diff --git a/icefall/utils.py b/icefall/utils.py index 410340d9d..6479d8f87 100644 --- a/icefall/utils.py +++ b/icefall/utils.py @@ -1447,7 +1447,7 @@ def get_parameter_groups_with_lrs( This is for use with the ScaledAdam optimizers (more recent versions that accept lists of named-parameters; we can, if needed, create a version without the names). - It provides a way to specifiy learning-rate scales inside the module, so that if + It provides a way to specify learning-rate scales inside the module, so that if any nn.Module in the hierarchy has a floating-point parameter 'lr_scale', it will scale the LR of any parameters inside that module or its submodules. Note: you can set module parameters outside the __init__ function, e.g.: @@ -1607,10 +1607,10 @@ def tokenize_by_bpe_model( chars = pattern.split(txt.upper()) mix_chars = [w for w in chars if len(w.strip()) > 0] for ch_or_w in mix_chars: - # ch_or_w is a single CJK charater(i.e., "你"), do nothing. + # ch_or_w is a single CJK character(i.e., "你"), do nothing. if pattern.fullmatch(ch_or_w) is not None: tokens.append(ch_or_w) - # ch_or_w contains non-CJK charaters(i.e., " IT'S OKAY "), + # ch_or_w contains non-CJK characters(i.e., " IT'S OKAY "), # encode ch_or_w using bpe_model. else: for p in sp.encode_as_pieces(ch_or_w): @@ -1624,7 +1624,7 @@ def tokenize_by_CJK_char(line: str) -> str: """ Tokenize a line of text with CJK char. - Note: All return charaters will be upper case. + Note: All return characters will be upper case. Example: input = "你好世界是 hello world 的中文" @@ -1917,7 +1917,7 @@ def parse_bpe_timestamps_and_texts( A k2.Fsa with best_paths.arcs.num_axes() == 3, i.e. containing multiple FSAs, which is expected to be the result of k2.shortest_path (otherwise the returned values won't - be meaningful). Its attribtutes `labels` and `aux_labels` + be meaningful). Its attributes `labels` and `aux_labels` are both BPE tokens. sp: The BPE model. @@ -2045,7 +2045,7 @@ def parse_fsa_timestamps_and_texts( ) -> Tuple[List[Tuple[float, float]], List[List[str]]]: """Parse timestamps (in seconds) and texts for given decoded fsa paths. Currently it supports two cases: - (1) ctc-decoding, the attribtutes `labels` and `aux_labels` + (1) ctc-decoding, the attributes `labels` and `aux_labels` are both BPE tokens. In this case, sp should be provided. (2) HLG-based 1best, the attribtute `labels` is the prediction unit, e.g., phone or BPE tokens; attribute `aux_labels` is the word index.