Modified beam search with RNNLM rescoring (#1002)

* add RNNLM rescore

* add shallow fusion and lm rescore for streaming zipformer

* minor fix

* update RESULTS.md

* fix yesno workflow, change from ubuntu-18.04 to ubuntu-latest
This commit is contained in:
marcoyang1998 2023-04-17 16:43:00 +08:00 committed by GitHub
parent e32658e620
commit 34d1b07c3d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 349 additions and 9 deletions

View File

@ -35,7 +35,7 @@ jobs:
matrix:
# os: [ubuntu-18.04, macos-10.15]
# TODO: enable macOS for CPU testing
os: [ubuntu-18.04]
os: [ubuntu-latest]
python-version: [3.8]
fail-fast: false

View File

@ -76,6 +76,64 @@ for m in greedy_search modified_beam_search fast_beam_search; do
--num-decode-streams 2000
done
```
We also support decoding with neural network LMs. After combining with language models, the WERs are
| decoding method | chunk size | test-clean | test-other | comment | decoding mode |
|----------------------|------------|------------|------------|---------------------|----------------------|
| modified beam search | 320ms | 3.11 | 7.93 | --epoch 30 --avg 9 | simulated streaming |
| modified beam search + RNNLM shallow fusion | 320ms | 2.58 | 6.65 | --epoch 30 --avg 9 | simulated streaming |
| modified beam search + RNNLM nbest rescore | 320ms | 2.59 | 6.86 | --epoch 30 --avg 9 | simulated streaming |
Please use the following command for RNNLM shallow fusion:
```bash
for lm_scale in $(seq 0.15 0.01 0.38); do
for beam_size in 4 8 12; do
./pruned_transducer_stateless7_streaming/decode.py \
--epoch 99 \
--avg 1 \
--use-averaged-model False \
--beam-size $beam_size \
--exp-dir ./pruned_transducer_stateless7_streaming/exp-large-LM \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method modified_beam_search_lm_shallow_fusion \
--use-shallow-fusion 1 \
--lm-type rnn \
--lm-exp-dir rnn_lm/exp \
--lm-epoch 99 \
--lm-scale $lm_scale \
--lm-avg 1 \
--rnn-lm-embedding-dim 2048 \
--rnn-lm-hidden-dim 2048 \
--rnn-lm-num-layers 3 \
--lm-vocab-size 500
done
done
```
Please use the following command for RNNLM rescore:
```bash
./pruned_transducer_stateless7_streaming/decode.py \
--epoch 30 \
--avg 9 \
--use-averaged-model True \
--beam-size 8 \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method modified_beam_search_lm_rescore \
--use-shallow-fusion 0 \
--lm-type rnn \
--lm-exp-dir rnn_lm/exp \
--lm-epoch 99 \
--lm-avg 1 \
--rnn-lm-embedding-dim 2048 \
--rnn-lm-hidden-dim 2048 \
--rnn-lm-num-layers 3 \
--lm-vocab-size 500
```
A well-trained RNNLM can be found here: <https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main>.
#### Smaller model
@ -540,9 +598,9 @@ for m in greedy_search fast_beam_search modified_beam_search ; do
done
```
Note that a small change is made to the `pruned_transducer_stateless7/decoder.py` in
this [PR](/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_random_padding/egs/librispeech/ASR/pruned_transducer_stateless7/exp_960h_no_paddingidx_ngpu4/tensorboard) to address the
problem of emitting the first symbol at the very beginning. If you need a
Note that a small change is made to the `pruned_transducer_stateless7/decoder.py` in
this [PR](/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_random_padding/egs/librispeech/ASR/pruned_transducer_stateless7/exp_960h_no_paddingidx_ngpu4/tensorboard) to address the
problem of emitting the first symbol at the very beginning. If you need a
model without this issue, please download the model from here: <https://huggingface.co/marcoyang/icefall-asr-librispeech-pruned-transducer-stateless7-2023-03-10>
### LibriSpeech BPE training results (Pruned Stateless LSTM RNN-T + gradient filter)

