mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-18 21:44:18 +00:00
add streaming conformer for wenetspeech pruned rnnt2
This commit is contained in:
parent
d792bdc9bc
commit
34e383748c
@ -1 +0,0 @@
|
|||||||
../../../librispeech/ASR/pruned_transducer_stateless2/conformer.py
|
|
1553
egs/wenetspeech/ASR/pruned_transducer_stateless2/conformer.py
Normal file
1553
egs/wenetspeech/ASR/pruned_transducer_stateless2/conformer.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -48,11 +48,28 @@ When training with the L subset, usage:
|
|||||||
--beam 4 \
|
--beam 4 \
|
||||||
--max-contexts 4 \
|
--max-contexts 4 \
|
||||||
--max-states 8
|
--max-states 8
|
||||||
|
|
||||||
|
(4) decode in a streaming mode (take greedy search as an example)
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 10 \
|
||||||
|
--avg 2 \
|
||||||
|
--simulate-streaming 1 \
|
||||||
|
--causal-convolution 1 \
|
||||||
|
--decode-chunk-size 16 \
|
||||||
|
--left-context 64 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--lang-dir data/lang_char \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
|
import math
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Dict, List, Optional, Tuple
|
from typing import Dict, List, Optional, Tuple
|
||||||
@ -68,7 +85,7 @@ from beam_search import (
|
|||||||
greedy_search_batch,
|
greedy_search_batch,
|
||||||
modified_beam_search,
|
modified_beam_search,
|
||||||
)
|
)
|
||||||
from train import get_params, get_transducer_model
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
from icefall.checkpoint import (
|
||||||
average_checkpoints,
|
average_checkpoints,
|
||||||
@ -80,9 +97,12 @@ from icefall.utils import (
|
|||||||
AttributeDict,
|
AttributeDict,
|
||||||
setup_logger,
|
setup_logger,
|
||||||
store_transcripts,
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
write_error_stats,
|
write_error_stats,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
@ -204,6 +224,30 @@ def get_parser():
|
|||||||
Used only when --decoding_method is greedy_search""",
|
Used only when --decoding_method is greedy_search""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--simulate-streaming",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to simulate streaming in decoding, this is a good way to
|
||||||
|
test a streaming model.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decode-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=16,
|
||||||
|
help="The chunk size for decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--left-context",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="left context can be seen during decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -250,9 +294,27 @@ def decode_one_batch(
|
|||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
feature_lens = supervisions["num_frames"].to(device)
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
feature_lens += params.left_context
|
||||||
x=feature, x_lens=feature_lens
|
feature = torch.nn.functional.pad(
|
||||||
|
feature,
|
||||||
|
pad=(0, 0, 0, params.left_context),
|
||||||
|
value=LOG_EPS,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward(
|
||||||
|
x=feature,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
states=[],
|
||||||
|
chunk_size=params.decode_chunk_size,
|
||||||
|
left_context=params.left_context,
|
||||||
|
simulate_streaming=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=feature, x_lens=feature_lens
|
||||||
|
)
|
||||||
|
|
||||||
hyps = []
|
hyps = []
|
||||||
|
|
||||||
if params.decoding_method == "fast_beam_search":
|
if params.decoding_method == "fast_beam_search":
|
||||||
@ -459,6 +521,11 @@ def main():
|
|||||||
params.res_dir = params.exp_dir / params.decoding_method
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context}"
|
||||||
|
|
||||||
if "fast_beam_search" in params.decoding_method:
|
if "fast_beam_search" in params.decoding_method:
|
||||||
params.suffix += f"-beam-{params.beam}"
|
params.suffix += f"-beam-{params.beam}"
|
||||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
@ -482,6 +549,11 @@ def main():
|
|||||||
params.blank_id = lexicon.token_table["<blk>"]
|
params.blank_id = lexicon.token_table["<blk>"]
|
||||||
params.vocab_size = max(lexicon.tokens) + 1
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
assert (
|
||||||
|
params.causal_convolution
|
||||||
|
), "Decoding in streaming requires causal convolution"
|
||||||
|
|
||||||
logging.info(params)
|
logging.info(params)
|
||||||
|
|
||||||
logging.info("About to create model")
|
logging.info("About to create model")
|
||||||
|
@ -0,0 +1,126 @@
|
|||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import math
|
||||||
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from icefall.utils import AttributeDict
|
||||||
|
|
||||||
|
|
||||||
|
class DecodeStream(object):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
params: AttributeDict,
|
||||||
|
initial_states: List[torch.Tensor],
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
device: torch.device = torch.device("cpu"),
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
initial_states:
|
||||||
|
Initial decode states of the model, e.g. the return value of
|
||||||
|
`get_init_state` in conformer.py
|
||||||
|
decoding_graph:
|
||||||
|
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
||||||
|
Used only when decoding_method is fast_beam_search.
