Merge branch 'k2-fsa:master' into master

This commit is contained in:
l2009312042 2023-09-21 10:19:47 +08:00 committed by GitHub
commit 36d625bc9b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
242 changed files with 11070 additions and 2209 deletions

View File

@ -29,6 +29,9 @@ if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" ==
ls -lh data/fbank
ls -lh pruned_transducer_stateless2/exp
ln -s data/fbank/cuts_DEV.jsonl.gz data/fbank/gigaspeech_cuts_DEV.jsonl.gz
ln -s data/fbank/cuts_TEST.jsonl.gz data/fbank/gigaspeech_cuts_TEST.jsonl.gz
log "Decoding dev and test"
# use a small value for decoding with CPU

View File

@ -38,7 +38,7 @@ log "Decode with models exported by torch.jit.trace()"
for m in ctc-decoding 1best; do
./conformer_ctc3/jit_pretrained.py \
--model-filename $repo/exp/jit_trace.pt \
--words-file $repo/data/lang_bpe_500/words.txt \
--words-file $repo/data/lang_bpe_500/words.txt \
--HLG $repo/data/lang_bpe_500/HLG.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--G $repo/data/lm/G_4_gram.pt \
@ -53,7 +53,7 @@ log "Export to torchscript model"
./conformer_ctc3/export.py \
--exp-dir $repo/exp \
--lang-dir $repo/data/lang_bpe_500 \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--jit-trace 1 \
--epoch 99 \
--avg 1 \
@ -80,9 +80,9 @@ done
for m in ctc-decoding 1best; do
./conformer_ctc3/pretrained.py \
--checkpoint $repo/exp/pretrained.pt \
--words-file $repo/data/lang_bpe_500/words.txt \
--words-file $repo/data/lang_bpe_500/words.txt \
--HLG $repo/data/lang_bpe_500/HLG.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--G $repo/data/lm/G_4_gram.pt \
--method $m \
--sample-rate 16000 \
@ -93,7 +93,7 @@ done
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
mkdir -p conformer_ctc3/exp
ln -s $PWD/$repo/exp/pretrained.pt conformer_ctc3/exp/epoch-999.pt
ln -s $PWD/$repo/data/lang_bpe_500 data/

View File

@ -31,7 +31,7 @@ log "Test exporting with torch.jit.trace()"
./lstm_transducer_stateless2/export.py \
--exp-dir $repo/exp \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--epoch 99 \
--avg 1 \
--use-averaged-model 0 \
@ -55,7 +55,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
@ -68,7 +68,7 @@ for method in modified_beam_search beam_search fast_beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -28,7 +28,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
@ -41,7 +41,7 @@ for method in fast_beam_search modified_beam_search beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -36,7 +36,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
@ -49,7 +49,7 @@ for method in modified_beam_search beam_search fast_beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -35,7 +35,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
@ -48,7 +48,7 @@ for method in modified_beam_search beam_search fast_beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -30,14 +30,14 @@ popd
log "Export to torchscript model"
./pruned_transducer_stateless3/export.py \
--exp-dir $repo/exp \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--epoch 99 \
--avg 1 \
--jit 1
./pruned_transducer_stateless3/export.py \
--exp-dir $repo/exp \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--epoch 99 \
--avg 1 \
--jit-trace 1
@ -74,7 +74,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
@ -87,7 +87,7 @@ for method in modified_beam_search beam_search fast_beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -32,7 +32,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--num-encoder-layers 18 \
--dim-feedforward 2048 \
--nhead 8 \
@ -51,7 +51,7 @@ for method in modified_beam_search beam_search fast_beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav \

View File

@ -33,7 +33,7 @@ log "Export to torchscript model"
./pruned_transducer_stateless7/export.py \
--exp-dir $repo/exp \
--use-averaged-model false \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--epoch 99 \
--avg 1 \
--jit 1
@ -56,7 +56,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
@ -69,7 +69,7 @@ for method in modified_beam_search beam_search fast_beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -37,7 +37,7 @@ log "Export to torchscript model"
./pruned_transducer_stateless7_ctc/export.py \
--exp-dir $repo/exp \
--use-averaged-model false \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--epoch 99 \
--avg 1 \
--jit 1
@ -74,7 +74,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
@ -87,7 +87,7 @@ for method in modified_beam_search beam_search fast_beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -36,7 +36,7 @@ log "Export to torchscript model"
./pruned_transducer_stateless7_ctc_bs/export.py \
--exp-dir $repo/exp \
--use-averaged-model false \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--epoch 99 \
--avg 1 \
--jit 1
@ -72,7 +72,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
@ -85,7 +85,7 @@ for method in modified_beam_search beam_search fast_beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -37,7 +37,7 @@ log "Export to torchscript model"
./pruned_transducer_stateless7_streaming/export.py \
--exp-dir $repo/exp \
--use-averaged-model false \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--decode-chunk-len 32 \
--epoch 99 \
--avg 1 \
@ -81,7 +81,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--decode-chunk-len 32 \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
@ -95,7 +95,7 @@ for method in modified_beam_search beam_search fast_beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--decode-chunk-len 32 \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \

View File

@ -41,7 +41,7 @@ log "Decode with models exported by torch.jit.script()"
log "Export to torchscript model"
./pruned_transducer_stateless8/export.py \
--exp-dir $repo/exp \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--use-averaged-model false \
--epoch 99 \
--avg 1 \
@ -65,7 +65,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
@ -78,7 +78,7 @@ for method in modified_beam_search beam_search fast_beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -32,7 +32,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--simulate-streaming 1 \
--causal-convolution 1 \
$repo/test_wavs/1089-134686-0001.wav \
@ -47,7 +47,7 @@ for method in modified_beam_search beam_search fast_beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--simulate-streaming 1 \
--causal-convolution 1 \
$repo/test_wavs/1089-134686-0001.wav \

View File

@ -28,7 +28,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
@ -41,7 +41,7 @@ for method in fast_beam_search modified_beam_search beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -37,7 +37,7 @@ log "Export to torchscript model"
./zipformer_mmi/export.py \
--exp-dir $repo/exp \
--use-averaged-model false \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--epoch 99 \
--avg 1 \
--jit 1
@ -61,7 +61,7 @@ for method in 1best nbest nbest-rescoring-LG nbest-rescoring-3-gram nbest-rescor
--method $method \
--checkpoint $repo/exp/pretrained.pt \
--lang-dir $repo/data/lang_bpe_500 \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -0,0 +1,51 @@
#!/usr/bin/env bash
set -e
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
cd egs/multi_zh-hans/ASR
repo_url=https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-2023-9-2/
log "Downloading pre-trained model from $repo_url"
git lfs install
git clone $repo_url
repo=$(basename $repo_url)
log "Display test files"
tree $repo/
ls -lh $repo/test_wavs/*.wav
pushd $repo/exp
ln -s epoch-20.pt epoch-99.pt
popd
ls -lh $repo/exp/*.pt
./zipformer/pretrained.py \
--checkpoint $repo/exp/epoch-99.pt \
--tokens $repo/data/lang_bpe_2000/tokens.txt \
--method greedy_search \
$repo/test_wavs/DEV_T0000000000.wav \
$repo/test_wavs/DEV_T0000000001.wav \
$repo/test_wavs/DEV_T0000000002.wav
for method in modified_beam_search fast_beam_search; do
log "$method"
./zipformer/pretrained.py \
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/epoch-99.pt \
--tokens $repo/data/lang_bpe_2000/tokens.txt \
$repo/test_wavs/DEV_T0000000000.wav \
$repo/test_wavs/DEV_T0000000001.wav \
$repo/test_wavs/DEV_T0000000002.wav
done

View File

@ -27,7 +27,7 @@ log "CTC decoding"
--method ctc-decoding \
--num-classes 500 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.flac \
$repo/test_wavs/1221-135766-0001.flac \
$repo/test_wavs/1221-135766-0002.flac
@ -38,7 +38,7 @@ log "HLG decoding"
--method 1best \
--num-classes 500 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--words-file $repo/data/lang_bpe_500/words.txt \
--HLG $repo/data/lang_bpe_500/HLG.pt \
$repo/test_wavs/1089-134686-0001.flac \

View File

@ -28,7 +28,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
@ -41,7 +41,7 @@ for method in modified_beam_search beam_search fast_beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -28,7 +28,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
@ -41,7 +41,7 @@ for method in modified_beam_search beam_search fast_beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -28,7 +28,7 @@ for sym in 1 2 3; do
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
@ -41,7 +41,7 @@ for method in fast_beam_search modified_beam_search beam_search; do
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -27,7 +27,7 @@ log "Beam search decoding"
--method beam_search \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav

View File

@ -17,7 +17,6 @@ git lfs install
git clone $repo_url
repo=$(basename $repo_url)
log "Display test files"
tree $repo/
ls -lh $repo/test_wavs/*.wav
@ -29,12 +28,11 @@ popd
log "Test exporting to ONNX format"
./pruned_transducer_stateless2/export.py \
./pruned_transducer_stateless2/export-onnx.py \
--exp-dir $repo/exp \
--lang-dir $repo/data/lang_char \
--epoch 99 \
--avg 1 \
--onnx 1
--avg 1
log "Export to torchscript model"
@ -59,19 +57,17 @@ log "Decode with ONNX models"
./pruned_transducer_stateless2/onnx_check.py \
--jit-filename $repo/exp/cpu_jit.pt \
--onnx-encoder-filename $repo/exp/encoder.onnx \
--onnx-decoder-filename $repo/exp/decoder.onnx \
--onnx-joiner-filename $repo/exp/joiner.onnx \
--onnx-joiner-encoder-proj-filename $repo/exp/joiner_encoder_proj.onnx \
--onnx-joiner-decoder-proj-filename $repo/exp/joiner_decoder_proj.onnx
--onnx-encoder-filename $repo/exp/encoder-epoch-10-avg-2.onnx \
--onnx-decoder-filename $repo/exp/decoder-epoch-10-avg-2.onnx \
--onnx-joiner-filename $repo/exp/joiner-epoch-10-avg-2.onnx \
--onnx-joiner-encoder-proj-filename $repo/exp/joiner_encoder_proj-epoch-10-avg-2.onnx \
--onnx-joiner-decoder-proj-filename $repo/exp/joiner_decoder_proj-epoch-10-avg-2.onnx
./pruned_transducer_stateless2/onnx_pretrained.py \
--tokens $repo/data/lang_char/tokens.txt \
--encoder-model-filename $repo/exp/encoder.onnx \
--decoder-model-filename $repo/exp/decoder.onnx \
--joiner-model-filename $repo/exp/joiner.onnx \
--joiner-encoder-proj-model-filename $repo/exp/joiner_encoder_proj.onnx \
--joiner-decoder-proj-model-filename $repo/exp/joiner_decoder_proj.onnx \
--encoder-model-filename $repo/exp/encoder-epoch-99-avg-1.onnx \
--decoder-model-filename $repo/exp/decoder-epoch-99-avg-1.onnx \
--joiner-model-filename $repo/exp/joiner-epoch-99-avg-1.onnx \
$repo/test_wavs/DEV_T0000000000.wav \
$repo/test_wavs/DEV_T0000000001.wav \
$repo/test_wavs/DEV_T0000000002.wav
@ -104,9 +100,9 @@ for sym in 1 2 3; do
--lang-dir $repo/data/lang_char \
--decoding-method greedy_search \
--max-sym-per-frame $sym \
$repo/test_wavs/DEV_T0000000000.wav \
$repo/test_wavs/DEV_T0000000001.wav \
$repo/test_wavs/DEV_T0000000002.wav
$repo/test_wavs/DEV_T0000000000.wav \
$repo/test_wavs/DEV_T0000000001.wav \
$repo/test_wavs/DEV_T0000000002.wav
done
for method in modified_beam_search beam_search fast_beam_search; do
@ -117,7 +113,7 @@ for method in modified_beam_search beam_search fast_beam_search; do
--beam-size 4 \
--checkpoint $repo/exp/epoch-99.pt \
--lang-dir $repo/data/lang_char \
$repo/test_wavs/DEV_T0000000000.wav \
$repo/test_wavs/DEV_T0000000001.wav \
$repo/test_wavs/DEV_T0000000002.wav
$repo/test_wavs/DEV_T0000000000.wav \
$repo/test_wavs/DEV_T0000000001.wav \
$repo/test_wavs/DEV_T0000000002.wav
done