View File

@ -925,7 +925,6 @@ def main():
)
LM.to(device)
LM.eval()
else:
LM = None

View File

@ -1059,6 +1059,204 @@ def modified_beam_search(
)
def modified_beam_search_lm_rescore(
model: Transducer,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
LM: LmScorer,
lm_scale_list: List[int],
beam: int = 4,
temperature: float = 1.0,
return_timestamps: bool = False,
) -> Union[List[List[int]], DecodingResults]:
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
Rescore the final results with RNNLM and return the one with the highest score
Args:
model:
The transducer model.
encoder_out:
Output from the encoder. Its shape is (N, T, C).
encoder_out_lens:
A 1-D tensor of shape (N,), containing number of valid frames in
encoder_out before padding.
beam:
Number of active paths during the beam search.
temperature:
Softmax temperature.
LM:
A neural network language model
return_timestamps:
Whether to return timestamps.
Returns:
If return_timestamps is False, return the decoded result.
Else, return a DecodingResults object containing
decoded result and corresponding timestamps.
"""
assert encoder_out.ndim == 3, encoder_out.shape
assert encoder_out.size(0) >= 1, encoder_out.size(0)
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
blank_id = model.decoder.blank_id
unk_id = getattr(model, "unk_id", blank_id)
context_size = model.decoder.context_size
device = next(model.parameters()).device
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
B = [HypothesisList() for _ in range(N)]
for i in range(N):
B[i].add(
Hypothesis(
ys=[blank_id] * context_size,
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
timestamp=[],
)
)
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
offset = 0
finalized_B = []
for (t, batch_size) in enumerate(batch_size_list):
start = offset
end = offset + batch_size
current_encoder_out = encoder_out.data[start:end]
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
offset = end
finalized_B = B[batch_size:] + finalized_B
B = B[:batch_size]
hyps_shape = get_hyps_shape(B).to(device)
A = [list(b) for b in B]
B = [HypothesisList() for _ in range(batch_size)]
ys_log_probs = torch.cat(
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
) # (num_hyps, 1)
decoder_input = torch.tensor(
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
device=device,
dtype=torch.int64,
) # (num_hyps, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
decoder_out = model.joiner.decoder_proj(decoder_out)
# decoder_out is of shape (num_hyps, 1, 1, joiner_dim)
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
# as index, so we use `to(torch.int64)` below.
current_encoder_out = torch.index_select(
current_encoder_out,
dim=0,
index=hyps_shape.row_ids(1).to(torch.int64),
) # (num_hyps, 1, 1, encoder_out_dim)
logits = model.joiner(
current_encoder_out,
decoder_out,
project_input=False,
) # (num_hyps, 1, 1, vocab_size)
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
log_probs = (logits / temperature).log_softmax(dim=-1) # (num_hyps, vocab_size)
log_probs.add_(ys_log_probs)
vocab_size = log_probs.size(-1)
log_probs = log_probs.reshape(-1)
row_splits = hyps_shape.row_splits(1) * vocab_size
log_probs_shape = k2.ragged.create_ragged_shape2(
row_splits=row_splits, cached_tot_size=log_probs.numel()
)
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
for i in range(batch_size):
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
topk_token_indexes = (topk_indexes % vocab_size).tolist()
for k in range(len(topk_hyp_indexes)):
hyp_idx = topk_hyp_indexes[k]
hyp = A[i][hyp_idx]
new_ys = hyp.ys[:]
new_token = topk_token_indexes[k]
new_timestamp = hyp.timestamp[:]
if new_token not in (blank_id, unk_id):
new_ys.append(new_token)
new_timestamp.append(t)
new_log_prob = topk_log_probs[k]
new_hyp = Hypothesis(
ys=new_ys, log_prob=new_log_prob, timestamp=new_timestamp
)
B[i].add(new_hyp)
B = B + finalized_B
# get the am_scores for n-best list
hyps_shape = get_hyps_shape(B)
am_scores = torch.tensor([hyp.log_prob.item() for b in B for hyp in b])
am_scores = k2.RaggedTensor(value=am_scores, shape=hyps_shape).to(device)
# now LM rescore
# prepare input data to LM
candidate_seqs = [hyp.ys[context_size:] for b in B for hyp in b]
possible_seqs = k2.RaggedTensor(candidate_seqs)
row_splits = possible_seqs.shape.row_splits(1)
sentence_token_lengths = row_splits[1:] - row_splits[:-1]
possible_seqs_with_sos = add_sos(possible_seqs, sos_id=1)
possible_seqs_with_eos = add_eos(possible_seqs, eos_id=1)
sentence_token_lengths += 1
x = possible_seqs_with_sos.pad(mode="constant", padding_value=blank_id)
y = possible_seqs_with_eos.pad(mode="constant", padding_value=blank_id)
x = x.to(device).to(torch.int64)
y = y.to(device).to(torch.int64)
sentence_token_lengths = sentence_token_lengths.to(device).to(torch.int64)
lm_scores = LM.lm(x=x, y=y, lengths=sentence_token_lengths)
assert lm_scores.ndim == 2
lm_scores = -1 * lm_scores.sum(dim=1)
ans = {}
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
# get the best hyp with different lm_scale
for lm_scale in lm_scale_list:
key = f"nnlm_scale_{lm_scale}"
tot_scores = am_scores.values + lm_scores * lm_scale
ragged_tot_scores = k2.RaggedTensor(shape=am_scores.shape, value=tot_scores)
max_indexes = ragged_tot_scores.argmax().tolist()
unsorted_hyps = [candidate_seqs[idx] for idx in max_indexes]
hyps = []
for idx in unsorted_indices:
hyps.append(unsorted_hyps[idx])
ans[key] = hyps
return ans
def _deprecated_modified_beam_search(
model: Transducer,
encoder_out: torch.Tensor,