|
||||||
|
device:
|
||||||
|
The device to run this stream.
|
||||||
|
"""
|
||||||
|
if decoding_graph is not None:
|
||||||
|
assert device == decoding_graph.device
|
||||||
|
|
||||||
|
self.params = params
|
||||||
|
self.LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
self.states = initial_states
|
||||||
|
|
||||||
|
# It contains a 2-D tensors representing the feature frames.
|
||||||
|
self.features: torch.Tensor = None
|
||||||
|
|
||||||
|
self.num_frames: int = 0
|
||||||
|
# how many frames have been processed. (before subsampling).
|
||||||
|
# we only modify this value in `func:get_feature_frames`.
|
||||||
|
self.num_processed_frames: int = 0
|
||||||
|
|
||||||
|
self._done: bool = False
|
||||||
|
|
||||||
|
# The transcript of current utterance.
|
||||||
|
self.ground_truth: str = ""
|
||||||
|
|
||||||
|
# The decoding result (partial or final) of current utterance.
|
||||||
|
self.hyp: List = []
|
||||||
|
|
||||||
|
# how many frames have been processed, after subsampling (i.e. a
|
||||||
|
# cumulative sum of the second return value of
|
||||||
|
# encoder.streaming_forward
|
||||||
|
self.done_frames: int = 0
|
||||||
|
|
||||||
|
self.pad_length = (
|
||||||
|
params.right_context + 2
|
||||||
|
) * params.subsampling_factor + 3
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
self.hyp = [params.blank_id] * params.context_size
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
# The rnnt_decoding_stream for fast_beam_search.
|
||||||
|
self.rnnt_decoding_stream: k2.RnntDecodingStream = (
|
||||||
|
k2.RnntDecodingStream(decoding_graph)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert (
|
||||||
|
False
|
||||||
|
), f"Decoding method :{params.decoding_method} do not support."
|
||||||
|
|
||||||
|
@property
|
||||||
|
def done(self) -> bool:
|
||||||
|
"""Return True if all the features are processed."""
|
||||||
|
return self._done
|
||||||
|
|
||||||
|
def set_features(
|
||||||
|
self,
|
||||||
|
features: torch.Tensor,
|
||||||
|
) -> None:
|
||||||
|
"""Set features tensor of current utterance."""
|
||||||
|
assert features.dim() == 2, features.dim()
|
||||||
|
self.features = torch.nn.functional.pad(
|
||||||
|
features,
|
||||||
|
(0, 0, 0, self.pad_length),
|
||||||
|
mode="constant",
|
||||||
|
value=self.LOG_EPS,
|
||||||
|
)
|
||||||
|
self.num_frames = self.features.size(0)
|
||||||
|
|
||||||
|
def get_feature_frames(self, chunk_size: int) -> Tuple[torch.Tensor, int]:
|
||||||
|
"""Consume chunk_size frames of features"""
|
||||||
|
chunk_length = chunk_size + self.pad_length
|
||||||
|
|
||||||
|
ret_length = min(
|
||||||
|
self.num_frames - self.num_processed_frames, chunk_length
|
||||||
|
)
|
||||||
|
|
||||||
|
ret_features = self.features[
|
||||||
|
self.num_processed_frames : self.num_processed_frames # noqa
|
||||||
|
+ ret_length
|
||||||
|
]
|
||||||
|
|
||||||
|
self.num_processed_frames += chunk_size
|
||||||
|
if self.num_processed_frames >= self.num_frames:
|
||||||
|
self._done = True
|
||||||
|
|
||||||
|
return ret_features, ret_length
|
@ -46,7 +46,7 @@ import logging
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from train import get_params, get_transducer_model
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
@ -107,6 +107,16 @@ def get_parser():
|
|||||||
"2 means tri-gram",
|
"2 means tri-gram",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--streaming-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to export a streaming model, if the models in exp-dir
|
||||||
|
are streaming model, this should be True.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -128,6 +138,9 @@ def main():
|
|||||||
params.blank_id = 0
|
params.blank_id = 0
|
||||||
params.vocab_size = max(lexicon.tokens) + 1
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
if params.streaming_model:
|
||||||
|
assert params.causal_convolution
|
||||||
|
|
||||||
logging.info(params)
|
logging.info(params)
|
||||||
|
|
||||||
logging.info("About to create model")
|
logging.info("About to create model")
|
||||||
|
@ -1 +0,0 @@
|
|||||||
../../../librispeech/ASR/pruned_transducer_stateless2/joiner.py
|
|
69
egs/wenetspeech/ASR/pruned_transducer_stateless2/joiner.py
Normal file
69
egs/wenetspeech/ASR/pruned_transducer_stateless2/joiner.py
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from scaling import ScaledLinear
|
||||||
|
|
||||||
|
|
||||||
|
class Joiner(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder_dim: int,
|
||||||
|
decoder_dim: int,
|
||||||
|
joiner_dim: int,
|
||||||
|
vocab_size: int,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.encoder_proj = ScaledLinear(encoder_dim, joiner_dim)
|
||||||
|
self.decoder_proj = ScaledLinear(decoder_dim, joiner_dim)
|
||||||
|
self.output_linear = ScaledLinear(joiner_dim, vocab_size)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