View File

@ -45,7 +45,6 @@ GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained-epoch-30-avg-10-averaged.pt"
cd exp
@ -56,11 +55,10 @@ log "Export via torch.jit.trace()"
./conv_emformer_transducer_stateless2/export-for-ncnn.py \
--exp-dir $repo/exp \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--epoch 99 \
--avg 1 \
--use-averaged-model 0 \
\
--tokens $repo/data/lang_bpe_500/tokens.txt \
--num-encoder-layers 12 \
--chunk-length 32 \
--cnn-module-kernel 31 \
@ -91,7 +89,6 @@ GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained-iter-468000-avg-16.pt"
cd exp
@ -102,7 +99,7 @@ log "Export via torch.jit.trace()"
./lstm_transducer_stateless2/export-for-ncnn.py \
--exp-dir $repo/exp \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--epoch 99 \
--avg 1 \
--use-averaged-model 0
@ -140,7 +137,6 @@ GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained.pt"
cd exp
@ -148,7 +144,7 @@ ln -s pretrained.pt epoch-99.pt
popd
./pruned_transducer_stateless7_streaming/export-for-ncnn.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--exp-dir $repo/exp \
--use-averaged-model 0 \
--epoch 99 \
@ -199,7 +195,7 @@ ln -s pretrained.pt epoch-9999.pt
popd
./pruned_transducer_stateless7_streaming/export-for-ncnn-zh.py \
--lang-dir $repo/data/lang_char_bpe \
--tokens $repo/data/lang_char_bpe/tokens.txt \
--exp-dir $repo/exp \
--use-averaged-model 0 \
--epoch 9999 \

View File

@ -10,7 +10,123 @@ log() {
cd egs/librispeech/ASR
log "=========================================================================="
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15
log "Downloading pre-trained model from $repo_url"
git lfs install
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "exp/pretrained.pt"
cd exp
ln -s pretrained.pt epoch-99.pt
popd
log "Export via torch.jit.script()"
./zipformer/export.py \
--exp-dir $repo/exp \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--epoch 99 \
--avg 1 \
--jit 1
log "Test export to ONNX format"
./zipformer/export-onnx.py \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
--exp-dir $repo/exp \
--num-encoder-layers "2,2,3,4,3,2" \
--downsampling-factor "1,2,4,8,4,2" \
--feedforward-dim "512,768,1024,1536,1024,768" \
--num-heads "4,4,4,8,4,4" \
--encoder-dim "192,256,384,512,384,256" \
--query-head-dim 32 \
--value-head-dim 12 \
--pos-head-dim 4 \
--pos-dim 48 \
--encoder-unmasked-dim "192,192,256,256,256,192" \
--cnn-module-kernel "31,31,15,15,15,31" \
--decoder-dim 512 \
--joiner-dim 512 \
--causal False \
--chunk-size "16,32,64,-1" \
--left-context-frames "64,128,256,-1"
ls -lh $repo/exp
log "Run onnx_check.py"
./zipformer/onnx_check.py \
--jit-filename $repo/exp/jit_script.pt \
--onnx-encoder-filename $repo/exp/encoder-epoch-99-avg-1.onnx \
--onnx-decoder-filename $repo/exp/decoder-epoch-99-avg-1.onnx \
--onnx-joiner-filename $repo/exp/joiner-epoch-99-avg-1.onnx
log "Run onnx_pretrained.py"
./zipformer/onnx_pretrained.py \
--encoder-model-filename $repo/exp/encoder-epoch-99-avg-1.onnx \
--decoder-model-filename $repo/exp/decoder-epoch-99-avg-1.onnx \
--joiner-model-filename $repo/exp/joiner-epoch-99-avg-1.onnx \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav
rm -rf $repo
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-streaming-zipformer-2023-05-17
log "Downloading pre-trained model from $repo_url"
git lfs install
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "exp/pretrained.pt"
cd exp
ln -s pretrained.pt epoch-99.pt
popd
log "Test export streaming model to ONNX format"
./zipformer/export-onnx-streaming.py \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
--exp-dir $repo/exp \
--num-encoder-layers "2,2,3,4,3,2" \
--downsampling-factor "1,2,4,8,4,2" \
--feedforward-dim "512,768,1024,1536,1024,768" \
--num-heads "4,4,4,8,4,4" \
--encoder-dim "192,256,384,512,384,256" \
--query-head-dim 32 \
--value-head-dim 12 \
--pos-head-dim 4 \
--pos-dim 48 \
--encoder-unmasked-dim "192,192,256,256,256,192" \
--cnn-module-kernel "31,31,15,15,15,31" \
--decoder-dim 512 \
--joiner-dim 512 \
--causal True \
--chunk-size 16 \
--left-context-frames 64
ls -lh $repo/exp
log "Run onnx_pretrained-streaming.py"
./zipformer/onnx_pretrained-streaming.py \
--encoder-model-filename $repo/exp/encoder-epoch-99-avg-1-chunk-16-left-64.onnx \
--decoder-model-filename $repo/exp/decoder-epoch-99-avg-1-chunk-16-left-64.onnx \
--joiner-model-filename $repo/exp/joiner-epoch-99-avg-1-chunk-16-left-64.onnx \
--tokens $repo/data/lang_bpe_500/tokens.txt \
$repo/test_wavs/1089-134686-0001.wav
rm -rf $repo
log "--------------------------------------------------------------------------"
log "=========================================================================="
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
@ -39,7 +155,7 @@ log "Export via torch.jit.trace()"
log "Test exporting to ONNX format"
./pruned_transducer_stateless7_streaming/export-onnx.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
@ -88,7 +204,7 @@ popd
log "Export via torch.jit.script()"
./pruned_transducer_stateless3/export.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--epoch 9999 \
--avg 1 \
--exp-dir $repo/exp/ \
@ -97,7 +213,7 @@ log "Export via torch.jit.script()"
log "Test exporting to ONNX format"
./pruned_transducer_stateless3/export-onnx.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--epoch 9999 \
--avg 1 \
--exp-dir $repo/exp/
@ -126,7 +242,6 @@ log "Run onnx_pretrained.py"
rm -rf $repo
log "--------------------------------------------------------------------------"
log "=========================================================================="
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless5-2022-05-13
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
@ -143,7 +258,7 @@ popd
log "Export via torch.jit.script()"
./pruned_transducer_stateless5/export.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--epoch 99 \
--avg 1 \
--use-averaged-model 0 \
@ -159,7 +274,7 @@ log "Export via torch.jit.script()"
log "Test exporting to ONNX format"
./pruned_transducer_stateless5/export-onnx.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--epoch 99 \
--avg 1 \
--use-averaged-model 0 \
@ -205,7 +320,6 @@ GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained.pt"
cd exp
@ -215,7 +329,7 @@ popd
log "Export via torch.jit.script()"
./pruned_transducer_stateless7/export.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
@ -226,7 +340,7 @@ log "Export via torch.jit.script()"
log "Test exporting to ONNX format"
./pruned_transducer_stateless7/export-onnx.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
@ -270,7 +384,7 @@ popd
log "Test exporting to ONNX format"
./conv_emformer_transducer_stateless2/export-onnx.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
@ -310,7 +424,7 @@ popd
log "Export via torch.jit.trace()"
./lstm_transducer_stateless2/export.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
@ -320,7 +434,7 @@ log "Export via torch.jit.trace()"
log "Test exporting to ONNX format"
./lstm_transducer_stateless2/export-onnx.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \

View File

@ -45,7 +45,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.7, 3.8, 3.9]
python-version: [3.8]
fail-fast: false

View File

@ -44,7 +44,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.7, 3.8, 3.9]
python-version: [3.8]
fail-fast: false

View File

@ -44,7 +44,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.7, 3.8, 3.9]
python-version: [3.8]
fail-fast: false

View File

@ -44,7 +44,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.7, 3.8, 3.9]
python-version: [3.8]
fail-fast: false

View File

@ -44,7 +44,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.7, 3.8, 3.9]
python-version: [3.8]
fail-fast: false

View File

@ -44,7 +44,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.7, 3.8, 3.9]
python-version: [3.8]
fail-fast: false

View File

@ -44,7 +44,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.7, 3.8, 3.9]
python-version: [3.8]
fail-fast: false

View File

@ -44,7 +44,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.7, 3.8, 3.9]
python-version: [3.8]
fail-fast: false

View File

@ -0,0 +1,84 @@
# Copyright 2023 Xiaomi Corp. (author: Zengrui Jin)
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: run-multi-zh_hans-zipformer
on:
push:
branches:
- master
pull_request:
types: [labeled]
concurrency:
group: run_multi-zh_hans_zipformer-${{ github.ref }}
cancel-in-progress: true
jobs:
run_multi-zh_hans_zipformer:
if: github.event.label.name == 'onnx' || github.event.label.name == 'ready' || github.event_name == 'push' || github.event.label.name == 'multi-zh_hans'
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.8]
fail-fast: false
steps:
- uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
cache: 'pip'
cache-dependency-path: '**/requirements-ci.txt'
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf
pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat
id: my-cache
uses: actions/cache@v2
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}-2023-05-22
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/install-kaldifeat.sh
- name: Inference with pre-trained model
shell: bash
env:
GITHUB_EVENT_NAME: ${{ github.event_name }}
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
run: |
sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
.github/scripts/run-multi-zh_hans-zipformer.sh

View File

@ -34,7 +34,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.7, 3.8, 3.9]
python-version: [3.8]
fail-fast: false

View File

@ -43,7 +43,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.7, 3.8, 3.9]
python-version: [3.8]
fail-fast: false

View File

@ -43,7 +43,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.7, 3.8, 3.9]
python-version: [3.8]
fail-fast: false

View File

@ -34,7 +34,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.7, 3.8, 3.9]
python-version: [3.8]
fail-fast: false

View File

@ -34,7 +34,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.7, 3.8, 3.9]
python-version: [3.8]
fail-fast: false

View File

@ -43,7 +43,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.7, 3.8, 3.9]
python-version: [3.8]
fail-fast: false

View File

@ -34,7 +34,7 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python-version: [3.7, 3.8, 3.9]
python-version: [3.8]
fail-fast: false

View File

@ -44,11 +44,6 @@ jobs:
with:
fetch-depth: 0
- name: Install graphviz
shell: bash
run: |
sudo apt-get -qq install graphviz
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
@ -70,6 +65,7 @@ jobs:
pip install --no-binary protobuf protobuf==3.20.*
pip install --no-deps --force-reinstall https://huggingface.co/csukuangfj/k2/resolve/main/cpu/k2-1.24.3.dev20230508+cpu.torch1.13.1-cp38-cp38-linux_x86_64.whl
pip install kaldifeat==1.25.0.dev20230726+cpu.torch1.13.1 -f https://csukuangfj.github.io/kaldifeat/cpu.html
- name: Run yesno recipe
shell: bash
@ -78,9 +74,75 @@ jobs:
export PYTHONPATH=$PWD:$PYTHONPATH
echo $PYTHONPATH
cd egs/yesno/ASR
./prepare.sh
python3 ./tdnn/train.py
python3 ./tdnn/decode.py
# TODO: Check that the WER is less than some value
- name: Test exporting to pretrained.pt
shell: bash
working-directory: ${{github.workspace}}
run: |
export PYTHONPATH=$PWD:$PYTHONPATH
echo $PYTHONPATH
cd egs/yesno/ASR
python3 ./tdnn/export.py --epoch 14 --avg 2
python3 ./tdnn/pretrained.py \
--checkpoint ./tdnn/exp/pretrained.pt \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav
- name: Test exporting to torchscript
shell: bash
working-directory: ${{github.workspace}}
run: |
export PYTHONPATH=$PWD:$PYTHONPATH
echo $PYTHONPATH
cd egs/yesno/ASR
python3 ./tdnn/export.py --epoch 14 --avg 2 --jit 1
python3 ./tdnn/jit_pretrained.py \
--nn-model ./tdnn/exp/cpu_jit.pt \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav
- name: Test exporting to onnx
shell: bash
working-directory: ${{github.workspace}}
run: |
export PYTHONPATH=$PWD:$PYTHONPATH
echo $PYTHONPATH
cd egs/yesno/ASR
python3 ./tdnn/export_onnx.py --epoch 14 --avg 2
echo "Test float32 model"
python3 ./tdnn/onnx_pretrained.py \
--nn-model ./tdnn/exp/model-epoch-14-avg-2.onnx \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav
echo "Test int8 model"
python3 ./tdnn/onnx_pretrained.py \
--nn-model ./tdnn/exp/model-epoch-14-avg-2.int8.onnx \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav
- name: Show generated files
shell: bash
working-directory: ${{github.workspace}}
run: |
cd egs/yesno/ASR
ls -lh tdnn/exp

