mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Experiments based on SpecAugment change
This commit is contained in:
parent
35ecd7e562
commit
3323cabf46
@ -28,7 +28,6 @@ from lhotse.dataset import (
|
|||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SingleCutSampler,
|
||||||
SpecAugment,
|
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
@ -219,10 +218,11 @@ class LibriSpeechAsrDataModule:
|
|||||||
input_transforms.append(
|
input_transforms.append(
|
||||||
SpecAugment(
|
SpecAugment(
|
||||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
num_frame_masks=2,
|
num_frame_masks=10,
|
||||||
features_mask_size=27,
|
features_mask_size=27,
|
||||||
num_feature_masks=2,
|
num_feature_masks=2,
|
||||||
frames_mask_size=100,
|
frames_mask_size=100,
|
||||||
|
max_frames_mask_fraction=0.4,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
@ -383,3 +383,212 @@ class LibriSpeechAsrDataModule:
|
|||||||
def test_other_cuts(self) -> CutSet:
|
def test_other_cuts(self) -> CutSet:
|
||||||
logging.info("About to get test-other cuts")
|
logging.info("About to get test-other cuts")
|
||||||
return load_manifest(self.args.manifest_dir / "cuts_test-other.json.gz")
|
return load_manifest(self.args.manifest_dir / "cuts_test-other.json.gz")
|
||||||
|
|
||||||
|
|
||||||
|
import math
|
||||||
|
import random
|
||||||
|
import numpy as np
|
||||||
|
from typing import Optional, Dict
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from lhotse import CutSet
|
||||||
|
|
||||||
|
class SpecAugment(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
SpecAugment performs three augmentations:
|
||||||
|
- time warping of the feature matrix
|
||||||
|
- masking of ranges of features (frequency bands)
|
||||||
|
- masking of ranges of frames (time)
|
||||||
|
|
||||||
|
The current implementation works with batches, but processes each example separately
|
||||||
|
in a loop rather than simultaneously to achieve different augmentation parameters for
|
||||||
|
each example.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
time_warp_factor: Optional[int] = 80,
|
||||||
|
num_feature_masks: int = 1,
|
||||||
|
features_mask_size: int = 13,
|
||||||
|
num_frame_masks: int = 1,
|
||||||
|
frames_mask_size: int = 70,
|
||||||
|
max_frames_mask_fraction: float = 0.2,
|
||||||
|
p=0.5,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
SpecAugment's constructor.
|
||||||
|
|
||||||
|
:param time_warp_factor: parameter for the time warping; larger values mean more warping.
|
||||||
|
Set to ``None``, or less than ``1``, to disable.
|
||||||
|
:param num_feature_masks: how many feature masks should be applied. Set to ``0`` to disable.
|
||||||
|
:param features_mask_size: the width of the feature mask (expressed in the number of masked feature bins).
|
||||||
|
This is the ``F`` parameter from the SpecAugment paper.
|
||||||
|
:param num_frame_masks: how many frame (temporal) masks should be applied. Set to ``0`` to disable.
|
||||||
|
:param frames_mask_size: the width of the frame (temporal) masks (expressed in the number of masked frames).
|
||||||
|
This is the ``T`` parameter from the SpecAugment paper.
|
||||||
|
:param max_frames_mask_fraction: limits the size of the frame (temporal) mask to this value times the length
|
||||||
|
of the utterance (or supervision segment).
|
||||||
|
This is the parameter denoted by ``p`` in the SpecAugment paper.
|
||||||
|
:param p: the probability of applying this transform.
|
||||||
|
It is different from ``p`` in the SpecAugment paper!
