mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-27 02:34:21 +00:00
add lora version of ActivationDropouAndLinear; currently a simple version
This commit is contained in:
parent
bb8f6b0ef7
commit
3492d9415c
@ -1740,6 +1740,45 @@ class ActivationDropoutAndLinear(torch.nn.Module):
|
||||
self.dropout_shared_dim,
|
||||
)
|
||||
|
||||
class ActivationDropoutAndLinear_lora(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
bias: bool = True,
|
||||
activation: str = "SwooshL",
|
||||
dropout_p: FloatLike = 0.0,
|
||||
dropout_shared_dim: Optional[int] = -1,
|
||||
r: int=0,
|
||||
lora_alpha: int=1,
|
||||
lora_dropout: float=0.0,
|
||||
initial_scale: float = 1.0,
|
||||
):
|
||||
super().__init__()
|
||||
# create a temporary module of nn.Linear that we'll steal the
|
||||
# weights and bias from
|
||||
self.l = ScaledLinear_lora(
|
||||
in_features=in_channels,
|
||||
out_features=out_channels,
|
||||
r=r,
|
||||
lora_alpha=lora_alpha,
|
||||
lora_dropout=lora_dropout,
|
||||
initial_scale=initial_scale,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
self.activation = activation
|
||||
self.dropout = Dropout3(dropout_p, dropout_shared_dim)
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
if self.activation == "SwooshL":
|
||||
x = SwooshLForward(x)
|
||||
elif self.activation == "SwooshR":
|
||||
x = SwooshRForward(x)
|
||||
else:
|
||||
assert False, self.activation
|
||||
return self.dropout(self.l(x))
|
||||
|
||||
|
||||
def convert_num_channels(x: Tensor, num_channels: int) -> Tensor:
|
||||
if num_channels <= x.shape[-1]:
|
||||
|
@ -34,6 +34,7 @@ from scaling import (
|
||||
)
|
||||
from scaling import (
|
||||
ActivationDropoutAndLinear,
|
||||
ActivationDropoutAndLinear_lora,
|
||||
Balancer,
|
||||
BiasNorm,
|
||||
ChunkCausalDepthwiseConv1d,
|
||||
@ -2066,7 +2067,6 @@ class FeedforwardModule(nn.Module):
|
||||
lora_dropout: float=0.0
|
||||
):
|
||||
super(FeedforwardModule, self).__init__()
|
||||
# self.in_proj = nn.Linear(embed_dim, feedforward_dim)
|
||||
self.in_proj = ScaledLinear_lora(
|
||||
in_features=embed_dim,
|
||||
out_features=feedforward_dim,
|
||||
@ -2086,13 +2086,16 @@ class FeedforwardModule(nn.Module):
|
||||
)
|
||||
|
||||
# shared_dim=0 means we share the dropout mask along the time axis
|
||||
self.out_proj = ActivationDropoutAndLinear(
|
||||
self.out_proj = ActivationDropoutAndLinear_lora(
|
||||
feedforward_dim,
|
||||
embed_dim,
|
||||
activation="SwooshL",
|
||||
dropout_p=dropout,
|
||||
dropout_shared_dim=0,
|
||||
bias=True,
|
||||
r=lora_r,
|
||||
lora_alpha=lora_alpha,
|
||||
lora_dropout=lora_dropout,
|
||||
initial_scale=0.1,
|
||||
)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user