View File

@ -338,7 +338,7 @@ We provide one model for this recipe: [Pruned stateless RNN-T: Conformer encoder
#### Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss
The best results for Chinese CER(%) and English WER(%) respectivly (zh: Chinese, en: English):
The best results for Chinese CER(%) and English WER(%) respectively (zh: Chinese, en: English):
|decoding-method | dev | dev_zh | dev_en | test | test_zh | test_en |
|--|--|--|--|--|--|--|
|greedy_search| 7.30 | 6.48 | 19.19 |7.39| 6.66 | 19.13|

View File

@ -95,4 +95,7 @@ rst_epilog = """
.. _k2: https://github.com/k2-fsa/k2
.. _lhotse: https://github.com/lhotse-speech/lhotse
.. _yesno: https://www.openslr.org/1/
.. _Next-gen Kaldi: https://github.com/k2-fsa
.. _Kaldi: https://github.com/kaldi-asr/kaldi
.. _lilcom: https://github.com/danpovey/lilcom
"""

View File

@ -71,9 +71,12 @@ As the initial step, let's download the pre-trained model.
.. code-block:: bash
$ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
$ pushd icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
$ cd icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
$ git lfs pull --include "pretrained.pt"
$ ln -s pretrained.pt epoch-99.pt # create a symbolic link so that the checkpoint can be loaded
$ cd ../data/lang_bpe_500
$ git lfs pull --include bpe.model
$ cd ../../..
To test the model, let's have a look at the decoding results **without** using LM. This can be done via the following command:

View File

@ -34,9 +34,12 @@ As the initial step, let's download the pre-trained model.
.. code-block:: bash
$ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
$ pushd icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
$ cd icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
$ git lfs pull --include "pretrained.pt"
$ ln -s pretrained.pt epoch-99.pt # create a symbolic link so that the checkpoint can be loaded
$ cd ../data/lang_bpe_500
$ git lfs pull --include bpe.model
$ cd ../../..
As usual, we first test the model's performance without external LM. This can be done via the following command:

View File

@ -32,9 +32,12 @@ As the initial step, let's download the pre-trained model.
.. code-block:: bash
$ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Zengwei/icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
$ pushd icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
$ cd icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29/exp
$ git lfs pull --include "pretrained.pt"
$ ln -s pretrained.pt epoch-99.pt # create a symbolic link so that the checkpoint can be loaded
$ cd ../data/lang_bpe_500
$ git lfs pull --include bpe.model
$ cd ../../..
To test the model, let's have a look at the decoding results without using LM. This can be done via the following command:

View File

@ -0,0 +1,180 @@
.. _dummies_tutorial_data_preparation:
Data Preparation
================
After :ref:`dummies_tutorial_environment_setup`, we can start preparing the
data for training and decoding.
The first step is to prepare the data for training. We have already provided
`prepare.sh <https://github.com/k2-fsa/icefall/blob/master/egs/yesno/ASR/prepare.sh>`_
that would prepare everything required for training.
.. code-block::
cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR
./prepare.sh
Note that in each recipe from `icefall`_, there exists a file ``prepare.sh``,
which you should run before you run anything else.
That is all you need for data preparation.
For the more curious
--------------------
If you are wondering how to prepare your own dataset, please refer to the following
URLs for more details:
- `<https://github.com/lhotse-speech/lhotse/tree/master/lhotse/recipes>`_
It contains recipes for a variety of dataset. If you want to add your own
dataset, please read recipes in this folder first.
- `<https://github.com/lhotse-speech/lhotse/blob/master/lhotse/recipes/yesno.py>`_
The `yesno`_ recipe in `lhotse`_.
If you already have a `Kaldi`_ dataset directory, which contains files like
``wav.scp``, ``feats.scp``, then you can refer to `<https://lhotse.readthedocs.io/en/latest/kaldi.html#example>`_.
A quick look to the generated files
-----------------------------------
``./prepare.sh`` puts generated files into two directories:
- ``download``
- ``data``
download
^^^^^^^^
The ``download`` directory contains downloaded dataset files:
.. code-block:: bas
tree -L 1 ./download/
./download/
|-- waves_yesno
`-- waves_yesno.tar.gz
.. hint::
Please refer to `<https://github.com/lhotse-speech/lhotse/blob/master/lhotse/recipes/yesno.py#L41>`_
for how the data is downloaded and extracted.
data
^^^^
.. code-block:: bash
tree ./data/
./data/
|-- fbank
| |-- yesno_cuts_test.jsonl.gz
| |-- yesno_cuts_train.jsonl.gz
| |-- yesno_feats_test.lca
| `-- yesno_feats_train.lca
|-- lang_phone
| |-- HLG.pt
| |-- L.pt
| |-- L_disambig.pt
| |-- Linv.pt
| |-- lexicon.txt
| |-- lexicon_disambig.txt
| |-- tokens.txt
| `-- words.txt
|-- lm
| |-- G.arpa
| `-- G.fst.txt
`-- manifests
|-- yesno_recordings_test.jsonl.gz
|-- yesno_recordings_train.jsonl.gz
|-- yesno_supervisions_test.jsonl.gz
`-- yesno_supervisions_train.jsonl.gz
4 directories, 18 files
**data/manifests**:
This directory contains manifests. They are used to generate files in
``data/fbank``.
To give you an idea of what it contains, we examine the first few lines of
the manifests related to the ``train`` dataset.
.. code-block:: bash
cd data/manifests
gunzip -c yesno_recordings_train.jsonl.gz | head -n 3
The output is given below:
.. code-block:: bash
{"id": "0_0_0_0_1_1_1_1", "sources": [{"type": "file", "channels": [0], "source": "/tmp/icefall/egs/yesno/ASR/download/waves_yesno/0_0_0_0_1_1_1_1.wav"}], "sampling_rate": 8000, "num_samples": 50800, "duration": 6.35, "channel_ids": [0]}
{"id": "0_0_0_1_0_1_1_0", "sources": [{"type": "file", "channels": [0], "source": "/tmp/icefall/egs/yesno/ASR/download/waves_yesno/0_0_0_1_0_1_1_0.wav"}], "sampling_rate": 8000, "num_samples": 48880, "duration": 6.11, "channel_ids": [0]}
{"id": "0_0_1_0_0_1_1_0", "sources": [{"type": "file", "channels": [0], "source": "/tmp/icefall/egs/yesno/ASR/download/waves_yesno/0_0_1_0_0_1_1_0.wav"}], "sampling_rate": 8000, "num_samples": 48160, "duration": 6.02, "channel_ids": [0]}
Please refer to `<https://github.com/lhotse-speech/lhotse/blob/master/lhotse/audio.py#L300>`_
for the meaning of each field per line.
.. code-block:: bash
gunzip -c yesno_supervisions_train.jsonl.gz | head -n 3
The output is given below:
.. code-block:: bash
{"id": "0_0_0_0_1_1_1_1", "recording_id": "0_0_0_0_1_1_1_1", "start": 0.0, "duration": 6.35, "channel": 0, "text": "NO NO NO NO YES YES YES YES", "language": "Hebrew"}
{"id": "0_0_0_1_0_1_1_0", "recording_id": "0_0_0_1_0_1_1_0", "start": 0.0, "duration": 6.11, "channel": 0, "text": "NO NO NO YES NO YES YES NO", "language": "Hebrew"}
{"id": "0_0_1_0_0_1_1_0", "recording_id": "0_0_1_0_0_1_1_0", "start": 0.0, "duration": 6.02, "channel": 0, "text": "NO NO YES NO NO YES YES NO", "language": "Hebrew"}
Please refer to `<https://github.com/lhotse-speech/lhotse/blob/master/lhotse/supervision.py#L510>`_
for the meaning of each field per line.
**data/fbank**:
This directory contains everything from ``data/manifests``. Furthermore, it also contains features
for training.
``data/fbank/yesno_feats_train.lca`` contains the features for the train dataset.
Features are compressed using `lilcom`_.
``data/fbank/yesno_cuts_train.jsonl.gz`` stores the `CutSet <https://github.com/lhotse-speech/lhotse/blob/master/lhotse/cut/set.py#L72>`_,
which stores `RecordingSet <https://github.com/lhotse-speech/lhotse/blob/master/lhotse/audio.py#L928>`_,
`SupervisionSet <https://github.com/lhotse-speech/lhotse/blob/master/lhotse/supervision.py#L510>`_,
and `FeatureSet <https://github.com/lhotse-speech/lhotse/blob/master/lhotse/features/base.py#L593>`_.
To give you an idea about what it looks like, we can run the following command:
.. code-block:: bash
cd data/fbank
gunzip -c yesno_cuts_train.jsonl.gz | head -n 3
The output is given below:
.. code-block:: bash
{"id": "0_0_0_0_1_1_1_1-0", "start": 0, "duration": 6.35, "channel": 0, "supervisions": [{"id": "0_0_0_0_1_1_1_1", "recording_id": "0_0_0_0_1_1_1_1", "start": 0.0, "duration": 6.35, "channel": 0, "text": "NO NO NO NO YES YES YES YES", "language": "Hebrew"}], "features": {"type": "kaldi-fbank", "num_frames": 635, "num_features": 23, "frame_shift": 0.01, "sampling_rate": 8000, "start": 0, "duration": 6.35, "storage_type": "lilcom_chunky", "storage_path": "data/fbank/yesno_feats_train.lca", "storage_key": "0,13000,3570", "channels": 0}, "recording": {"id": "0_0_0_0_1_1_1_1", "sources": [{"type": "file", "channels": [0], "source": "/tmp/icefall/egs/yesno/ASR/download/waves_yesno/0_0_0_0_1_1_1_1.wav"}], "sampling_rate": 8000, "num_samples": 50800, "duration": 6.35, "channel_ids": [0]}, "type": "MonoCut"}
{"id": "0_0_0_1_0_1_1_0-1", "start": 0, "duration": 6.11, "channel": 0, "supervisions": [{"id": "0_0_0_1_0_1_1_0", "recording_id": "0_0_0_1_0_1_1_0", "start": 0.0, "duration": 6.11, "channel": 0, "text": "NO NO NO YES NO YES YES NO", "language": "Hebrew"}], "features": {"type": "kaldi-fbank", "num_frames": 611, "num_features": 23, "frame_shift": 0.01, "sampling_rate": 8000, "start": 0, "duration": 6.11, "storage_type": "lilcom_chunky", "storage_path": "data/fbank/yesno_feats_train.lca", "storage_key": "16570,12964,2929", "channels": 0}, "recording": {"id": "0_0_0_1_0_1_1_0", "sources": [{"type": "file", "channels": [0], "source": "/tmp/icefall/egs/yesno/ASR/download/waves_yesno/0_0_0_1_0_1_1_0.wav"}], "sampling_rate": 8000, "num_samples": 48880, "duration": 6.11, "channel_ids": [0]}, "type": "MonoCut"}
{"id": "0_0_1_0_0_1_1_0-2", "start": 0, "duration": 6.02, "channel": 0, "supervisions": [{"id": "0_0_1_0_0_1_1_0", "recording_id": "0_0_1_0_0_1_1_0", "start": 0.0, "duration": 6.02, "channel": 0, "text": "NO NO YES NO NO YES YES NO", "language": "Hebrew"}], "features": {"type": "kaldi-fbank", "num_frames": 602, "num_features": 23, "frame_shift": 0.01, "sampling_rate": 8000, "start": 0, "duration": 6.02, "storage_type": "lilcom_chunky", "storage_path": "data/fbank/yesno_feats_train.lca", "storage_key": "32463,12936,2696", "channels": 0}, "recording": {"id": "0_0_1_0_0_1_1_0", "sources": [{"type": "file", "channels": [0], "source": "/tmp/icefall/egs/yesno/ASR/download/waves_yesno/0_0_1_0_0_1_1_0.wav"}], "sampling_rate": 8000, "num_samples": 48160, "duration": 6.02, "channel_ids": [0]}, "type": "MonoCut"}
Note that ``yesno_cuts_train.jsonl.gz`` only stores the information about how to read the features.
The actual features are stored separately in ``data/fbank/yesno_feats_train.lca``.
**data/lang**:
This directory contains the lexicon.
**data/lm**:
This directory contains language models.

