diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/optim.py b/egs/librispeech/ASR/pruned_transducer_stateless7/optim.py index 21c4145d4..6143a6fe3 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless7/optim.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/optim.py @@ -370,8 +370,8 @@ param_rms_smooth1: Smoothing proportion for parameter matrix, if assumed rank of rank = numel // size rms = self._smooth_param_rms(group, S.sqrt(), rank) - if random.random() < 0.05: - logging.info(f"Shape={tuple(p.shape)}, dim={dim}, size={size}, rms={rms[::10]}") + if random.random() < 0.0005: + logging.info(f"Shape={tuple(p.shape)}, dim={dim}, rank={rank}, size={size}, rms={rms[::10]}") Q = state[f"Q_{dim}"] Q[:] = (U * rms).t() @@ -405,7 +405,7 @@ param_rms_smooth1: Smoothing proportion for parameter matrix, if assumed rank of N_grad_cov = torch.matmul(Q, torch.matmul(grad_cov, Q.t())) N_grad_cov = N_grad_cov + N_grad_cov.t() # ensure symmetric U, S, V = _svd(N_grad_cov) - if random.random() < 0.1: + if random.random() < 0.001: logging.info(f"Diagonalizing, shape={tuple(p.shape)}, dim={dim}, dispersion " f"changed from {dispersion(N_grad_cov.diag())} to {dispersion(S)}")