decoder_out: torch.Tensor,
|
||||||
|
project_input: bool = True,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder_out:
|
||||||
|
Output from the encoder. Its shape is (N, T, s_range, C).
|
||||||
|
decoder_out:
|
||||||
|
Output from the decoder. Its shape is (N, T, s_range, C).
|
||||||
|
project_input:
|
||||||
|
If true, apply input projections encoder_proj and decoder_proj.
|
||||||
|
If this is false, it is the user's responsibility to do this
|
||||||
|
manually.
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape (N, T, s_range, C).
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert encoder_out.ndim == decoder_out.ndim
|
||||||
|
assert encoder_out.ndim in (2, 4)
|
||||||
|
assert encoder_out.shape == decoder_out.shape
|
||||||
|
|
||||||
|
if project_input:
|
||||||
|
logit = self.encoder_proj(encoder_out) + self.decoder_proj(
|
||||||
|
decoder_out
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logit = encoder_out + decoder_out
|
||||||
|
|
||||||
|
logit = self.output_linear(torch.tanh(logit))
|
||||||
|
|
||||||
|
return logit
|
@ -66,9 +66,10 @@ from beam_search import (
|
|||||||
modified_beam_search,
|
modified_beam_search,
|
||||||
)
|
)
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
from train import get_params, get_transducer_model
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
@ -170,6 +171,30 @@ def get_parser():
|
|||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--simulate-streaming",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to simulate streaming in decoding, this is a good way to
|
||||||
|
test a streaming model.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decode-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=16,
|
||||||
|
help="The chunk size for decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--left-context",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="left context can be seen during decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -210,6 +235,11 @@ def main():
|
|||||||
params.blank_id = lexicon.token_table["<blk>"]
|
params.blank_id = lexicon.token_table["<blk>"]
|
||||||
params.vocab_size = max(lexicon.tokens) + 1
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
assert (
|
||||||
|
params.causal_convolution
|
||||||
|
), "Decoding in streaming requires causal convolution"
|
||||||
|
|
||||||
logging.info(f"{params}")
|
logging.info(f"{params}")
|
||||||
|
|
||||||
device = torch.device("cpu")
|
device = torch.device("cpu")
|
||||||
@ -259,9 +289,18 @@ def main():
|
|||||||
feature_lengths = torch.tensor(feature_lengths, device=device)
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
encoder_out, encoder_out_lens = model.encoder(
|
if params.simulate_streaming:
|
||||||
x=features, x_lens=feature_lengths
|
encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward(
|
||||||
)
|
x=features,
|
||||||
|
x_lens=feature_lengths,
|
||||||
|
chunk_size=params.decode_chunk_size,
|
||||||
|
left_context=params.left_context,
|
||||||
|
simulate_streaming=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=features, x_lens=feature_lengths
|
||||||
|
)
|
||||||
|
|
||||||
hyps = []
|
hyps = []
|
||||||
msg = f"Using {params.decoding_method}"
|
msg = f"Using {params.decoding_method}"
|
||||||
|
@ -0,0 +1,698 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Authors: Wei Kang, Fangjun Kuang, Mingshuang Luo)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
./pruned_transducer_stateless2/streaming_decode.py \
|
||||||
|
--epoch 10 \
|
||||||
|
--avg 2 \
|
||||||
|
--left-context 32 \
|
||||||
|
--decode-chunk-size 8 \
|
||||||
|
--right-context 2 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--lang-dir data/lang_char \
|
||||||
|
--decoding_method greedy_search \
|
||||||
|
--num-decode-streams 1000
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import WenetSpeechAsrDataModule
|
||||||
|
from decode_stream import DecodeStream
|
||||||
|
from kaldifeat import Fbank, FbankOptions
|
||||||
|
from lhotse import CutSet
|
||||||
|
from lhotse.cut import Cut
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.decode import one_best_decoding
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
get_texts,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 0.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg-last-n",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch and --avg are ignored and it
|
||||||
|
will use the last n checkpoints exp_dir/checkpoint-xxx.pt
|
||||||
|
where xxx is the number of processed batches while
|
||||||
|
saving that checkpoint.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless2/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_char",
|
||||||
|
help="""The lang dir
|
||||||
|