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
assert 0 <= p <= 1
|
||||||
|
assert num_feature_masks >= 0
|
||||||
|
assert num_frame_masks >= 0
|
||||||
|
assert features_mask_size > 0
|
||||||
|
assert frames_mask_size > 0
|
||||||
|
self.time_warp_factor = time_warp_factor
|
||||||
|
self.num_feature_masks = num_feature_masks
|
||||||
|
self.features_mask_size = features_mask_size
|
||||||
|
self.num_frame_masks = num_frame_masks
|
||||||
|
self.frames_mask_size = frames_mask_size
|
||||||
|
self.max_frames_mask_fraction = max_frames_mask_fraction
|
||||||
|
self.p = p
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
features: torch.Tensor,
|
||||||
|
supervision_segments: Optional[torch.IntTensor] = None,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Computes SpecAugment for a batch of feature matrices.
|
||||||
|
|
||||||
|
Since the batch will usually already be padded, the user can optionally
|
||||||
|
provide a ``supervision_segments`` tensor that will be used to apply SpecAugment
|
||||||
|
only to selected areas of the input. The format of this input is described below.
|
||||||
|
|
||||||
|
:param features: a batch of feature matrices with shape ``(B, T, F)``.
|
||||||
|
:param supervision_segments: an int tensor of shape ``(S, 3)``. ``S`` is the number of
|
||||||
|
supervision segments that exist in ``features`` -- there may be either
|
||||||
|
less or more than the batch size.
|
||||||
|
The second dimension encoder three kinds of information:
|
||||||
|
the sequence index of the corresponding feature matrix in `features`,
|
||||||
|
the start frame index, and the number of frames for each segment.
|
||||||
|
:return: an augmented tensor of shape ``(B, T, F)``.
|
||||||
|
"""
|
||||||
|
assert len(features.shape) == 3, (
|
||||||
|
"SpecAugment only supports batches of " "single-channel feature matrices."
|
||||||
|
)
|
||||||
|
features = features.clone()
|
||||||
|
if supervision_segments is None:
|
||||||
|
# No supervisions - apply spec augment to full feature matrices.
|
||||||
|
for sequence_idx in range(features.size(0)):
|
||||||
|
features[sequence_idx] = self._forward_single(features[sequence_idx])
|
||||||
|
else:
|
||||||
|
# Supervisions provided - we will apply time warping only on the supervised areas.
|
||||||
|
for sequence_idx, start_frame, num_frames in supervision_segments:
|
||||||
|
end_frame = start_frame + num_frames
|
||||||
|
features[sequence_idx, start_frame:end_frame] = self._forward_single(
|
||||||
|
features[sequence_idx, start_frame:end_frame], warp=True, mask=False
|
||||||
|
)
|
||||||
|
# ... and then time-mask the full feature matrices. Note that in this mode,
|
||||||
|
# it might happen that masks are applied to different sequences/examples
|
||||||
|
# than the time warping.
|
||||||
|
for sequence_idx in range(features.size(0)):
|
||||||
|
features[sequence_idx] = self._forward_single(
|
||||||
|
features[sequence_idx], warp=False, mask=True
|
||||||
|
)
|
||||||
|
return features
|
||||||
|
|
||||||
|
def _forward_single(
|
||||||
|
self, features: torch.Tensor, warp: bool = True, mask: bool = True
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Apply SpecAugment to a single feature matrix of shape (T, F).