View File

@ -122,6 +122,8 @@ from beam_search import (
greedy_search,
greedy_search_batch,
modified_beam_search,
modified_beam_search_lm_rescore,
modified_beam_search_lm_shallow_fusion,
)
from train import add_model_arguments, get_params, get_transducer_model
@ -132,6 +134,7 @@ from icefall.checkpoint import (
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.lm_wrapper import LmScorer
from icefall.utils import (
AttributeDict,
setup_logger,
@ -307,6 +310,32 @@ def get_parser():
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--use-shallow-fusion",
type=str2bool,
default=False,
help="""Use neural network LM for shallow fusion.
If you want to use LODR, you will also need to set this to true
""",
)
parser.add_argument(
"--lm-type",
type=str,
default="rnn",
help="Type of NN lm",
choices=["rnn", "transformer"],
)
parser.add_argument(
"--lm-scale",
type=float,
default=0.3,
help="""The scale of the neural network LM
Used only when `--use-shallow-fusion` is set to True.
""",
)
add_model_arguments(parser)
return parser
@ -319,6 +348,7 @@ def decode_one_batch(
batch: dict,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
LM: Optional[LmScorer] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
@ -443,6 +473,26 @@ def decode_one_batch(
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search_lm_shallow_fusion":
hyp_tokens = modified_beam_search_lm_shallow_fusion(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
LM=LM,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search_lm_rescore":
lm_scale_list = [0.01 * i for i in range(10, 50)]
ans_dict = modified_beam_search_lm_rescore(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
LM=LM,
lm_scale_list=lm_scale_list,
)
else:
batch_size = encoder_out.size(0)
@ -481,6 +531,13 @@ def decode_one_batch(
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
return {key: hyps}
elif params.decoding_method == "modified_beam_search_lm_rescore":
ans = dict()
assert ans_dict is not None
for key, hyps in ans_dict.items():
hyps = [sp.decode(hyp).split() for hyp in hyps]
ans[f"beam_size_{params.beam_size}_{key}"] = hyps
return ans
else:
return {f"beam_size_{params.beam_size}": hyps}
@ -492,6 +549,7 @@ def decode_dataset(
sp: spm.SentencePieceProcessor,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
LM: Optional[LmScorer] = None,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
@ -541,6 +599,7 @@ def decode_dataset(
decoding_graph=decoding_graph,
word_table=word_table,
batch=batch,
LM=LM,
)
for name, hyps in hyps_dict.items():
@ -603,6 +662,7 @@ def save_results(
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
LmScorer.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
@ -617,6 +677,8 @@ def main():
"fast_beam_search_nbest_LG",
"fast_beam_search_nbest_oracle",
"modified_beam_search",
"modified_beam_search_lm_shallow_fusion",
"modified_beam_search_lm_rescore",
)
params.res_dir = params.exp_dir / params.decoding_method
@ -642,6 +704,14 @@ def main():
params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
if params.use_shallow_fusion:
params.suffix += f"-{params.lm_type}-lm-scale-{params.lm_scale}"
if "LODR" in params.decoding_method:
params.suffix += (
f"-LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}"
)
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
@ -751,6 +821,19 @@ def main():
model.to(device)
model.eval()
# only load the neural network LM if required
if params.use_shallow_fusion or "lm" in params.decoding_method:
LM = LmScorer(
lm_type=params.lm_type,
params=params,
device=device,
lm_scale=params.lm_scale,
)
LM.to(device)
LM.eval()
else:
LM = None
if "fast_beam_search" in params.decoding_method:
if params.decoding_method == "fast_beam_search_nbest_LG":
lexicon = Lexicon(params.lang_dir)
@ -792,6 +875,7 @@ def main():
sp=sp,
word_table=word_table,
decoding_graph=decoding_graph,
LM=LM,
)
save_results(

View File

@ -154,17 +154,18 @@ class RnnLmModel(torch.nn.Module):
self.cache = {}
def score_token(self, x: torch.Tensor, x_lens: torch.Tensor, state=None):
"""Score a batch of tokens
"""Score a batch of tokens, i.e each sample in the batch should be a
single token. For example, x = torch.tensor([[5],[10],[20]])
Args:
x (torch.Tensor):
A batch of tokens
x_lens (torch.Tensor):
The length of tokens in the batch before padding
state (_type_, optional):
state (optional):
Either None or a tuple of two torch.Tensor. Each tensor has
the shape of (hidden_dim)
the shape of (num_layers, bs, hidden_dim)
Returns:
_type_: _description_