Add test functions for torchaudio emformer codes.

This commit is contained in:
yaozengwei 2022-04-14 17:07:47 +08:00
parent 524f3aa015
commit 32420cc3e4

View File

@ -65,8 +65,135 @@ def test_emformer():
print(f"Number of encoder parameters: {num_param}")
def test_emformer_infer_batch_single_consistency():
"""Test consistency of cached states and output logits between single
utterance inference and batch inference."""
from emformer import Emformer
num_features = 80
output_dim = 1000
chunk_length = 8
num_chunks = 3
U = num_chunks * chunk_length
L, R = 128, 4
B, D = 2, 256
num_encoder_layers = 4
for use_memory in [True, False]:
if use_memory:
M = 3
else:
M = 0
model = Emformer(
num_features=num_features,
output_dim=output_dim,
segment_length=chunk_length,
subsampling_factor=4,
d_model=D,
nhead=4,
dim_feedforward=1024,
num_encoder_layers=num_encoder_layers,
left_context_length=L,
right_context_length=R,
max_memory_size=M,
vgg_frontend=False,
)
model.eval()
def save_states(states):
saved_states = []
for layer_idx in range(len(states)):
layer_state = []
layer_state.append(states[layer_idx][0].clone()) # memory
layer_state.append(
states[layer_idx][1].clone()
) # left_context_key
layer_state.append(
states[layer_idx][2].clone()
) # left_context_val
layer_state.append(states[layer_idx][3].clone()) # past_length
saved_states.append(layer_state)
return saved_states
def assert_states_equal(saved_states, states, sample_idx):
for layer_idx in range(len(saved_states)):
# assert eqaul memory
assert torch.allclose(
states[layer_idx][0],
saved_states[layer_idx][0][
:, sample_idx : sample_idx + 1 # noqa
],
atol=1e-5,
rtol=0.0,
)
# assert equal left_context_key
assert torch.allclose(
states[layer_idx][1],
saved_states[layer_idx][1][
:, sample_idx : sample_idx + 1 # noqa
],
atol=1e-5,
rtol=0.0,
)
# assert equal left_context_val
assert torch.allclose(
states[layer_idx][2],
saved_states[layer_idx][2][
:, sample_idx : sample_idx + 1 # noqa
],
atol=1e-5,
rtol=0.0,
)
# assert eqaul past_length
assert torch.equal(
states[layer_idx][3],
saved_states[layer_idx][3][
:, sample_idx : sample_idx + 1 # noqa
],
)
x = torch.randn(B, U + R + 3, num_features)
batch_logits = []
batch_states = []
states = None
for chunk_idx in range(num_chunks):
start_idx = chunk_idx * chunk_length
end_idx = start_idx + chunk_length
chunk = x[:, start_idx : end_idx + R + 3] # noqa
lengths = torch.tensor([chunk_length + R + 3]).expand(B)
logits, output_lengths, states = model.streaming_forward(
chunk, lengths, states
)
batch_logits.append(logits)
batch_states.append(save_states(states))
batch_logits = torch.cat(batch_logits, dim=1)
single_logits = []
for sample_idx in range(B):
sample = x[sample_idx : sample_idx + 1] # noqa
chunk_logits = []
states = None
for chunk_idx in range(num_chunks):
start_idx = chunk_idx * chunk_length
end_idx = start_idx + chunk_length
chunk = sample[:, start_idx : end_idx + R + 3] # noqa
lengths = torch.tensor([chunk_length + R + 3])
logits, output_lengths, states = model.streaming_forward(
chunk, lengths, states
)
chunk_logits.append(logits)
assert_states_equal(batch_states[chunk_idx], states, sample_idx)
chunk_logits = torch.cat(chunk_logits, dim=1)
single_logits.append(chunk_logits)
single_logits = torch.cat(single_logits, dim=0)
assert torch.allclose(batch_logits, single_logits, atol=1e-5, rtol=0.0)
def main():
test_emformer()
test_emformer_infer_batch_single_consistency()
if __name__ == "__main__":