minor updates

This commit is contained in:
JinZr 2023-07-31 13:07:32 +08:00
parent 70d603dc28
commit 3631361b95
4 changed files with 26 additions and 7 deletions

View File

@ -907,9 +907,9 @@ def deprecated_greedy_search_batch_for_cross_attn(
logits = model.joiner(
current_encoder_out,
decoder_out.unsqueeze(1),
attn_encoder_out if t > 0 else torch.zeros_like(current_encoder_out),
None,
apply_attn=True,
attn_encoder_out if t < 0 else torch.zeros_like(current_encoder_out),
encoder_out_lens,
apply_attn=False,
project_input=False,
)
# logits'shape (batch_size, 1, 1, vocab_size)

View File

@ -14,6 +14,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import torch
import torch.nn as nn
from alignment_attention_module import AlignmentAttentionModule
@ -34,6 +36,7 @@ class Joiner(nn.Module):
self.encoder_proj = ScaledLinear(encoder_dim, joiner_dim, initial_scale=0.25)
self.decoder_proj = ScaledLinear(decoder_dim, joiner_dim, initial_scale=0.25)
self.output_linear = nn.Linear(joiner_dim, vocab_size)
self.enable_attn = False
def forward(
self,
@ -64,7 +67,10 @@ class Joiner(nn.Module):
decoder_out.shape,
)
if apply_attn and lengths is not None:
if apply_attn:
if not self.enable_attn:
self.enable_attn = True
logging.info("enabling ATTN!")
attn_encoder_out = self.label_level_am_attention(
encoder_out, decoder_out, lengths
)
@ -72,7 +78,11 @@ class Joiner(nn.Module):
if project_input:
logit = self.encoder_proj(encoder_out) + self.decoder_proj(decoder_out)
else:
logit = encoder_out + decoder_out + attn_encoder_out
if apply_attn:
logit = encoder_out + decoder_out + attn_encoder_out
else:
# logging.info("disabling cross attn mdl")
logit = encoder_out + decoder_out
logit = self.output_linear(torch.tanh(logit))

View File

@ -24,12 +24,13 @@ import torch.nn as nn
from encoder_interface import EncoderInterface
from scaling import ScaledLinear
from icefall.utils import add_sos, make_pad_mask
from icefall.utils import add_sos, make_pad_mask, AttributeDict
class AsrModel(nn.Module):
def __init__(
self,
params: AttributeDict,
encoder_embed: nn.Module,
encoder: EncoderInterface,
decoder: Optional[nn.Module] = None,
@ -79,6 +80,8 @@ class AsrModel(nn.Module):
assert isinstance(encoder, EncoderInterface), type(encoder)
self.params = params
self.encoder_embed = encoder_embed
self.encoder = encoder
@ -180,6 +183,7 @@ class AsrModel(nn.Module):
prune_range: int = 5,
am_scale: float = 0.0,
lm_scale: float = 0.0,
batch_idx_train: int = 0,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute Transducer loss.
Args:
@ -264,12 +268,13 @@ class AsrModel(nn.Module):
# project_input=False since we applied the decoder's input projections
# prior to do_rnnt_pruning (this is an optimization for speed).
# print(batch_idx_train)
logits = self.joiner(
am_pruned,
lm_pruned,
None,
encoder_out_lens,
apply_attn=True,
apply_attn=batch_idx_train > self.params.warm_step, # True, # batch_idx_train > self.params.warm_step,
project_input=False,
)
@ -293,6 +298,7 @@ class AsrModel(nn.Module):
prune_range: int = 5,
am_scale: float = 0.0,
lm_scale: float = 0.0,
batch_idx_train: int = 0,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Args:
@ -345,6 +351,7 @@ class AsrModel(nn.Module):
prune_range=prune_range,
am_scale=am_scale,
lm_scale=lm_scale,
batch_idx_train=batch_idx_train,
)
else:
simple_loss = torch.empty(0)

View File

@ -622,6 +622,7 @@ def get_model(params: AttributeDict) -> nn.Module:
joiner = None
model = AsrModel(
params=params,
encoder_embed=encoder_embed,
encoder=encoder,
decoder=decoder,
@ -800,6 +801,7 @@ def compute_loss(
prune_range=params.prune_range,
am_scale=params.am_scale,
lm_scale=params.lm_scale,
batch_idx_train=batch_idx_train,
)
loss = 0.0