Initial version of zipformer1 LM that runs, not sure whether it is working

This commit is contained in:
Daniel Povey 2023-05-04 14:46:06 +08:00
parent 75e9f1a34a
commit 3574e7dbb5
10 changed files with 1508 additions and 2 deletions

View File

@ -0,0 +1,117 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Daniel Povey)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import nn, Tensor
class ChunkDecoder(nn.Module):
"""
"""
def __init__(self,
embed_dim: int,
chunk_size: int,
vocab_size: int,
hidden_size: int,
num_layers: int = 2):
"""
A 'decoder' that computes the probability of symbols in a language modeling task.
Conceptually it computes the probability of `chunk_size` symbols (e.g. 8 symbols)
based on an embedding derived from all symbols preceding this chunk of 8 symbols.
Also, within the chunk, we always see all previous symbols (plus the last symbol
of the previous chunk).
"""
super().__init__()
self.chunk_size = chunk_size
self.num_layers = num_layers
self.hidden_size = hidden_size
self.lstm = nn.LSTM(input_size=embed_dim,
hidden_size=hidden_size,
num_layers=num_layers)
self.label_embed = nn.Embedding(
num_embeddings=vocab_size,
embedding_dim=embed_dim)
# project to hidden state and cell state at the beginning of each chunk.
# (we don't run the lstm contiuously over the sequence, for both
# training speed and stability; instead, we reconstruct the hidden
# state for each chunk.)
# the factor of 2 is to cover hidden state and cell state.
self.init_proj = nn.Linear(embed_dim,
2 * hidden_size * num_layers)
self.out_proj = nn.Linear(hidden_size,
vocab_size)
def forward(self,
labels: Tensor,
encoder_embed: Tensor) -> Tensor:
"""
Compute log-probs.
Args:
labels: the labels, a Tensor of integer type of shape (batch_size, seq_len);
seq_len is expected to be a multiple of chunk_size.
encoder_embed: the embeddings from the encoder, of shape (seq_len//chunk_size, batch_size, embed_dim)
Returns:
returns the log-probs for each symbol, in a Tensor of shape (batch_size, seq_len).
"""
(batch_size, seq_len) = labels.shape
(num_chunks, _batch_size, embed_dim) = encoder_embed.shape
chunk_size = self.chunk_size
assert batch_size == _batch_size
assert num_chunks * chunk_size == seq_len
labels_shifted = torch.cat((torch.zeros_like(labels[0:1]),
labels[:-1]), dim=0)
labels_embed = self.label_embed(labels_shifted.t()) # (seq_len, batch_size, embed_dim)
init = self.init_proj(encoder_embed).reshape(num_chunks, batch_size,
2, self.num_layers, self.hidden_size)
init = init.permute(2, 3, 0, 1, 4).reshape(2, self.num_layers,
num_chunks * batch_size,
self.hidden_size).contiguous()
hidden = init[0]
cell = init[1]
labels_embed = labels_embed.reshape(num_chunks, chunk_size, batch_size, embed_dim).transpose(0, 1)
labels_embed = labels_embed.contiguous().reshape(chunk_size, num_chunks * batch_size, embed_dim)
encoder_embed = encoder_embed.reshape(1, num_chunks * batch_size, embed_dim)
x = labels_embed + encoder_embed # broadcasts encoder_embed over the chunk_size
(x, _hidden) = self.lstm(x, hx=(hidden, cell))
x = self.out_proj(x)
vocab_size = x.shape[-1]
# x: (chunk_size, num_chunks * batch_size, vocab_size)
x = x.reshape(chunk_size, num_chunks, batch_size, vocab_size)
x = x.permute(2, 1, 0, 3).contiguous().reshape(batch_size, num_chunks * chunk_size, vocab_size)
x = x.log_softmax(dim=-1)
logprobs = torch.gather(x, dim=-1, index=labels.unsqueeze(-1)).squeeze(-1) # (batch_size, seq_len)
return logprobs

