,14 +50,23 @@ def get_parser():
description="Chinese Word Segmentation for text",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--num-process",
"-n",
default=20,
type=int,
help="the number of processes",
)
parser.add_argument(
"--input-file",
"-i",
default="data/lang_char/text",
type=str,
help="the input text file for WenetSpeech",
)
parser.add_argument(
"--output-file",
"-o",
default="data/lang_char/text_words_segmentation",
type=str,
help="the text implemented with words segmenting for WenetSpeech",
@ -57,26 +75,33 @@ def get_parser():
return parser
def cut(lines):
if lines is not None:
cut_lines = jieba.cut(lines, use_paddle=True)
return [i for i in cut_lines]
else:
return None
def main():
parser = get_parser()
args = parser.parse_args()
num_process = args.num_process
input_file = args.input_file
output_file = args.output_file
# parallel mode does not support use_paddle
# jieba.enable_parallel(num_process)
f = open(input_file, "r", encoding="utf-8")
lines = f.readlines()
new_lines = []
for i in tqdm(range(len(lines))):
x = lines[i].rstrip()
seg_list = jieba.cut(x, use_paddle=True)
new_line = " ".join(seg_list)
new_lines.append(new_line)
with open(input_file, "r", encoding="utf-8") as fr:
lines = fr.readlines()
f_new = open(output_file, "w", encoding="utf-8")
for line in new_lines:
f_new.write(line)
f_new.write("\n")
with Pool(processes=num_process) as p:
new_lines = list(tqdm(p.imap(cut, lines), total=len(lines)))
with open(output_file, "w", encoding="utf-8") as fw:
for line in new_lines:
fw.write(" ".join(line) + "\n")
if __name__ == "__main__":

View File

@ -28,6 +28,7 @@ num_splits=1000
# - speech
dl_dir=$PWD/download
lang_char_dir=data/lang_char
. shared/parse_options.sh || exit 1
@ -186,24 +187,27 @@ fi
if [ $stage -le 15 ] && [ $stop_stage -ge 15 ]; then
log "Stage 15: Prepare char based lang"
lang_char_dir=data/lang_char
mkdir -p $lang_char_dir
# Prepare text.
# Note: in Linux, you can install jq with the following command:
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
# 2. chmod +x ./jq
# 3. cp jq /usr/bin
if [ ! -f $lang_char_dir/text ]; then
gunzip -c data/manifests/supervisions_L.jsonl.gz \
| jq 'text' | sed 's/"//g' \
if ! which jq; then
echo "This script is intended to be used with jq but you have not installed jq
Note: in Linux, you can install jq with the following command:
1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
2. chmod +x ./jq
3. cp jq /usr/bin" && exit 1
fi
if [ ! -f $lang_char_dir/text ] || [ ! -s $lang_char_dir/text ]; then
log "Prepare text."
gunzip -c data/manifests/wenetspeech_supervisions_L.jsonl.gz \
| jq '.text' | sed 's/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text
fi
# The implementation of chinese word segmentation for text,
# and it will take about 15 minutes.
if [ ! -f $lang_char_dir/text_words_segmentation ]; then
python ./local/text2segments.py \
python3 ./local/text2segments.py \
--num-process $nj \
--input-file $lang_char_dir/text \
--output-file $lang_char_dir/text_words_segmentation
fi
@ -212,7 +216,7 @@ if [ $stage -le 15 ] && [ $stop_stage -ge 15 ]; then
| sort -u | sed '/^$/d' | uniq > $lang_char_dir/words_no_ids.txt
if [ ! -f $lang_char_dir/words.txt ]; then
python ./local/prepare_words.py \
python3 ./local/prepare_words.py \
--input-file $lang_char_dir/words_no_ids.txt \
--output-file $lang_char_dir/words.txt
fi
@ -221,7 +225,7 @@ fi
if [ $stage -le 16 ] && [ $stop_stage -ge 16 ]; then
log "Stage 16: Prepare char based L_disambig.pt"
if [ ! -f data/lang_char/L_disambig.pt ]; then
python ./local/prepare_char.py \
python3 ./local/prepare_char.py \
--lang-dir data/lang_char
fi
fi
@ -232,9 +236,8 @@ if [ $stage -le 17 ] && [ $stop_stage -ge 17 ]; then
# It will take about 20 minutes.
# We assume you have install kaldilm, if not, please install
# it using: pip install kaldilm
lang_char_dir=data/lang_char
if [ ! -f $lang_char_dir/3-gram.unpruned.arpa ]; then
python ./shared/make_kn_lm.py \
python3 ./shared/make_kn_lm.py \
-ngram-order 3 \
-text $lang_char_dir/text_words_segmentation \
-lm $lang_char_dir/3-gram.unpruned.arpa
@ -253,6 +256,5 @@ fi
if [ $stage -le 18 ] && [ $stop_stage -ge 18 ]; then
log "Stage 18: Compile LG"
lang_char_dir=data/lang_char
python ./local/compile_lg.py --lang-dir $lang_char_dir
fi