It contains language related input files such as
|
||||||
|
"lexicon.txt"
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Support only greedy_search and fast_beam_search now.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=32,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decode-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=16,
|
||||||
|
help="The chunk size for decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--left-context",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="left context can be seen during decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--right-context",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="right context can be seen during decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-decode-streams",
|
||||||
|
type=int,
|
||||||
|
default=2000,
|
||||||
|
help="The number of streams that can be decoded parallel.",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search(
|
||||||
|
model: nn.Module,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
streams: List[DecodeStream],
|
||||||
|
) -> List[List[int]]:
|
||||||
|
|
||||||
|
assert len(streams) == encoder_out.size(0)
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
device = model.device
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[stream.hyp[-context_size:] for stream in streams],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
# decoder_out is of shape (N, decoder_out_dim)
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
# logging.info(f"decoder_out shape : {decoder_out.shape}")
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
# current_encoder_out's shape: (batch_size, 1, encoder_out_dim)
|
||||||
|
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
|
||||||
|
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out.unsqueeze(2),
|
||||||
|
decoder_out.unsqueeze(1),
|
||||||
|
project_input=False,
|
||||||
|
)
|
||||||
|
# logits'shape (batch_size, vocab_size)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
|
||||||
|
assert logits.ndim == 2, logits.shape
|
||||||
|
y = logits.argmax(dim=1).tolist()
|
||||||
|
emitted = False
|
||||||
|
for i, v in enumerate(y):
|
||||||
|
if v != blank_id:
|
||||||
|
streams[i].hyp.append(v)
|
||||||
|
emitted = True
|
||||||
|
if emitted:
|
||||||
|
# update decoder output
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[stream.hyp[-context_size:] for stream in streams],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
decoder_out = model.decoder(
|
||||||
|
decoder_input,
|
||||||
|
need_pad=False,
|
||||||
|
)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
|
||||||
|
hyp_tokens = []
|
||||||
|
for stream in streams:
|
||||||
|
hyp_tokens.append(stream.hyp)
|
||||||
|
return hyp_tokens
|
||||||
|
|
||||||
|
|
||||||
|
def fast_beam_search(
|
||||||
|
model: nn.Module,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
processed_lens: torch.Tensor,
|
||||||
|
decoding_streams: k2.RnntDecodingStreams,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
|
||||||
|
B, T, C = encoder_out.shape
|
||||||
|
for t in range(T):
|
||||||
|
# shape is a RaggedShape of shape (B, context)
|
||||||
|
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
||||||
|
shape, contexts = decoding_streams.get_contexts()
|
||||||
|
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
||||||
|
contexts = contexts.to(torch.int64)
|
||||||
|
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
||||||
|
decoder_out = model.decoder(contexts, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
# current_encoder_out is of shape
|
||||||
|
# (shape.NumElements(), 1, joiner_dim)
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = torch.index_select(
|
||||||
|
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
|
||||||
|
)
|
||||||
|
# fmt: on
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out.unsqueeze(2),
|
||||||
|
decoder_out.unsqueeze(1),
|
||||||
|
project_input=False,
|
||||||
|
)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
log_probs = logits.log_softmax(dim=-1)
|
||||||
|
decoding_streams.advance(log_probs)
|
||||||
|
|
||||||
|
decoding_streams.terminate_and_flush_to_streams()
|
||||||
|
|
||||||
|
lattice = decoding_streams.format_output(processed_lens.tolist())
|
||||||
|
best_path = one_best_decoding(lattice)
|
||||||
|
hyp_tokens = get_texts(best_path)
|
||||||
|
return hyp_tokens
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_chunk(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
decode_streams: List[DecodeStream],
|
||||||
|
) -> List[int]:
|
||||||
|
"""Decode one chunk frames of features for each decode_streams and
|
||||||
|
return the indexes of finished streams in a List.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
decode_streams:
|
||||||
|
A List of DecodeStream, each belonging to a utterance.