View File

@ -0,0 +1,39 @@
.. _dummies_tutorial_decoding:
Decoding
========
After :ref:`dummies_tutorial_training`, we can start decoding.
The command to start the decoding is quite simple:
.. code-block:: bash
cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR
# We use CPU for decoding by setting the following environment variable
export CUDA_VISIBLE_DEVICES=""
./tdnn/decode.py
The output logs are given below:
.. literalinclude:: ./code/decoding-yesno.txt
For the more curious
--------------------
.. code-block:: bash
./tdnn/decode.py --help
will print the usage information about ``./tdnn/decode.py``. For instance, you
can specify:
- ``--epoch`` to use which checkpoint for decoding
- ``--avg`` to select how many checkpoints to use for model averaging
You usually try different combinations of ``--epoch`` and ``--avg`` and select
one that leads to the lowest WER (`Word Error Rate <https://en.wikipedia.org/wiki/Word_error_rate>`_).

View File

@ -0,0 +1,121 @@
.. _dummies_tutorial_environment_setup:
Environment setup
=================
We will create an environment for `Next-gen Kaldi`_ that runs on ``CPU``
in this tutorial.
.. note::
Since the `yesno`_ dataset used in this tutorial is very tiny, training on
``CPU`` works very well for it.
If your dataset is very large, e.g., hundreds or thousands of hours of
training data, please follow :ref:`install icefall` to install `icefall`_
that works with ``GPU``.
Create a virtual environment
----------------------------
.. code-block:: bash
virtualenv -p python3 /tmp/icefall_env
The above command creates a virtual environment in the directory ``/tmp/icefall_env``.
You can select any directory you want.
The output of the above command is given below:
.. code-block:: bash
Already using interpreter /usr/bin/python3
Using base prefix '/usr'
New python executable in /tmp/icefall_env/bin/python3
Also creating executable in /tmp/icefall_env/bin/python
Installing setuptools, pkg_resources, pip, wheel...done.
Now we can activate the environment using:
.. code-block:: bash
source /tmp/icefall_env/bin/activate
Install dependencies
--------------------
.. warning::
Remeber to activate your virtual environment before you continue!
After activating the virtual environment, we can use the following command
to install dependencies of `icefall`_:
.. hint::
Remeber that we will run this tutorial on ``CPU``, so we install
dependencies required only by running on ``CPU``.
.. code-block:: bash
# Caution: Installation order matters!
# We use torch 2.0.0 and torchaduio 2.0.0 in this tutorial.
# Other versions should also work.
pip install torch==2.0.0+cpu torchaudio==2.0.0+cpu -f https://download.pytorch.org/whl/torch_stable.html
# If you are using macOS or Windows, please use the following command to install torch and torchaudio
# pip install torch==2.0.0 torchaudio==2.0.0 -f https://download.pytorch.org/whl/torch_stable.html
# Now install k2
# Please refer to https://k2-fsa.github.io/k2/installation/from_wheels.html#linux-cpu-example
pip install k2==1.24.3.dev20230726+cpu.torch2.0.0 -f https://k2-fsa.github.io/k2/cpu.html
# Install the latest version of lhotse
pip install git+https://github.com/lhotse-speech/lhotse
Install icefall
---------------
We will put the source code of `icefall`_ into the directory ``/tmp``
You can select any directory you want.
.. code-block:: bash
cd /tmp
git clone https://github.com/k2-fsa/icefall
cd icefall
pip install -r ./requirements.txt
.. code-block:: bash
# Anytime we want to use icefall, we have to set the following
# environment variable
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
.. hint::
If you get the following error during this tutorial:
.. code-block:: bash
ModuleNotFoundError: No module named 'icefall'
please set the above environment variable to fix it.
Congratulations! You have installed `icefall`_ successfully.
For the more curious
--------------------
`icefall`_ contains a collection of Python scripts and you don't need to
use ``python3 setup.py install`` or ``pip install icefall`` to install it.
All you need to do is to download the code and set the environment variable
``PYTHONPATH``.

View File

@ -0,0 +1,34 @@
Icefall for dummies tutorial
============================
This tutorial walks you step by step about how to create a simple
ASR (`Automatic Speech Recognition <https://en.wikipedia.org/wiki/Speech_recognition>`_)
system with `Next-gen Kaldi`_.
We use the `yesno`_ dataset for demonstration. We select it out of two reasons:
- It is quite tiny, containing only about 12 minutes of data
- The training can be finished within 20 seconds on ``CPU``.
That also means you don't need a ``GPU`` to run this tutorial.
Let's get started!
Please follow items below **sequentially**.
.. note::
The :ref:`dummies_tutorial_data_preparation` runs only on Linux and on macOS.
All other parts run on Linux, macOS, and Windows.
Help from the community is appreciated to port the :ref:`dummies_tutorial_data_preparation`
to Windows.
.. toctree::
:maxdepth: 2
./environment-setup.rst
./data-preparation.rst
./training.rst
./decoding.rst
./model-export.rst

