Merge remote-tracking branch 'dan/master' into mmi-phone
17
.github/workflows/run-yesno-recipe.yml
vendored
@ -56,7 +56,7 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
python3 -m pip install --upgrade pip black flake8
|
python3 -m pip install --upgrade pip black flake8
|
||||||
python3 -m pip install -U pip
|
python3 -m pip install -U pip
|
||||||
python3 -m pip install k2==1.4.dev20210822+cpu.torch1.7.1 -f https://k2-fsa.org/nightly/
|
python3 -m pip install k2==1.7.dev20210908+cpu.torch1.7.1 -f https://k2-fsa.org/nightly/
|
||||||
python3 -m pip install torchaudio==0.7.2
|
python3 -m pip install torchaudio==0.7.2
|
||||||
python3 -m pip install git+https://github.com/lhotse-speech/lhotse
|
python3 -m pip install git+https://github.com/lhotse-speech/lhotse
|
||||||
|
|
||||||
@ -69,21 +69,10 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
echo $PYTHONPATH
|
echo $PYTHONPATH
|
||||||
ls -lh
|
|
||||||
|
|
||||||
# The following three lines are for macOS
|
|
||||||
lib_path=$(python -c "from distutils.sysconfig import get_python_lib; print(get_python_lib())")
|
|
||||||
echo "lib_path: $lib_path"
|
|
||||||
export DYLD_LIBRARY_PATH=$lib_path:$DYLD_LIBRARY_PATH
|
|
||||||
ls -lh $lib_path
|
|
||||||
|
|
||||||
cd egs/yesno/ASR
|
cd egs/yesno/ASR
|
||||||
./prepare.sh
|
./prepare.sh
|
||||||
python3 ./tdnn/train.py --num-epochs 100
|
python3 ./tdnn/train.py
|
||||||
python3 ./tdnn/decode.py --epoch 99
|
python3 ./tdnn/decode.py
|
||||||
python3 ./tdnn/decode.py --epoch 95
|
|
||||||
python3 ./tdnn/decode.py --epoch 90
|
|
||||||
python3 ./tdnn/decode.py --epoch 80
|
|
||||||
python3 ./tdnn/decode.py --epoch 70
|
|
||||||
python3 ./tdnn/decode.py --epoch 60
|
|
||||||
# TODO: Check that the WER is less than some value
|
# TODO: Check that the WER is less than some value
|
||||||
|
3
.github/workflows/test.yml
vendored
@ -32,7 +32,8 @@ jobs:
|
|||||||
os: [ubuntu-18.04, macos-10.15]
|
os: [ubuntu-18.04, macos-10.15]
|
||||||
python-version: [3.6, 3.7, 3.8, 3.9]
|
python-version: [3.6, 3.7, 3.8, 3.9]
|
||||||
torch: ["1.8.1"]
|
torch: ["1.8.1"]
|
||||||
k2-version: ["1.4.dev20210822"]
|
k2-version: ["1.7.dev20210908"]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
|
2
.gitignore
vendored
@ -4,4 +4,4 @@ path.sh
|
|||||||
exp
|
exp
|
||||||
exp*/
|
exp*/
|
||||||
*.pt
|
*.pt
|
||||||
download/
|
download
|
||||||
|
107
README.md
@ -1,80 +1,61 @@
|
|||||||
|
<div align="center">
|
||||||
# Table of Contents
|
<img src="https://raw.githubusercontent.com/k2-fsa/icefall/master/docs/source/_static/logo.png" width=168>
|
||||||
|
</div>
|
||||||
- [Installation](#installation)
|
|
||||||
* [Install k2](#install-k2)
|
|
||||||
* [Install lhotse](#install-lhotse)
|
|
||||||
* [Install icefall](#install-icefall)
|
|
||||||
- [Run recipes](#run-recipes)
|
|
||||||
|
|
||||||
## Installation
|
## Installation
|
||||||
|
|
||||||
`icefall` depends on [k2][k2] for FSA operations and [lhotse][lhotse] for
|
Please refer to <https://icefall.readthedocs.io/en/latest/installation/index.html>
|
||||||
data preparations. To use `icefall`, you have to install its dependencies first.
