From 34e36a926bde11b9401a3c46d8b72caf0a9500f9 Mon Sep 17 00:00:00 2001 From: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Date: Wed, 29 Sep 2021 12:55:42 +0800 Subject: [PATCH] Update train.py --- egs/librispeech/ASR/conformer_ctc/train.py | 75 +--------------------- 1 file changed, 3 insertions(+), 72 deletions(-) diff --git a/egs/librispeech/ASR/conformer_ctc/train.py b/egs/librispeech/ASR/conformer_ctc/train.py index fcb895394..82e7aa60e 100755 --- a/egs/librispeech/ASR/conformer_ctc/train.py +++ b/egs/librispeech/ASR/conformer_ctc/train.py @@ -19,8 +19,6 @@ import argparse -import collections -import copy import logging from pathlib import Path from shutil import copyfile @@ -49,6 +47,7 @@ from icefall.dist import cleanup_dist, setup_dist from icefall.lexicon import Lexicon from icefall.utils import ( AttributeDict, + LossRecord, encode_supervisions, setup_logger, str2bool, @@ -287,73 +286,6 @@ def save_checkpoint( copyfile(src=filename, dst=best_valid_filename) -class LossRecord(collections.defaultdict): - def __init__(self): - # Passing the type 'int' to the base-class constructor - # makes undefined items default to int() which is zero. - super(LossRecord, self).__init__(int) - - def __add__(self, other: 'LossRecord') -> 'LossRecord': - ans = LossRecord() - for k, v in self.items(): - ans[k] = v - for k, v in other.items(): - ans[k] = ans[k] + v - return ans - - def __mul__(self, alpha: float) -> 'LossRecord': - ans = LossRecord() - for k, v in self.items(): - ans[k] = v * alpha - return ans - - - def __str__(self) -> str: - ans = '' - for k, v in self.norm_items(): - norm_value = '%.4g' % v - ans += (str(k) + '=' + str(norm_value) + ', ') - frames = str(self['frames']) - ans += 'over ' + frames + ' frames.' - return ans - - def norm_items(self) -> List[Tuple[str, float]]: - """ - Returns a list of pairs, like: - [('ctc_loss', 0.1), ('att_loss', 0.07)] - """ - num_frames = self['frames'] if 'frames' in self else 1 - ans = [] - for k, v in self.items(): - if k != 'frames': - norm_value = float(v) / num_frames - ans.append((k, norm_value)) - return ans - - def reduce(self, device): - """ - Reduce using torch.distributed, which I believe ensures that - all processes get the total. - """ - keys = sorted(self.keys()) - s = torch.tensor([ float(self[k]) for k in keys ], - device=device) - dist.all_reduce(s, op=dist.ReduceOp.SUM) - for k, v in zip(keys, s.cpu().tolist()): - self[k] = v - - def write_summary(self, tb_writer: SummaryWriter, prefix: str, batch_idx: int) -> None: - """ - Add logging information to a TensorBoard writer. - tb_writer: a TensorBoard writer - prefix: a prefix for the name of the loss, e.g. "train/valid_", - or "train/current_" - batch_idx: The current batch index, used as the x-axis of the plot. - """ - for k, v in self.norm_items(): - tb_writer.add_scalar(prefix + k, v, batch_idx) - - def compute_loss( params: AttributeDict, model: nn.Module, @@ -443,7 +375,6 @@ def compute_loss( assert loss.requires_grad == is_training info = LossRecord() - # TODO: there are many GPU->CPU transfers here, maybe combine them into one. info['frames'] = supervision_segments[:, 2].sum().item() info['ctc_loss'] = ctc_loss.detach().cpu().item() if params.att_rate != 0.0: @@ -465,7 +396,7 @@ def compute_validation_loss( model.eval() tot_loss = LossRecord() - + for batch_idx, batch in enumerate(valid_dl): loss, loss_info = compute_loss( params=params, @@ -716,4 +647,4 @@ torch.set_num_threads(1) torch.set_num_interop_threads(1) if __name__ == "__main__": - main() \ No newline at end of file + main()