View File

@ -0,0 +1,310 @@
Model Export
============
There are three ways to export a pre-trained model.
- Export the model parameters via `model.state_dict() <https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.state_dict>`_
- Export via `torchscript <https://pytorch.org/docs/stable/jit.html>`_: either `torch.jit.script() <https://pytorch.org/docs/stable/generated/torch.jit.script.html#torch.jit.script>`_ or `torch.jit.trace() <https://pytorch.org/docs/stable/generated/torch.jit.trace.html>`_
- Export to `ONNX`_ via `torch.onnx.export() <https://pytorch.org/docs/stable/onnx.html>`_
Each method is explained below in detail.
Export the model parameters via model.state_dict()
---------------------------------------------------
The command for this kind of export is
.. code-block:: bash
cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR
# assume that "--epoch 14 --avg 2" produces the lowest WER.
./tdnn/export.py --epoch 14 --avg 2
The output logs are given below:
.. code-block:: bash
2023-08-16 20:42:03,912 INFO [export.py:76] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'lr': 0.01, 'feature_dim': 23, 'weight_decay': 1e-06, 'start_epoch': 0, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 10, 'reset_interval': 20, 'valid_interval': 10, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'epoch': 14, 'avg': 2, 'jit': False}
2023-08-16 20:42:03,913 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.pt
2023-08-16 20:42:03,950 INFO [export.py:93] averaging ['tdnn/exp/epoch-13.pt', 'tdnn/exp/epoch-14.pt']
2023-08-16 20:42:03,971 INFO [export.py:106] Not using torch.jit.script
2023-08-16 20:42:03,974 INFO [export.py:111] Saved to tdnn/exp/pretrained.pt
We can see from the logs that the exported model is saved to the file ``tdnn/exp/pretrained.pt``.
To give you an idea of what ``tdnn/exp/pretrained.pt`` contains, we can use the following command:
.. code-block:: python3
>>> import torch
>>> m = torch.load("tdnn/exp/pretrained.pt")
>>> list(m.keys())
['model']
>>> list(m["model"].keys())
['tdnn.0.weight', 'tdnn.0.bias', 'tdnn.2.running_mean', 'tdnn.2.running_var', 'tdnn.2.num_batches_tracked', 'tdnn.3.weight', 'tdnn.3.bias', 'tdnn.5.running_mean', 'tdnn.5.running_var', 'tdnn.5.num_batches_tracked', 'tdnn.6.weight', 'tdnn.6.bias', 'tdnn.8.running_mean', 'tdnn.8.running_var', 'tdnn.8.num_batches_tracked', 'output_linear.weight', 'output_linear.bias']
We can use ``tdnn/exp/pretrained.pt`` in the following way with ``./tdnn/decode.py``:
.. code-block:: bash
cd tdnn/exp
ln -s pretrained.pt epoch-99.pt
cd ../..
./tdnn/decode.py --epoch 99 --avg 1
The output logs of the above command are given below:
.. code-block:: bash
2023-08-16 20:45:48,089 INFO [decode.py:262] Decoding started
2023-08-16 20:45:48,090 INFO [decode.py:263] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'feature_dim': 23, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'epoch': 99, 'avg': 1, 'export': False, 'feature_dir': PosixPath('data/fbank'), 'max_duration': 30.0, 'bucketing_sampler': False, 'num_buckets': 10, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': False, 'return_cuts': True, 'num_workers': 2, 'env_info': {'k2-version': '1.24.3', 'k2-build-type': 'Release', 'k2-with-cuda': False, 'k2-git-sha1': 'ad79f1c699c684de9785ed6ca5edb805a41f78c3', 'k2-git-date': 'Wed Jul 26 09:30:42 2023', 'lhotse-version': '1.16.0.dev+git.aa073f6.clean', 'torch-version': '2.0.0', 'torch-cuda-available': False, 'torch-cuda-version': None, 'python-version': '3.1', 'icefall-git-branch': 'master', 'icefall-git-sha1': '9a47c08-clean', 'icefall-git-date': 'Mon Aug 14 22:10:50 2023', 'icefall-path': '/private/tmp/icefall', 'k2-path': '/private/tmp/icefall_env/lib/python3.11/site-packages/k2/__init__.py', 'lhotse-path': '/private/tmp/icefall_env/lib/python3.11/site-packages/lhotse/__init__.py', 'hostname': 'fangjuns-MacBook-Pro.local', 'IP address': '127.0.0.1'}}
2023-08-16 20:45:48,092 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.pt
2023-08-16 20:45:48,103 INFO [decode.py:272] device: cpu
2023-08-16 20:45:48,109 INFO [checkpoint.py:112] Loading checkpoint from tdnn/exp/epoch-99.pt
2023-08-16 20:45:48,115 INFO [asr_datamodule.py:218] About to get test cuts
2023-08-16 20:45:48,115 INFO [asr_datamodule.py:253] About to get test cuts
2023-08-16 20:45:50,386 INFO [decode.py:203] batch 0/?, cuts processed until now is 4
2023-08-16 20:45:50,556 INFO [decode.py:240] The transcripts are stored in tdnn/exp/recogs-test_set.txt
2023-08-16 20:45:50,557 INFO [utils.py:564] [test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
2023-08-16 20:45:50,558 INFO [decode.py:248] Wrote detailed error stats to tdnn/exp/errs-test_set.txt
2023-08-16 20:45:50,559 INFO [decode.py:315] Done!
We can see that it produces an identical WER as before.
We can also use it to decode files with the following command:
.. code-block:: bash
# ./tdnn/pretrained.py requires kaldifeat
#
# Please refer to https://csukuangfj.github.io/kaldifeat/installation/from_wheels.html
# for how to install kaldifeat
pip install kaldifeat==1.25.0.dev20230726+cpu.torch2.0.0 -f https://csukuangfj.github.io/kaldifeat/cpu.html
./tdnn/pretrained.py \
--checkpoint ./tdnn/exp/pretrained.pt \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav
The output is given below:
.. code-block:: bash
2023-08-16 20:53:19,208 INFO [pretrained.py:136] {'feature_dim': 23, 'num_classes': 4, 'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'checkpoint': './tdnn/exp/pretrained.pt', 'words_file': './data/lang_phone/words.txt', 'HLG': './data/lang_phone/HLG.pt', 'sound_files': ['download/waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_1_0_0_0_1_0.wav']}
2023-08-16 20:53:19,208 INFO [pretrained.py:142] device: cpu
2023-08-16 20:53:19,208 INFO [pretrained.py:144] Creating model
2023-08-16 20:53:19,212 INFO [pretrained.py:156] Loading HLG from ./data/lang_phone/HLG.pt
2023-08-16 20:53:19,213 INFO [pretrained.py:160] Constructing Fbank computer
2023-08-16 20:53:19,213 INFO [pretrained.py:170] Reading sound files: ['download/waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_1_0_0_0_1_0.wav']
2023-08-16 20:53:19,224 INFO [pretrained.py:176] Decoding started
2023-08-16 20:53:19,304 INFO [pretrained.py:212]
download/waves_yesno/0_0_0_1_0_0_0_1.wav:
NO NO NO YES NO NO NO YES
download/waves_yesno/0_0_1_0_0_0_1_0.wav:
NO NO YES NO NO NO YES NO
2023-08-16 20:53:19,304 INFO [pretrained.py:214] Decoding Done
Export via torch.jit.script()
-----------------------------
The command for this kind of export is
.. code-block:: bash
cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR
# assume that "--epoch 14 --avg 2" produces the lowest WER.
./tdnn/export.py --epoch 14 --avg 2 --jit true
The output logs are given below:
.. code-block:: bash
2023-08-16 20:47:44,666 INFO [export.py:76] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'lr': 0.01, 'feature_dim': 23, 'weight_decay': 1e-06, 'start_epoch': 0, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 10, 'reset_interval': 20, 'valid_interval': 10, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'epoch': 14, 'avg': 2, 'jit': True}
2023-08-16 20:47:44,667 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.pt
2023-08-16 20:47:44,670 INFO [export.py:93] averaging ['tdnn/exp/epoch-13.pt', 'tdnn/exp/epoch-14.pt']
2023-08-16 20:47:44,677 INFO [export.py:100] Using torch.jit.script
2023-08-16 20:47:44,843 INFO [export.py:104] Saved to tdnn/exp/cpu_jit.pt
From the output logs we can see that the generated file is saved to ``tdnn/exp/cpu_jit.pt``.
Don't be confused by the name ``cpu_jit.pt``. The ``cpu`` part means the model is moved to
CPU before exporting. That means, when you load it with:
.. code-block:: bash
torch.jit.load()
you don't need to specify the argument `map_location <https://pytorch.org/docs/stable/generated/torch.jit.load.html#torch.jit.load>`_
and it resides on CPU by default.
To use ``tdnn/exp/cpu_jit.pt`` with `icefall`_ to decode files, we can use:
.. code-block:: bash
# ./tdnn/jit_pretrained.py requires kaldifeat
#
# Please refer to https://csukuangfj.github.io/kaldifeat/installation/from_wheels.html
# for how to install kaldifeat
pip install kaldifeat==1.25.0.dev20230726+cpu.torch2.0.0 -f https://csukuangfj.github.io/kaldifeat/cpu.html
./tdnn/jit_pretrained.py \
--nn-model ./tdnn/exp/cpu_jit.pt \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav
The output is given below:
.. code-block:: bash
2023-08-16 20:56:00,603 INFO [jit_pretrained.py:121] {'feature_dim': 23, 'num_classes': 4, 'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'nn_model': './tdnn/exp/cpu_jit.pt', 'words_file': './data/lang_phone/words.txt', 'HLG': './data/lang_phone/HLG.pt', 'sound_files': ['download/waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_1_0_0_0_1_0.wav']}
2023-08-16 20:56:00,603 INFO [jit_pretrained.py:127] device: cpu
2023-08-16 20:56:00,603 INFO [jit_pretrained.py:129] Loading torchscript model
2023-08-16 20:56:00,640 INFO [jit_pretrained.py:134] Loading HLG from ./data/lang_phone/HLG.pt
2023-08-16 20:56:00,641 INFO [jit_pretrained.py:138] Constructing Fbank computer
2023-08-16 20:56:00,641 INFO [jit_pretrained.py:148] Reading sound files: ['download/waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_1_0_0_0_1_0.wav']
2023-08-16 20:56:00,642 INFO [jit_pretrained.py:154] Decoding started
2023-08-16 20:56:00,727 INFO [jit_pretrained.py:190]
download/waves_yesno/0_0_0_1_0_0_0_1.wav:
NO NO NO YES NO NO NO YES
download/waves_yesno/0_0_1_0_0_0_1_0.wav:
NO NO YES NO NO NO YES NO
2023-08-16 20:56:00,727 INFO [jit_pretrained.py:192] Decoding Done
.. hint::
We provide only code for ``torch.jit.script()``. You can try ``torch.jit.trace()``
if you want.
Export via torch.onnx.export()
------------------------------
The command for this kind of export is
.. code-block:: bash
cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR
# tdnn/export_onnx.py requires onnx and onnxruntime
pip install onnx onnxruntime
# assume that "--epoch 14 --avg 2" produces the lowest WER.
./tdnn/export_onnx.py \
--epoch 14 \
--avg 2
The output logs are given below:
.. code-block:: bash
2023-08-16 20:59:20,888 INFO [export_onnx.py:83] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'lr': 0.01, 'feature_dim': 23, 'weight_decay': 1e-06, 'start_epoch': 0, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 10, 'reset_interval': 20, 'valid_interval': 10, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'epoch': 14, 'avg': 2}
2023-08-16 20:59:20,888 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.pt
2023-08-16 20:59:20,892 INFO [export_onnx.py:100] averaging ['tdnn/exp/epoch-13.pt', 'tdnn/exp/epoch-14.pt']
================ Diagnostic Run torch.onnx.export version 2.0.0 ================
verbose: False, log level: Level.ERROR
======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ========================
2023-08-16 20:59:21,047 INFO [export_onnx.py:127] Saved to tdnn/exp/model-epoch-14-avg-2.onnx
2023-08-16 20:59:21,047 INFO [export_onnx.py:136] meta_data: {'model_type': 'tdnn', 'version': '1', 'model_author': 'k2-fsa', 'comment': 'non-streaming tdnn for the yesno recipe', 'vocab_size': 4}
2023-08-16 20:59:21,049 INFO [export_onnx.py:140] Generate int8 quantization models
2023-08-16 20:59:21,075 INFO [onnx_quantizer.py:538] Quantization parameters for tensor:"/Transpose_1_output_0" not specified
2023-08-16 20:59:21,081 INFO [export_onnx.py:151] Saved to tdnn/exp/model-epoch-14-avg-2.int8.onnx
We can see from the logs that it generates two files:
- ``tdnn/exp/model-epoch-14-avg-2.onnx`` (ONNX model with ``float32`` weights)
- ``tdnn/exp/model-epoch-14-avg-2.int8.onnx`` (ONNX model with ``int8`` weights)
To use the generated ONNX model files for decoding with `onnxruntime`_, we can use
.. code-block:: bash
# ./tdnn/onnx_pretrained.py requires kaldifeat
#
# Please refer to https://csukuangfj.github.io/kaldifeat/installation/from_wheels.html
# for how to install kaldifeat
pip install kaldifeat==1.25.0.dev20230726+cpu.torch2.0.0 -f https://csukuangfj.github.io/kaldifeat/cpu.html
./tdnn/onnx_pretrained.py \
--nn-model ./tdnn/exp/model-epoch-14-avg-2.onnx \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav
The output is given below:
.. code-block:: bash
2023-08-16 21:03:24,260 INFO [onnx_pretrained.py:166] {'feature_dim': 23, 'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'nn_model': './tdnn/exp/model-epoch-14-avg-2.onnx', 'words_file': './data/lang_phone/words.txt', 'HLG': './data/lang_phone/HLG.pt', 'sound_files': ['download/waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_1_0_0_0_1_0.wav']}
2023-08-16 21:03:24,260 INFO [onnx_pretrained.py:171] device: cpu
2023-08-16 21:03:24,260 INFO [onnx_pretrained.py:173] Loading onnx model ./tdnn/exp/model-epoch-14-avg-2.onnx
2023-08-16 21:03:24,267 INFO [onnx_pretrained.py:176] Loading HLG from ./data/lang_phone/HLG.pt
2023-08-16 21:03:24,270 INFO [onnx_pretrained.py:180] Constructing Fbank computer
2023-08-16 21:03:24,273 INFO [onnx_pretrained.py:190] Reading sound files: ['download/waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_1_0_0_0_1_0.wav']
2023-08-16 21:03:24,279 INFO [onnx_pretrained.py:196] Decoding started
2023-08-16 21:03:24,318 INFO [onnx_pretrained.py:232]
download/waves_yesno/0_0_0_1_0_0_0_1.wav:
NO NO NO YES NO NO NO YES
download/waves_yesno/0_0_1_0_0_0_1_0.wav:
NO NO YES NO NO NO YES NO
2023-08-16 21:03:24,318 INFO [onnx_pretrained.py:234] Decoding Done
.. note::
To use the ``int8`` ONNX model for decoding, please use:
.. code-block:: bash
./tdnn/onnx_pretrained.py \
--nn-model ./tdnn/exp/model-epoch-14-avg-2.onnx \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav
For the more curious
--------------------
If you are wondering how to deploy the model without ``torch``, please
continue reading. We will show how to use `sherpa-onnx`_ to run the
exported ONNX models, which depends only on `onnxruntime`_ and does not
depend on ``torch``.
In this tutorial, we will only demonstrate the usage of `sherpa-onnx`_ with the
pre-trained model of the `yesno`_ recipe. There are also other two frameworks
available:
- `sherpa`_. It works with torchscript models.
- `sherpa-ncnn`_. It works with models exported using :ref:`icefall_export_to_ncnn` with `ncnn`_
Please see `<https://k2-fsa.github.io/sherpa/>`_ for further details.

View File

@ -0,0 +1,39 @@
.. _dummies_tutorial_training:
Training
========
After :ref:`dummies_tutorial_data_preparation`, we can start training.
The command to start the training is quite simple:
.. code-block:: bash
cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR
# We use CPU for training by setting the following environment variable
export CUDA_VISIBLE_DEVICES=""
./tdnn/train.py
That's it!
You can find the training logs below:
.. literalinclude:: ./code/train-yesno.txt
For the more curious
--------------------
.. code-block:: bash
./tdnn/train.py --help
will print the usage information about ``./tdnn/train.py``. For instance, you
can specify the number of epochs to train and the location to save the training
results.
The training text logs are saved in ``tdnn/exp/log`` while the tensorboard
logs are in ``tdnn/exp/tensorboard``.