|
||||||
|
"""
|
||||||
|
if random.random() > self.p:
|
||||||
|
# Randomly choose whether this transform is applied
|
||||||
|
return features
|
||||||
|
if warp:
|
||||||
|
if self.time_warp_factor is not None and self.time_warp_factor >= 1:
|
||||||
|
features = time_warp(features, factor=self.time_warp_factor)
|
||||||
|
if mask:
|
||||||
|
from torchaudio.functional import mask_along_axis
|
||||||
|
|
||||||
|
mean = features.mean()
|
||||||
|
for _ in range(self.num_feature_masks):
|
||||||
|
features = mask_along_axis(
|
||||||
|
features.unsqueeze(0),
|
||||||
|
mask_param=self.features_mask_size,
|
||||||
|
mask_value=mean,
|
||||||
|
axis=2,
|
||||||
|
).squeeze(0)
|
||||||
|
for _ in range(self.num_frame_masks):
|
||||||
|
_max_tot_mask_frames = self.max_frames_mask_fraction * features.size(0)
|
||||||
|
num_frame_masks = min(self.num_frame_masks, math.ceil(_max_tot_mask_frames / self.frames_mask_size))
|
||||||
|
max_mask_frames = min(self.frames_mask_size, _max_tot_mask_frames // num_frame_masks)
|
||||||
|
|
||||||
|
features = mask_along_axis(
|
||||||
|
features.unsqueeze(0),
|
||||||
|
mask_param=max_mask_frames,
|
||||||
|
mask_value=mean,
|
||||||
|
axis=1,
|
||||||
|
).squeeze(0)
|
||||||
|
return features
|
||||||
|
|
||||||
|
def state_dict(self) -> Dict:
|
||||||
|
return dict(
|
||||||
|
time_warp_factor=self.time_warp_factor,
|
||||||
|
num_feature_masks=self.num_feature_masks,
|
||||||
|
features_mask_size=self.features_mask_size,
|
||||||
|
num_frame_masks=self.num_frame_masks,
|
||||||
|
frames_mask_size=self.frames_mask_size,
|
||||||
|
max_frames_mask_fraction=self.max_frames_mask_fraction,
|
||||||
|
p=self.p,
|
||||||
|
)
|
||||||
|
|
||||||
|
def load_state_dict(self, state_dict: Dict):
|
||||||
|
self.time_warp_factor = state_dict.get(
|
||||||
|
"time_warp_factor", self.time_warp_factor
|
||||||
|
)
|
||||||
|
self.num_feature_masks = state_dict.get(
|
||||||
|
"num_feature_masks", self.num_feature_masks
|
||||||
|
)
|
||||||
|
self.features_mask_size = state_dict.get(
|
||||||
|
"features_mask_size", self.features_mask_size
|
||||||
|
)
|
||||||
|
self.num_frame_masks = state_dict.get("num_frame_masks", self.num_frame_masks)
|
||||||
|
self.frames_mask_size = state_dict.get(
|
||||||
|
"frames_mask_size", self.frames_mask_size
|
||||||
|
)
|
||||||
|
self.max_frames_mask_fraction = state_dict.get(
|
||||||
|
"max_frames_mask_fraction", self.max_frames_mask_fraction
|
||||||
|
)
|
||||||
|
self.p = state_dict.get("p", self.p)
|
||||||
|
|
||||||
|
|
||||||
|
def time_warp(features: torch.Tensor, factor: int) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Time warping as described in the SpecAugment paper.
|
||||||
|
Implementation based on Espresso:
|
||||||
|
https://github.com/freewym/espresso/blob/master/espresso/tools/specaug_interpolate.py#L51
|
||||||
|
|
||||||
|
:param features: input tensor of shape ``(T, F)``
|
||||||
|
:param factor: time warping parameter.
|
||||||
|
:return: a warped tensor of shape ``(T, F)``
|
||||||
|
"""
|
||||||
|
t = features.size(0)
|
||||||
|
if t - factor <= factor + 1:
|
||||||
|
return features
|
||||||
|
center = np.random.randint(factor + 1, t - factor)
|
||||||
|
warped = np.random.randint(center - factor, center + factor + 1)
|
||||||
|
if warped == center:
|
||||||
|
return features
|
||||||
|
features = features.unsqueeze(0).unsqueeze(0)
|
||||||
|
left = torch.nn.functional.interpolate(
|
||||||
|
features[:, :, :center, :],
|
||||||
|
size=(warped, features.size(3)),
|
||||||
|
mode="bicubic",
|
||||||
|
align_corners=False,
|
||||||
|
)
|
||||||
|
right = torch.nn.functional.interpolate(
|
||||||
|
features[:, :, center:, :],
|
||||||
|
size=(t - warped, features.size(3)),
|
||||||
|
mode="bicubic",
|
||||||
|
align_corners=False,
|
||||||
|
)
|
||||||
|
return torch.cat((left, right), dim=2).squeeze(0).squeeze(0)
|
Loading…
x
Reference in New Issue
Block a user