|
||||||
|
Returns:
|
||||||
|
Return a List containing which DecodeStreams are finished.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
features = []
|
||||||
|
feature_lens = []
|
||||||
|
states = []
|
||||||
|
|
||||||
|
rnnt_stream_list = []
|
||||||
|
processed_lens = []
|
||||||
|
|
||||||
|
for stream in decode_streams:
|
||||||
|
feat, feat_len = stream.get_feature_frames(
|
||||||
|
params.decode_chunk_size * params.subsampling_factor
|
||||||
|
)
|
||||||
|
features.append(feat)
|
||||||
|
feature_lens.append(feat_len)
|
||||||
|
states.append(stream.states)
|
||||||
|
processed_lens.append(stream.done_frames)
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
rnnt_stream_list.append(stream.rnnt_decoding_stream)
|
||||||
|
|
||||||
|
feature_lens = torch.tensor(feature_lens, device=device)
|
||||||
|
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||||
|
|
||||||
|
# if T is less than 7 there will be an error in time reduction layer,
|
||||||
|
# because we subsample features with ((x_len - 1) // 2 - 1) // 2
|
||||||
|
# we plus 2 here because we will cut off one frame on each size of
|
||||||
|
# encoder_embed output as they see invalid paddings. so we need extra 2
|
||||||
|
# frames.
|
||||||
|
tail_length = 7 + (2 + params.right_context) * params.subsampling_factor
|
||||||
|
if features.size(1) < tail_length:
|
||||||
|
feature_lens += tail_length - features.size(1)
|
||||||
|
features = torch.cat(
|
||||||
|
[
|
||||||
|
features,
|
||||||
|
torch.tensor(
|
||||||
|
LOG_EPS, dtype=features.dtype, device=device
|
||||||
|
).expand(
|
||||||
|
features.size(0),
|
||||||
|
tail_length - features.size(1),
|
||||||
|
features.size(2),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
dim=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
states = [
|
||||||
|
torch.stack([x[0] for x in states], dim=2),
|
||||||
|
torch.stack([x[1] for x in states], dim=2),
|
||||||
|
]
|
||||||
|
processed_lens = torch.tensor(processed_lens, device=device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens, states = model.encoder.streaming_forward(
|
||||||
|
x=features,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
states=states,
|
||||||
|
left_context=params.left_context,
|
||||||
|
right_context=params.right_context,
|
||||||
|
processed_lens=processed_lens,
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp_tokens = greedy_search(model, encoder_out, decode_streams)
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
config = k2.RnntDecodingConfig(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
decoder_history_len=params.context_size,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
decoding_streams = k2.RnntDecodingStreams(rnnt_stream_list, config)
|
||||||
|
processed_lens = processed_lens + encoder_out_lens
|
||||||
|
hyp_tokens = fast_beam_search(
|
||||||
|
model, encoder_out, processed_lens, decoding_streams
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert False
|
||||||
|
|
||||||
|
states = [torch.unbind(states[0], dim=2), torch.unbind(states[1], dim=2)]
|
||||||
|
|
||||||
|
finished_streams = []
|
||||||
|
for i in range(len(decode_streams)):
|
||||||
|
decode_streams[i].states = [states[0][i], states[1][i]]
|
||||||
|
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decode_streams[i].hyp = hyp_tokens[i]
|
||||||
|
if decode_streams[i].done:
|
||||||
|
finished_streams.append(i)
|
||||||
|
|
||||||
|
return finished_streams
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
cuts: CutSet,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
lexicon: Lexicon,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
Args:
|
||||||
|
cuts:
|
||||||
|
Lhotse Cutset containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
opts = FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = 16000
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
|
||||||
|
log_interval = 1000
|
||||||
|
|
||||||
|
decode_results = []