View File

@ -20,6 +20,7 @@ speech recognition recipes using `k2 <https://github.com/k2-fsa/k2>`_.
:maxdepth: 2
:caption: Contents:
for-dummies/index.rst
installation/index
docker/index
faqs

View File

@ -41,7 +41,7 @@ as an example.
./pruned_transducer_stateless3/export.py \
--exp-dir ./pruned_transducer_stateless3/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 20 \
--avg 10
@ -78,7 +78,7 @@ In each recipe, there is also a file ``pretrained.py``, which can use
./pruned_transducer_stateless3/pretrained.py \
--checkpoint ./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/exp/pretrained-iter-1224000-avg-14.pt \
--bpe-model ./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/data/lang_bpe_500/bpe.model \
--tokens ./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/data/lang_bpe_500/tokens.txt \
--method greedy_search \
./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1089-134686-0001.wav \
./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0001.wav \

View File

@ -153,11 +153,10 @@ Next, we use the following code to export our model:
./conv_emformer_transducer_stateless2/export-for-ncnn.py \
--exp-dir $dir/exp \
--bpe-model $dir/data/lang_bpe_500/bpe.model \
--tokens $dir/data/lang_bpe_500/tokens.txt \
--epoch 30 \
--avg 1 \
--use-averaged-model 0 \
\
--num-encoder-layers 12 \
--chunk-length 32 \
--cnn-module-kernel 31 \

View File

@ -73,7 +73,7 @@ Next, we use the following code to export our model:
./lstm_transducer_stateless2/export-for-ncnn.py \
--exp-dir $dir/exp \
--bpe-model $dir/data/lang_bpe_500/bpe.model \
--tokens $dir/data/lang_bpe_500/tokens.txt \
--epoch 99 \
--avg 1 \
--use-averaged-model 0 \

View File

@ -72,12 +72,11 @@ Next, we use the following code to export our model:
dir=./icefall-asr-librispeech-pruned-transducer-stateless7-streaming-2022-12-29
./pruned_transducer_stateless7_streaming/export-for-ncnn.py \
--bpe-model $dir/data/lang_bpe_500/bpe.model \
--tokens $dir/data/lang_bpe_500/tokens.txt \
--exp-dir $dir/exp \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
\
--decode-chunk-len 32 \
--num-left-chunks 4 \
--num-encoder-layers "2,4,3,2,4" \

View File

@ -71,7 +71,7 @@ Export the model to ONNX
.. code-block:: bash
./pruned_transducer_stateless7_streaming/export-onnx.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \

View File

@ -32,7 +32,7 @@ as an example in the following.
./pruned_transducer_stateless3/export.py \
--exp-dir ./pruned_transducer_stateless3/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--tokens data/lang_bpe_500/tokens.txt \
--epoch $epoch \
--avg $avg \
--jit 1

View File

@ -33,7 +33,7 @@ as an example in the following.
./lstm_transducer_stateless2/export.py \
--exp-dir ./lstm_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--tokens data/lang_bpe_500/tokens.txt \
--iter $iter \
--avg $avg \
--jit-trace 1

View File

@ -32,7 +32,7 @@ import torch
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
from icefall.utils import get_executor, str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
@ -42,7 +42,7 @@ torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80):
def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80, perturb_speed: bool = False):
src_dir = Path("data/manifests/aidatatang_200zh")
output_dir = Path("data/fbank")
num_jobs = min(15, os.cpu_count())
@ -85,7 +85,8 @@ def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80):
recordings=m["recordings"],
supervisions=m["supervisions"],
)
if "train" in partition:
if "train" in partition and perturb_speed:
logging.info(f"Doing speed perturb")
cut_set = (
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
)
@ -109,7 +110,12 @@ def get_args():
default=80,
help="""The number of mel bins for Fbank""",
)
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=False,
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
)
return parser.parse_args()
@ -119,4 +125,6 @@ if __name__ == "__main__":
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
compute_fbank_aidatatang_200zh(num_mel_bins=args.num_mel_bins)
compute_fbank_aidatatang_200zh(
num_mel_bins=args.num_mel_bins, perturb_speed=args.perturb_speed
)

View File

@ -77,7 +77,7 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for aidatatang_200zh"
if [ ! -f data/fbank/.aidatatang_200zh.done ]; then
mkdir -p data/fbank
./local/compute_fbank_aidatatang_200zh.py
./local/compute_fbank_aidatatang_200zh.py --perturb-speed True
touch data/fbank/.aidatatang_200zh.done
fi
fi

View File

@ -37,7 +37,7 @@ from lhotse.dataset import (
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SimpleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import OnTheFlyFeatures
@ -291,8 +291,8 @@ class Aidatatang_200zhAsrDataModule:
drop_last=True,
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,

View File

@ -32,7 +32,7 @@ import torch
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
from icefall.utils import get_executor, str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
@ -42,7 +42,7 @@ torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80):
def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80, perturb_speed: bool = False):
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
num_jobs = min(15, os.cpu_count())
@ -85,7 +85,8 @@ def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80):
recordings=m["recordings"],
supervisions=m["supervisions"],
)
if "train" in partition:
if "train" in partition and perturb_speed:
logging.info(f"Doing speed perturb")
cut_set = (
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
)
@ -109,7 +110,12 @@ def get_args():
default=80,
help="""The number of mel bins for Fbank""",
)
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=False,
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
)
return parser.parse_args()
@ -119,4 +125,6 @@ if __name__ == "__main__":
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
compute_fbank_aidatatang_200zh(num_mel_bins=args.num_mel_bins)
compute_fbank_aidatatang_200zh(
num_mel_bins=args.num_mel_bins, perturb_speed=args.perturb_speed
)

View File

@ -32,7 +32,7 @@ import torch
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
from icefall.utils import get_executor, str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
@ -42,7 +42,7 @@ torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_fbank_aishell(num_mel_bins: int = 80):
def compute_fbank_aishell(num_mel_bins: int = 80, perturb_speed: bool = False):
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
num_jobs = min(15, os.cpu_count())
@ -81,7 +81,8 @@ def compute_fbank_aishell(num_mel_bins: int = 80):
recordings=m["recordings"],
supervisions=m["supervisions"],
)
if "train" in partition:
if "train" in partition and perturb_speed:
logging.info(f"Doing speed perturb")
cut_set = (
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
)
@ -104,7 +105,12 @@ def get_args():
default=80,
help="""The number of mel bins for Fbank""",
)
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=False,
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
)
return parser.parse_args()
@ -114,4 +120,6 @@ if __name__ == "__main__":
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
compute_fbank_aishell(num_mel_bins=args.num_mel_bins)
compute_fbank_aishell(
num_mel_bins=args.num_mel_bins, perturb_speed=args.perturb_speed
)

View File

@ -114,7 +114,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for aishell"
if [ ! -f data/fbank/.aishell.done ]; then
mkdir -p data/fbank
./local/compute_fbank_aishell.py
./local/compute_fbank_aishell.py --perturb-speed True
touch data/fbank/.aishell.done
fi
fi

View File

@ -53,7 +53,7 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Process aidatatang_200zh"
if [ ! -f data/fbank/.aidatatang_200zh_fbank.done ]; then
mkdir -p data/fbank
./local/compute_fbank_aidatatang_200zh.py
./local/compute_fbank_aidatatang_200zh.py --perturb-speed True
touch data/fbank/.aidatatang_200zh_fbank.done
fi
fi

View File

@ -1,321 +0,0 @@
#!/usr/bin/env python3
#
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script converts several saved checkpoints
# to a single one using model averaging.
"""
Usage:
(1) Export to torchscript model using torch.jit.script()
./pruned_transducer_stateless7/export.py \
--exp-dir ./pruned_transducer_stateless7/exp \
--lang-dir data/lang_char \
--epoch 30 \
--avg 9 \
--jit 1
It will generate a file `cpu_jit.pt` in the given `exp_dir`. You can later
load it by `torch.jit.load("cpu_jit.pt")`.
Note `cpu` in the name `cpu_jit.pt` means the parameters when loaded into Python
are on CPU. You can use `to("cuda")` to move them to a CUDA device.
Check
https://github.com/k2-fsa/sherpa
for how to use the exported models outside of icefall.
(2) Export `model.state_dict()`
./pruned_transducer_stateless7/export.py \
--exp-dir ./pruned_transducer_stateless7/exp \
--lang-dir data/lang_char \
--epoch 20 \
--avg 10
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
load it by `icefall.checkpoint.load_checkpoint()`.
To use the generated file with `pruned_transducer_stateless7/decode.py`,
you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/librispeech/ASR
./pruned_transducer_stateless7/decode.py \
--exp-dir ./pruned_transducer_stateless7/exp \
--epoch 9999 \
--avg 1 \
--max-duration 600 \
--decoding-method greedy_search \
--lang-dir data/lang_char
Check ./pretrained.py for its usage.
Note: If you don't want to train a model from scratch, we have
provided one for you. You can get it at
https://huggingface.co/marcoyang/icefall-asr-aishell-zipformer-pruned-transducer-stateless7-2023-03-21
with the following commands:
sudo apt-get install git-lfs
git lfs install
git clone https://huggingface.co/marcoyang/icefall-asr-aishell-zipformer-pruned-transducer-stateless7-2023-03-21
# You will find the pre-trained model in icefall-asr-aishell-zipformer-pruned-transducer-stateless7-2023-03-21exp
"""
import argparse
import logging
from pathlib import Path
import sentencepiece as spm
import torch
import torch.nn as nn
from scaling_converter import convert_scaled_to_non_scaled
from train2 import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=9,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless7/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_char",
help="""The lang dir
It contains language related input files such as
"lexicon.txt"
""",
)
parser.add_argument(
"--jit",
type=str2bool,
default=False,
help="""True to save a model after applying torch.jit.script.
It will generate a file named cpu_jit.pt
Check ./jit_pretrained.py for how to use it.
""",
)
parser.add_argument(
"--context-size",
type=int,
default=1,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
add_model_arguments(parser)
return parser
@torch.no_grad()
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
lexicon = Lexicon(params.lang_dir)
params.blank_id = 0
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
model.to(device)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to("cpu")
model.eval()
if params.jit is True:
convert_scaled_to_non_scaled(model, inplace=True)
# We won't use the forward() method of the model in C++, so just ignore
# it here.
# Otherwise, one of its arguments is a ragged tensor and is not
# torch scriptabe.
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
logging.info("Using torch.jit.script")
model = torch.jit.script(model)
filename = params.exp_dir / "cpu_jit.pt"
model.save(str(filename))
logging.info(f"Saved to {filename}")
else:
logging.info("Not using torchscript. Export model.state_dict()")
# Save it using a format so that it can be loaded
# by :func:`load_checkpoint`
filename = params.exp_dir / "pretrained.pt"
torch.save({"model": model.state_dict()}, str(filename))
logging.info(f"Saved to {filename}")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless7/export.py

View File

@ -1,348 +0,0 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script loads a checkpoint and uses it to decode waves.
You can generate the checkpoint with the following command:
./pruned_transducer_stateless7/export.py \
--exp-dir ./pruned_transducer_stateless7/exp \
--lang-dir data/lang_char \
--epoch 20 \
--avg 10
Usage of this script:
(1) greedy search
./pruned_transducer_stateless7/pretrained.py \
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
--lang-dir ./data/lang_char \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav
(2) beam search
./pruned_transducer_stateless7/pretrained.py \
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
--lang-dir ./data/lang_char \
--method beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
(3) modified beam search
./pruned_transducer_stateless7/pretrained.py \
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
--lang-dir ./data/lang_char \
--method modified_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
(4) fast beam search
./pruned_transducer_stateless7/pretrained.py \
--checkpoint ./pruned_transducer_stateless7/exp/pretrained.pt \
--lang-dir ./data/lang_char \
--method fast_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
You can also use `./pruned_transducer_stateless7/exp/epoch-xx.pt`.
Note: ./pruned_transducer_stateless7/exp/pretrained.pt is generated by
./pruned_transducer_stateless7/export.py
"""
import argparse
import logging
import math
from typing import List
import k2
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from beam_search import (
beam_search,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from torch.nn.utils.rnn import pad_sequence
from train import add_model_arguments, get_params, get_transducer_model
from icefall.lexicon import Lexicon
from icefall.utils import str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to the checkpoint. "
"The checkpoint is assumed to be saved by "
"icefall.checkpoint.save_checkpoint().",
)
parser.add_argument(
"--lang-dir",
type=str,
help="""The lang dir
It contains language related input files such as
"lexicon.txt"
""",
)
parser.add_argument(
"--method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--context-size",
type=int,
default=1,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame. Used only when
--method is greedy_search.
""",
)
add_model_arguments(parser)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert (
sample_rate == expected_sample_rate
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
# We use only the first channel
ans.append(wave[0])
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
params.update(vars(args))
lexicon = Lexicon(params.lang_dir)
params.blank_id = 0
params.vocab_size = max(lexicon.tokens) + 1
token_table = lexicon.token_table
logging.info(f"{params}")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
logging.info("Creating model")
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()
model.device = device
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = params.sample_rate
opts.mel_opts.num_bins = params.feature_dim
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {params.sound_files}")
waves = read_sound_files(
filenames=params.sound_files, expected_sample_rate=params.sample_rate
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
feature_lengths = torch.tensor(feature_lengths, device=device)
encoder_out, encoder_out_lens = model.encoder(x=features, x_lens=feature_lengths)
num_waves = encoder_out.size(0)
hyps = []
msg = f"Using {params.method}"
if params.method == "beam_search":
msg += f" with beam size {params.beam_size}"
logging.info(msg)
if params.method == "fast_beam_search":
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
elif params.method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
else:
for i in range(num_waves):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.method == "greedy_search":
hyp_tokens = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.method == "beam_search":
hyp_tokens = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(f"Unsupported method: {params.method}")
hyps = [[token_table[t] for t in tokens] for tokens in hyp_tokens]
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless7/pretrained.py