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless/encoder_interface.py

View File

@ -0,0 +1,141 @@
# Copyright 2021 Piotr Żelasko
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import inspect
import logging
from functools import lru_cache
import numpy as np
import random
from pathlib import Path
from typing import Any, Dict, Optional
from icefall.dist import get_world_size, get_rank
import torch
from torch.utils.data import DataLoader
from icefall.utils import str2bool
class LmDataset(torch.utils.data.IterableDataset):
def __init__(self,
file_list_fn: Path,
bytes_per_segment: int = 200):
"""
Initialize LmDataset object. Args:
file_list_fn: a file in which each line contains: a number of bytes, then a space, then a filename.
e.g. a line might contain the text "64324 foo/abc.txt".
(filenames can not contain spaces).
bytes_per_segment: the number of bytes in each segment of data.
"""
self.files = []
self.num_bytes = []
self.bytes_per_segment = bytes_per_segment
num_bytes = []
with open(file_list_fn) as f:
for line in f.readlines():
line = line.strip() # remove newline
num_bytes = line.split()[0] # a str
fn = line[len(num_bytes) + 1:] # this works even if fn has spaces in
self.files.append(fn)
self.num_bytes.append(int(num_bytes))
tot_bytes = sum(self.num_bytes)
N = len(self.num_bytes)
self.probs = np.array([ x / tot_bytes for x in self.num_bytes ])
worker_info = torch.utils.data.get_worker_info()
num_workers = (1 if worker_info is None else worker_info.num_workers)
tot_workers = num_workers * get_world_size()
self.num_segments = tot_bytes // (bytes_per_segment * tot_workers)
def __iter__(self):
worker_info = torch.utils.data.get_worker_info()
# id includes both worker (within training job) and rank of training job
my_id = (0 if worker_info is None else worker_info.id) + 1000 * get_rank()
seed = random.randint(0, 10000) + my_id
logging.info(f"seed={seed}, num_segments={self.num_segments}")
rng = np.random.default_rng(seed=seed)
for n in range(self.num_segments):
# np.random.multinomial / np.random.Generator.multinomial has an interface
# where it gives counts of different categories, instead of the chosen category,
# so we need to use np.nonzero to get the chosen category (i.e. the file index)
# np.nonzero will give an array per dim, so file_idx,
# gives the array of nonzero index
file_idx, = np.nonzero(rng.multinomial(1, self.probs))
file_idx, = file_idx
fn = self.files[file_idx]
num_bytes = self.num_bytes[file_idx]
# begin_pos, end_pos are the begin,end of a range from which we'll pick
# randomly, for where the start of the segment might be.
begin_pos = 0
end_pos = max(1, num_bytes - self.bytes_per_segment)
begin, = rng.integers(low=begin_pos, high=end_pos, size=1)
with open(fn, "rb") as f:
f.seek(begin)
b = f.read(self.bytes_per_segment) # b is bytes object
read_size = len(b)
if read_size < self.bytes_per_segment:
b = b + b'\0' * (self.bytes_per_segment - read_size)
yield torch.Tensor(np.frombuffer(b, dtype=np.uint8).copy()).to(torch.long)
def LmDataloader(dataset: LmDataset,
batch_size: int,
num_workers: int):
return torch.utils.data.DataLoader(
dataset=dataset,
batch_size=batch_size,
num_workers=num_workers,
drop_last=True)
def _test():
l = LmDataset('files.txt')
d = LmDataloader(l, batch_size=5, num_workers=4)
for batch in d:
logging.info("batch shape: ", batch.shape)
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
_test()
# cd libriheavy/LM
# find /ceph-data3/xiaoyu/librilight_text/output_text_large_cleaned -name text.txt -exec stat --printf='%s ' {} \; -print > files.txt
# head -n 2 files.txt > valid.txt
# tail -n +3 files.txt > train.txt

View File

@ -0,0 +1,65 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Daniel Povey)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import nn, Tensor
from chunk_decoder import ChunkDecoder
from zipformer import Zipformer2
class Zipformer2LM(nn.Module):
def __init__(self,
encoder_embed: nn.Module,
encoder: Zipformer2,
decoder: ChunkDecoder):
super().__init__()
self.encoder_embed = encoder_embed
self.encoder = encoder # does subsampling
self.decoder = decoder
def forward(self,
labels: Tensor):
"""
Compute array of log-probs
Args:
labels: a Tensor containing the labels (in the range 0..num_symbols-1), of shape (batch_size, seq_len).
Returns:
a Tensor containing the log-probs for each label, of shape (batch_size, seq_len).
"""
(batch_size, seq_len) = labels.shape
chunk_size = self.decoder.chunk_size
labels_shifted = labels.t() # (time, batch)
labels_shifted = torch.cat((torch.zeros_like(labels_shifted[:chunk_size]),
labels_shifted[:-chunk_size]),
dim=0)
x = self.encoder_embed(labels_shifted)
x_lens = torch.full((batch_size,), seq_len,
dtype=torch.long, device=labels.device)
# x_lens is after subsampling. Actually we don't need it.
(x, x_lens) = self.encoder(x, x_lens)
logprobs = self.decoder(labels, x)
return logprobs

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer2/optim.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer2/scaling.py

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
../../../librispeech/ASR/zipformer2/zipformer.py

View File

@ -111,8 +111,8 @@ class Zipformer2(EncoderInterface):
dropout: FloatLike = None, # see code below for default
warmup_batches: float = 4000.0,
causal: bool = False,
chunk_size: Tuple[int] = [-1],
left_context_frames: Tuple[int] = [-1],
chunk_size: Tuple[int] = (-1,),
left_context_frames: Tuple[int] = (-1,),
) -> None:
super(Zipformer2, self).__init__()

View File

@ -0,0 +1 @@
pruned_transducer_stateless7