|
||||||
|
# Contain decode streams currently running.
|
||||||
|
decode_streams = []
|
||||||
|
initial_states = model.encoder.get_init_state(
|
||||||
|
params.left_context, device=device
|
||||||
|
)
|
||||||
|
for num, cut in enumerate(cuts):
|
||||||
|
# each utterance has a DecodeStream.
|
||||||
|
decode_stream = DecodeStream(
|
||||||
|
params=params,
|
||||||
|
initial_states=initial_states,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
audio: np.ndarray = cut.load_audio()
|
||||||
|
# audio.shape: (1, num_samples)
|
||||||
|
assert len(audio.shape) == 2
|
||||||
|
assert audio.shape[0] == 1, "Should be single channel"
|
||||||
|
assert audio.dtype == np.float32, audio.dtype
|
||||||
|
|
||||||
|
samples = torch.from_numpy(audio).squeeze(0)
|
||||||
|
|
||||||
|
fbank = Fbank(opts)
|
||||||
|
feature = fbank(samples.to(device))
|
||||||
|
decode_stream.set_features(feature)
|
||||||
|
decode_stream.ground_truth = cut.supervisions[0].text
|
||||||
|
|
||||||
|
decode_streams.append(decode_stream)
|
||||||
|
|
||||||
|
while len(decode_streams) >= params.num_decode_streams:
|
||||||
|
finished_streams = decode_one_chunk(params, model, decode_streams)
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
hyp = decode_streams[i].hyp
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = hyp[params.context_size :] # noqa
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
list(decode_streams[i].ground_truth),
|
||||||
|
[lexicon.token_table[idx] for idx in hyp],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
del decode_streams[i]
|
||||||
|
|
||||||
|
if num % log_interval == 0:
|
||||||
|
logging.info(f"Cuts processed until now is {num}.")
|
||||||
|
|
||||||
|
# decode final chunks of last sequences
|
||||||
|
while len(decode_streams):
|
||||||
|
finished_streams = decode_one_chunk(params, model, decode_streams)
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
hyp = decode_streams[i].hyp
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = hyp[params.context_size :] # noqa
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
decode_streams[i].ground_truth.split(),
|
||||||
|
[lexicon.token_table[idx] for idx in hyp],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del decode_streams[i]
|
||||||
|
|
||||||
|
key = "greedy_search"
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
key = (
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
)
|
||||||
|
return {key: decode_results}
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
# sort results so we can easily compare the difference between two
|
||||||
|
# recognition results
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir
|
||||||
|
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
WenetSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
# for streaming
|
||||||
|
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context}"
|
||||||
|
params.suffix += f"-right-context-{params.right_context}"
|
||||||
|
|
||||||
|
# for fast_beam_search
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
params.blank_id = lexicon.token_table["<blk>"]
|
||||||
|
params.unk_id = lexicon.token_table["<unk>"]
|
||||||
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
# Decoding in streaming requires causal convolution
|
||||||
|
params.causal_convolution = True
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if params.avg_last_n > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n]
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
elif params.batch is not None:
|
||||||
|
filenames = f"{params.exp_dir}/checkpoint-{params.batch}.pt"
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints([filenames], device=device))
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
decoding_graph = None
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
def remove_short_and_long_utt(c: Cut):
|
||||||
|
# Keep only utterances with duration between 1 second and 15.0 seconds
|
||||||
|
#
|
||||||
|
# Caution: There is a reason to select 15.0 here. Please see
|
||||||
|
# ../local/display_manifest_statistics.py
|
||||||
|
#
|
||||||
|
# You should use ../local/display_manifest_statistics.py to get
|
||||||
|
# an utterance duration distribution for your dataset to select
|
||||||
|
# the threshold
|
||||||
|
return 1.0 <= c.duration
|
||||||
|
|
||||||
|
wenetspeech = WenetSpeechAsrDataModule(args)
|
||||||
|
dev_cuts = wenetspeech.valid_cuts()
|
||||||
|