View File

@ -30,7 +30,7 @@ from lhotse.dataset import (
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SimpleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import OnTheFlyFeatures
@ -278,8 +278,8 @@ class AishellAsrDataModule:
drop_last=self.args.drop_last,
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,

View File

@ -32,7 +32,7 @@ import torch
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
from icefall.utils import get_executor, str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
@ -42,7 +42,7 @@ torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_fbank_aishell2(num_mel_bins: int = 80):
def compute_fbank_aishell2(num_mel_bins: int = 80, perturb_speed: bool = False):
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
num_jobs = min(15, os.cpu_count())
@ -81,7 +81,8 @@ def compute_fbank_aishell2(num_mel_bins: int = 80):
recordings=m["recordings"],
supervisions=m["supervisions"],
)
if "train" in partition:
if "train" in partition and perturb_speed:
logging.info(f"Doing speed perturb")
cut_set = (
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
)
@ -104,6 +105,12 @@ def get_args():
default=80,
help="""The number of mel bins for Fbank""",
)
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=False,
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
)
return parser.parse_args()
@ -114,4 +121,6 @@ if __name__ == "__main__":
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
compute_fbank_aishell2(num_mel_bins=args.num_mel_bins)
compute_fbank_aishell2(
num_mel_bins=args.num_mel_bins, perturb_speed=args.perturb_speed
)

View File

@ -101,7 +101,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for aishell2"
if [ ! -f data/fbank/.aishell2.done ]; then
mkdir -p data/fbank
./local/compute_fbank_aishell2.py
./local/compute_fbank_aishell2.py --perturb-speed True
touch data/fbank/.aishell2.done
fi
fi

View File

@ -31,7 +31,7 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SimpleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
@ -299,8 +299,8 @@ class AiShell2AsrDataModule:
drop_last=self.args.drop_last,
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,

View File

@ -32,7 +32,7 @@ import torch
from lhotse import ChunkedLilcomHdf5Writer, CutSet, Fbank, FbankConfig
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
from icefall.utils import get_executor, str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
@ -42,7 +42,7 @@ torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_fbank_aishell4(num_mel_bins: int = 80):
def compute_fbank_aishell4(num_mel_bins: int = 80, perturb_speed: bool = False):
src_dir = Path("data/manifests/aishell4")
output_dir = Path("data/fbank")
num_jobs = min(15, os.cpu_count())
@ -83,10 +83,12 @@ def compute_fbank_aishell4(num_mel_bins: int = 80):
recordings=m["recordings"],
supervisions=m["supervisions"],
)
if "train" in partition:
if "train" in partition and perturb_speed:
logging.info(f"Doing speed perturb")
cut_set = (
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
)
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
@ -113,6 +115,12 @@ def get_args():
default=80,
help="""The number of mel bins for Fbank""",
)
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=False,
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
)
return parser.parse_args()
@ -123,4 +131,6 @@ if __name__ == "__main__":
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
compute_fbank_aishell4(num_mel_bins=args.num_mel_bins)
compute_fbank_aishell4(
num_mel_bins=args.num_mel_bins, perturb_speed=args.perturb_speed
)

View File

@ -107,7 +107,7 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute fbank for aishell4"
if [ ! -f data/fbank/.aishell4.done ]; then
mkdir -p data/fbank
./local/compute_fbank_aishell4.py
./local/compute_fbank_aishell4.py --perturb-speed True
touch data/fbank/.aishell4.done
fi
fi

View File

@ -30,7 +30,7 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SimpleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import ( # noqa F401 for AudioSamples
@ -310,8 +310,8 @@ class Aishell4AsrDataModule:
drop_last=self.args.drop_last,
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,

View File

@ -32,7 +32,7 @@ import torch
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
from icefall.utils import get_executor, str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
@ -42,7 +42,7 @@ torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_fbank_alimeeting(num_mel_bins: int = 80):
def compute_fbank_alimeeting(num_mel_bins: int = 80, perturb_speed: bool = False):
src_dir = Path("data/manifests/alimeeting")
output_dir = Path("data/fbank")
num_jobs = min(15, os.cpu_count())
@ -82,7 +82,8 @@ def compute_fbank_alimeeting(num_mel_bins: int = 80):
recordings=m["recordings"],
supervisions=m["supervisions"],
)
if "train" in partition:
if "train" in partition and perturb_speed:
logging.info(f"Doing speed perturb")
cut_set = (
cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
)
@ -114,6 +115,12 @@ def get_args():
default=80,
help="""The number of mel bins for Fbank""",
)
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=False,
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
)
return parser.parse_args()
@ -124,4 +131,6 @@ if __name__ == "__main__":
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
compute_fbank_alimeeting(num_mel_bins=args.num_mel_bins)
compute_fbank_alimeeting(
num_mel_bins=args.num_mel_bins, perturb_speed=args.perturb_speed
)

View File

@ -97,7 +97,7 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute fbank for alimeeting"
if [ ! -f data/fbank/.alimeeting.done ]; then
mkdir -p data/fbank
./local/compute_fbank_alimeeting.py
./local/compute_fbank_alimeeting.py --perturb-speed True
touch data/fbank/.alimeeting.done
fi
fi

View File

@ -37,7 +37,7 @@ from lhotse.dataset import (
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SimpleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import OnTheFlyFeatures
@ -292,8 +292,8 @@ class AlimeetingAsrDataModule:
drop_last=True,
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,

View File

@ -25,6 +25,7 @@ It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""
import argparse
import logging
from pathlib import Path
@ -39,6 +40,8 @@ from lhotse.features.kaldifeat import (
)
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import str2bool
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
@ -48,7 +51,7 @@ torch.set_num_interop_threads(1)
torch.multiprocessing.set_sharing_strategy("file_system")
def compute_fbank_ami():
def compute_fbank_ami(perturb_speed: bool = False):
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
@ -84,8 +87,12 @@ def compute_fbank_ami():
suffix="jsonl.gz",
)
def _extract_feats(cuts: CutSet, storage_path: Path, manifest_path: Path) -> None:
cuts = cuts + cuts.perturb_speed(0.9) + cuts.perturb_speed(1.1)
def _extract_feats(
cuts: CutSet, storage_path: Path, manifest_path: Path, speed_perturb: bool
) -> None:
if speed_perturb:
logging.info(f"Doing speed perturb")
cuts = cuts + cuts.perturb_speed(0.9) + cuts.perturb_speed(1.1)
_ = cuts.compute_and_store_features_batch(
extractor=extractor,
storage_path=storage_path,
@ -109,6 +116,7 @@ def compute_fbank_ami():
cuts_ihm,
output_dir / "feats_train_ihm",
src_dir / "cuts_train_ihm.jsonl.gz",
perturb_speed,
)
logging.info("Processing train split IHM + reverberated IHM")
@ -117,6 +125,7 @@ def compute_fbank_ami():
cuts_ihm_rvb,
output_dir / "feats_train_ihm_rvb",
src_dir / "cuts_train_ihm_rvb.jsonl.gz",
perturb_speed,
)
logging.info("Processing train split SDM")
@ -129,6 +138,7 @@ def compute_fbank_ami():
cuts_sdm,
output_dir / "feats_train_sdm",
src_dir / "cuts_train_sdm.jsonl.gz",
perturb_speed,
)
logging.info("Processing train split GSS")
@ -141,6 +151,7 @@ def compute_fbank_ami():
cuts_gss,
output_dir / "feats_train_gss",
src_dir / "cuts_train_gss.jsonl.gz",
perturb_speed,
)
logging.info("Preparing test cuts: IHM, SDM, GSS (optional)")
@ -186,8 +197,21 @@ def compute_fbank_ami():
)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=False,
help="Enable 0.9 and 1.1 speed perturbation for data augmentation. Default: False.",
)
return parser.parse_args()
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
compute_fbank_ami()
args = get_args()
compute_fbank_ami(perturb_speed=args.perturb_speed)

View File

@ -85,7 +85,7 @@ fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute fbank for alimeeting"
mkdir -p data/fbank
python local/compute_fbank_alimeeting.py
python local/compute_fbank_alimeeting.py --perturb-speed True
log "Combine features from train splits"
lhotse combine data/manifests/cuts_train_{ihm,ihm_rvb,sdm,gss}.jsonl.gz - | shuf |\
gzip -c > data/manifests/cuts_train_all.jsonl.gz

View File

@ -257,7 +257,7 @@ class AmiAsrDataModule:
drop_last=self.args.drop_last,
)
else:
logging.info("Using SingleCutSampler.")
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,

View File

@ -30,7 +30,7 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SimpleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
@ -311,8 +311,8 @@ class CommonVoiceAsrDataModule:
drop_last=self.args.drop_last,
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,

View File

@ -31,7 +31,7 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SimpleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
@ -339,8 +339,8 @@ class CSJAsrDataModule:
drop_last=self.args.drop_last,
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,

View File

@ -27,7 +27,7 @@ from lhotse.dataset import (
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SimpleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import OnTheFlyFeatures
@ -264,8 +264,8 @@ class GigaSpeechAsrDataModule:
drop_last=True,
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,

View File

@ -30,7 +30,7 @@ from lhotse.dataset import (
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SimpleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import OnTheFlyFeatures
@ -297,8 +297,8 @@ class GigaSpeechAsrDataModule:
drop_last=True,
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,

View File

@ -259,7 +259,7 @@ class LibriCssAsrDataModule:
drop_last=self.args.drop_last,
)
else:
logging.info("Using SingleCutSampler.")
logging.info("Using SimpleCutSampler.")
train_sampler = SimpleCutSampler(
cuts_train,
max_duration=self.args.max_duration,

View File

@ -1 +0,0 @@
../../../librispeech/ASR/pruned_transducer_stateless7/scaling.py

File diff suppressed because it is too large Load Diff

View File

@ -79,7 +79,7 @@ if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
# ln -sfv /path/to/rirs_noises $dl_dir/
#
if [ ! -d $dl_dir/rirs_noises ]; then
lhotse download rirs_noises $dl_dir
lhotse download rir-noise $dl_dir/rirs_noises
fi
fi
@ -89,6 +89,7 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
# to $dl_dir/librispeech. We perform text normalization for the transcripts.
# NOTE: Alignments are required for this recipe.
mkdir -p data/manifests
lhotse prepare librispeech -p train-clean-100 -p train-clean-360 -p train-other-500 -p dev-clean \
-j 4 --alignments-dir $dl_dir/libri_alignments/LibriSpeech $dl_dir/librispeech data/manifests/
fi
@ -112,7 +113,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
# We assume that you have downloaded the RIRS_NOISES corpus
# to $dl_dir/rirs_noises
lhotse prepare rir-noise -p real_rir -p iso_noise $dl_dir/rirs_noises data/manifests
lhotse prepare rir-noise -p real_rir -p iso_noise $dl_dir/rirs_noises/RIRS_NOISES data/manifests
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then

View File

@ -23,12 +23,13 @@ import argparse
import logging
from pathlib import Path
import k2
import torch
from conformer import Conformer
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.lexicon import Lexicon
from icefall.utils import AttributeDict, str2bool
from icefall.utils import AttributeDict, num_tokens, str2bool
def get_parser():
@ -63,11 +64,10 @@ def get_parser():
)
parser.add_argument(
"--lang-dir",
"--tokens",
type=str,
default="data/lang_bpe_500",
help="""It contains language related input files such as "lexicon.txt"
""",
required=True,
help="Path to the tokens.txt.",
)
parser.add_argument(
@ -98,16 +98,16 @@ def get_params() -> AttributeDict:
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
args.lang_dir = Path(args.lang_dir)
params = get_params()
params.update(vars(args))
logging.info(params)
lexicon = Lexicon(params.lang_dir)
max_token_id = max(lexicon.tokens)
num_classes = max_token_id + 1 # +1 for the blank
# Load tokens.txt here
token_table = k2.SymbolTable.from_file(params.tokens)
num_classes = num_tokens(token_table) + 1 # +1 for the blank
device = torch.device("cpu")
if torch.cuda.is_available():

View File

@ -24,7 +24,6 @@ from typing import List
import k2
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from conformer import Conformer
@ -70,11 +69,9 @@ def get_parser():
)
parser.add_argument(
"--bpe-model",
"--tokens",
type=str,
help="""Path to bpe.model.
Used only when method is ctc-decoding.
""",
help="Path to the tokens.txt.",
)
parser.add_argument(
@ -83,10 +80,9 @@ def get_parser():
default="1best",
help="""Decoding method.
Possible values are:
(0) ctc-decoding - Use CTC decoding. It uses a sentence
piece model, i.e., lang_dir/bpe.model, to convert
word pieces to words. It needs neither a lexicon
nor an n-gram LM.
(0) ctc-decoding - Use CTC decoding. It uses a tokens.txt file
to convert tokens to actual words or characters. It needs
neither a lexicon nor an n-gram LM.
(1) 1best - Use the best path as decoding output. Only
the transformer encoder output is used for decoding.
We call it HLG decoding.
@ -297,6 +293,7 @@ def main():
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
hyps = []
features = fbank(waves)
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
@ -313,10 +310,17 @@ def main():
if params.method == "ctc-decoding":
logging.info("Use CTC decoding")
bpe_model = spm.SentencePieceProcessor()
bpe_model.load(params.bpe_model)
max_token_id = params.num_classes - 1
# Load tokens.txt here
token_table = k2.SymbolTable.from_file(params.tokens)
def token_ids_to_words(token_ids: List[int]) -> str:
text = ""
for i in token_ids:
text += token_table[i]
return text.replace("", " ").strip()
H = k2.ctc_topo(
max_token=max_token_id,
modified=params.num_classes > 500,
@ -337,9 +341,9 @@ def main():
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
token_ids = get_texts(best_path)
hyps = bpe_model.decode(token_ids)
hyps = [s.split() for s in hyps]
hyp_tokens = get_texts(best_path)
for hyp in hyp_tokens:
hyps.append(token_ids_to_words(hyp))
elif params.method in [
"1best",
"whole-lattice-rescoring",
@ -408,16 +412,16 @@ def main():
)
best_path = next(iter(best_path_dict.values()))
hyps = get_texts(best_path)
word_sym_table = k2.SymbolTable.from_file(params.words_file)
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
hyp_tokens = get_texts(best_path)
for hyp in hyp_tokens:
hyps.append(" ".join([word_sym_table[i] for i in hyp]))
else:
raise ValueError(f"Unsupported decoding method: {params.method}")
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
s += f"{filename}:\n{hyp}\n\n"
logging.info(s)
logging.info("Decoding Done")

View File

@ -23,6 +23,7 @@
Usage:
./conformer_ctc2/export.py \
--exp-dir ./conformer_ctc2/exp \
--tokens ./data/lang_bpe_500/tokens.txt \
--epoch 20 \
--avg 10
@ -46,6 +47,7 @@ import argparse
import logging
from pathlib import Path
import k2
import torch
from conformer import Conformer
from decode import get_params
@ -56,8 +58,7 @@ from icefall.checkpoint import (
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import str2bool
from icefall.utils import num_tokens, str2bool
def get_parser():
@ -123,10 +124,10 @@ def get_parser():
)
parser.add_argument(
"--lang-dir",
"--tokens",
type=str,
default="data/lang_bpe_500",
help="The lang dir",
required=True,
help="Path to the tokens.txt.",
)
parser.add_argument(
@ -143,14 +144,14 @@ def get_parser():
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
args.lang_dir = Path(args.lang_dir)
params = get_params()
params.update(vars(args))
lexicon = Lexicon(params.lang_dir)
max_token_id = max(lexicon.tokens)
num_classes = max_token_id + 1 # +1 for the blank
# Load tokens.txt here
token_table = k2.SymbolTable.from_file(params.tokens)
num_classes = num_tokens(token_table) + 1 # +1 for the blank
device = torch.device("cpu")
if torch.cuda.is_available():

View File

@ -25,7 +25,7 @@ Usage:
./conformer_ctc3/export.py \
--exp-dir ./conformer_ctc3/exp \
--lang-dir data/lang_bpe_500 \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 20 \
--avg 10 \
--jit-trace 1
@ -36,7 +36,7 @@ It will generates the file: `jit_trace.pt`.
./conformer_ctc3/export.py \
--exp-dir ./conformer_ctc3/exp \
--lang-dir data/lang_bpe_500 \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 20 \
--avg 10
@ -62,6 +62,7 @@ import argparse
import logging
from pathlib import Path
import k2
import torch
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_ctc_model, get_params
@ -72,8 +73,7 @@ from icefall.checkpoint import (
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import str2bool
from icefall.utils import num_tokens, str2bool
def get_parser():
@ -130,10 +130,10 @@ def get_parser():
)
parser.add_argument(
"--lang-dir",
type=Path,
default="data/lang_bpe_500",
help="The lang dir containing word table and LG graph",
"--tokens",
type=str,
required=True,
help="Path to the tokens.txt.",
)
parser.add_argument(
@ -171,9 +171,10 @@ def main():
logging.info(f"device: {device}")
lexicon = Lexicon(params.lang_dir)
max_token_id = max(lexicon.tokens)
num_classes = max_token_id + 1 # +1 for the blank
# Load tokens.txt here
token_table = k2.SymbolTable.from_file(params.tokens)
num_classes = num_tokens(token_table) + 1 # +1 for the blank
params.vocab_size = num_classes
if params.streaming_model:

View File

@ -24,7 +24,7 @@ Usage (for non-streaming mode):
(1) ctc-decoding
./conformer_ctc3/pretrained.py \
--checkpoint conformer_ctc3/exp/pretrained.pt \
--bpe-model data/lang_bpe_500/bpe.model \
--tokens data/lang_bpe_500/tokens.txt \
--method ctc-decoding \
--sample-rate 16000 \
test_wavs/1089-134686-0001.wav
@ -67,7 +67,6 @@ from typing import List
import k2
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from decode import get_decoding_params
@ -114,11 +113,9 @@ def get_parser():
)
parser.add_argument(
"--bpe-model",
"--tokens",
type=str,
help="""Path to bpe.model.
Used only when method is ctc-decoding.
""",
help="Path to the tokens.txt.",
)
parser.add_argument(
@ -127,10 +124,9 @@ def get_parser():
default="1best",
help="""Decoding method.
Possible values are:
(0) ctc-decoding - Use CTC decoding. It uses a sentence
piece model, i.e., lang_dir/bpe.model, to convert
word pieces to words. It needs neither a lexicon
nor an n-gram LM.
(0) ctc-decoding - Use CTC decoding. It uses a tokens.txt file
to convert tokens to actual words or characters. It needs
neither a lexicon nor an n-gram LM.
(1) 1best - Use the best path as decoding output. Only
the transformer encoder output is used for decoding.
We call it HLG decoding.
@ -316,6 +312,7 @@ def main():
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
hyps = []
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
@ -348,10 +345,17 @@ def main():
if params.method == "ctc-decoding":
logging.info("Use CTC decoding")
bpe_model = spm.SentencePieceProcessor()
bpe_model.load(params.bpe_model)
max_token_id = params.num_classes - 1
# Load tokens.txt here
token_table = k2.SymbolTable.from_file(params.tokens)
def token_ids_to_words(token_ids: List[int]) -> str:
text = ""
for i in token_ids:
text += token_table[i]
return text.replace("", " ").strip()
H = k2.ctc_topo(
max_token=max_token_id,
modified=False,
@ -372,9 +376,9 @@ def main():
best_path = one_best_decoding(
lattice=lattice, use_double_scores=params.use_double_scores
)
token_ids = get_texts(best_path)
hyps = bpe_model.decode(token_ids)
hyps = [s.split() for s in hyps]
hyp_tokens = get_texts(best_path)
for hyp in hyp_tokens:
hyps.append(token_ids_to_words(hyp))
elif params.method in [
"1best",
"nbest-rescoring",
@ -439,16 +443,16 @@ def main():
)
best_path = next(iter(best_path_dict.values()))
hyps = get_texts(best_path)
word_sym_table = k2.SymbolTable.from_file(params.words_file)
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
hyp_tokens = get_texts(best_path)
for hyp in hyp_tokens:
hyps.append(" ".join([word_sym_table[i] for i in hyp]))
else:
raise ValueError(f"Unsupported decoding method: {params.method}")
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
s += f"{filename}:\n{hyp}\n\n"
logging.info(s)
logging.info("Decoding Done")

View File

@ -22,7 +22,7 @@
Usage:
./conv_emformer_transducer_stateless/export.py \
--exp-dir ./conv_emformer_transducer_stateless/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 30 \
--avg 10 \
--use-averaged-model=True \
@ -62,7 +62,7 @@ import argparse
import logging
from pathlib import Path
import sentencepiece as spm
import k2
import torch
from train import add_model_arguments, get_params, get_transducer_model
@ -72,7 +72,7 @@ from icefall.checkpoint import (
find_checkpoints,
load_checkpoint,
)
from icefall.utils import str2bool
from icefall.utils import num_tokens, str2bool
def get_parser():
@ -118,10 +118,10 @@ def get_parser():
)
parser.add_argument(
"--bpe-model",
"--tokens",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
required=True,
help="Path to the tokens.txt.",
)
parser.add_argument(
@ -166,12 +166,12 @@ def main():
logging.info(f"device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# Load tokens.txt here
token_table = k2.SymbolTable.from_file(params.tokens)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
# Load id of the <blk> token and the vocab size
params.blank_id = token_table["<blk>"]
params.vocab_size = num_tokens(token_table) + 1 # +1 for <blk>
logging.info(params)

View File

@ -8,7 +8,7 @@ for more details about how to use this file.
Usage:
./conv_emformer_transducer_stateless2/export-for-ncnn.py \
--exp-dir ./conv_emformer_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 30 \
--avg 10 \
--use-averaged-model=True \
@ -37,7 +37,7 @@ import argparse
import logging
from pathlib import Path
import sentencepiece as spm
import k2
import torch
from scaling_converter import convert_scaled_to_non_scaled
from train2 import add_model_arguments, get_params, get_transducer_model
@ -48,7 +48,7 @@ from icefall.checkpoint import (
find_checkpoints,
load_checkpoint,
)
from icefall.utils import setup_logger, str2bool
from icefall.utils import num_tokens, setup_logger, str2bool
def get_parser():
@ -94,10 +94,10 @@ def get_parser():
)
parser.add_argument(
"--bpe-model",
"--tokens",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
required=True,
help="Path to the tokens.txt.",
)
parser.add_argument(
@ -217,12 +217,12 @@ def main():
logging.info(f"device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# Load tokens.txt here
token_table = k2.SymbolTable.from_file(params.tokens)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
# Load id of the <blk> token and the vocab size
params.blank_id = token_table["<blk>"]
params.vocab_size = num_tokens(token_table) + 1 # +1 for <blk>
logging.info(params)

Some files were not shown because too many files have changed in this diff Show More