test_net_cuts = wenetspeech.test_net_cuts()
|
||||||
|
test_meeting_cuts = wenetspeech.test_meeting_cuts()
|
||||||
|
|
||||||
|
dev_cuts = dev_cuts.filter(remove_short_and_long_utt)
|
||||||
|
test_net_cuts = test_net_cuts.filter(remove_short_and_long_utt)
|
||||||
|
test_meeting_cuts = test_meeting_cuts.filter(remove_short_and_long_utt)
|
||||||
|
|
||||||
|
test_sets = ["DEV", "TEST_NET", "TEST_MEETING"]
|
||||||
|
test_cuts = [dev_cuts, test_net_cuts, test_meeting_cuts]
|
||||||
|
|
||||||
|
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
cuts=test_cut,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
lexicon=lexicon,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -77,6 +77,24 @@ For training with the S subset:
|
|||||||
--model-warm-step 100 \
|
--model-warm-step 100 \
|
||||||
--save-every-n 1000 \
|
--save-every-n 1000 \
|
||||||
--training-subset S
|
--training-subset S
|
||||||
|
|
||||||
|
Train a streaming model with the S subset:
|
||||||
|
|
||||||
|
./pruned_transducer_stateless2/train.py \
|
||||||
|
--lang-dir data/lang_char \
|
||||||
|
--exp-dir pruned_transducer_stateless2/exp \
|
||||||
|
--world-size 8 \
|
||||||
|
--num-epochs 29 \
|
||||||
|
--start-epoch 0 \
|
||||||
|
--max-duration 180 \
|
||||||
|
--valid-interval 400 \
|
||||||
|
--model-warm-step 100 \
|
||||||
|
--save-every-n 1000 \
|
||||||
|
--training-subset S \
|
||||||
|
--dynamic-chunk-training 1 \
|
||||||
|
--causal-convolution 1 \
|
||||||
|
--short-chunk-size 25 \
|
||||||
|
--num-left-chunks 4
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
@ -123,6 +141,42 @@ LRSchedulerType = Union[
|
|||||||
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
||||||
|
|
||||||
|
|
||||||
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
||||||
|
parser.add_argument(
|
||||||
|
"--dynamic-chunk-training",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to use dynamic_chunk_training, if you want a streaming
|
||||||
|
model, this requires to be True.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--causal-convolution",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to use causal convolution, this requires to be True when
|
||||||
|
using dynamic_chunk_training.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--short-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=25,
|
||||||
|
help="""Chunk length of dynamic training, the chunk size would be either
|
||||||
|
max sequence length of current batch or uniformly sampled from (1, short_chunk_size).
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-left-chunks",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="How many left context can be seen in chunks when calculating attention.",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
@ -325,6 +379,8 @@ def get_parser():
|
|||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -393,6 +449,10 @@ def get_encoder_model(params: AttributeDict) -> nn.Module:
|
|||||||
nhead=params.nhead,
|
nhead=params.nhead,
|
||||||
dim_feedforward=params.dim_feedforward,
|
dim_feedforward=params.dim_feedforward,
|
||||||
num_encoder_layers=params.num_encoder_layers,
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
|
dynamic_chunk_training=params.dynamic_chunk_training,
|
||||||
|
short_chunk_size=params.short_chunk_size,
|
||||||
|
num_left_chunks=params.num_left_chunks,
|
||||||
|
causal=params.causal_convolution,
|
||||||
)
|
)
|
||||||
return encoder
|
return encoder
|
||||||
|
|
||||||
@ -832,6 +892,11 @@ def run(rank, world_size, args):
|
|||||||
params.blank_id = lexicon.token_table["<blk>"]
|
params.blank_id = lexicon.token_table["<blk>"]
|
||||||
params.vocab_size = max(lexicon.tokens) + 1
|
params.vocab_size = max(lexicon.tokens) + 1
|
||||||
|
|
||||||
|
if params.dynamic_chunk_training:
|
||||||
|
assert (
|
||||||
|
params.causal_convolution
|
||||||
|
), "dynamic_chunk_training requires causal convolution"
|
||||||
|
|
||||||
logging.info(params)
|
logging.info(params)
|
||||||
|
|
||||||
logging.info("About to create model")
|
logging.info("About to create model")
|
||||||
@ -967,6 +1032,7 @@ def scan_pessimistic_batches_for_oom(
|
|||||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
):
|
):
|
||||||
|
return
|
||||||
from lhotse.dataset import find_pessimistic_batches
|
from lhotse.dataset import find_pessimistic_batches
|
||||||
|
|
||||||
logging.info(
|
logging.info(
|
||||||
|
Loading…
x
Reference in New Issue
Block a user