|
for installation.
|
||||||
The following subsections describe how to setup the environment.
|
|
||||||
|
|
||||||
CAUTION: There are various ways to setup the environment. What we describe
|
|
||||||
here is just one alternative.
|
|
||||||
|
|
||||||
### Install k2
|
|
||||||
|
|
||||||
Please refer to [k2's installation documentation][k2-install] to install k2.
|
|
||||||
If you have any issues about installing k2, please open an issue at
|
|
||||||
<https://github.com/k2-fsa/k2/issues>.
|
|
||||||
|
|
||||||
### Install lhotse
|
|
||||||
|
|
||||||
Please refer to [lhotse's installation documentation][lhotse-install] to install
|
|
||||||
lhotse.
|
|
||||||
|
|
||||||
### Install icefall
|
|
||||||
|
|
||||||
`icefall` is a set of Python scripts. What you need to do is just to set
|
|
||||||
the environment variable `PYTHONPATH`:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
cd $HOME/open-source
|
|
||||||
git clone https://github.com/k2-fsa/icefall
|
|
||||||
cd icefall
|
|
||||||
pip install -r requirements.txt
|
|
||||||
export PYTHONPATH=$HOME/open-source/icefall:$PYTHONPATHON
|
|
||||||
```
|
|
||||||
|
|
||||||
To verify `icefall` was installed successfully, you can run:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
python3 -c "import icefall; print(icefall.__file__)"
|
|
||||||
```
|
|
||||||
|
|
||||||
It should print the path to `icefall`.
|
|
||||||
|
|
||||||
## Recipes
|
## Recipes
|
||||||
|
|
||||||
At present, two recipes are provided:
|
Please refer to <https://icefall.readthedocs.io/en/latest/recipes/index.html>
|
||||||
|
for more information.
|
||||||
|
|
||||||
- [LibriSpeech][LibriSpeech]
|
We provide two recipes at present:
|
||||||
- [yesno][yesno] [](https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing)
|
|
||||||
|
|
||||||
### Yesno
|
- [yesno][yesno]
|
||||||
|
- [LibriSpeech][librispeech]
|
||||||
|
|
||||||
For the yesno recipe, training with 50 epochs takes less than 2 minutes using **CPU**.
|
### yesno
|
||||||
|
|
||||||
The WER is
|
This is the simplest ASR recipe in `icefall` and can be run on CPU.
|
||||||
|
Training takes less than 30 seconds and gives you the following WER:
|
||||||
|
|
||||||
```
|
```
|
||||||
[test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
|
[test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
|
||||||
```
|
```
|
||||||
|
We do provide a Colab notebook for this recipe.
|
||||||
|
|
||||||
## Use Pre-trained models
|
[](https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing)
|
||||||
|
|
||||||
See [egs/librispeech/ASR/conformer_ctc/README.md](egs/librispeech/ASR/conformer_ctc/README.md)
|
|
||||||
for how to use pre-trained models.
|
|
||||||
[](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing)
|
|
||||||
|
|
||||||
|
|
||||||
[yesno]: egs/yesno/ASR/README.md
|
### LibriSpeech
|
||||||
[LibriSpeech]: egs/librispeech/ASR/README.md
|
|
||||||
[k2-install]: https://k2.readthedocs.io/en/latest/installation/index.html#
|
We provide two models for this recipe: [conformer CTC model][LibriSpeech_conformer_ctc]
|
||||||
[k2]: https://github.com/k2-fsa/k2
|
and [TDNN LSTM CTC model][LibriSpeech_tdnn_lstm_ctc].
|
||||||
[lhotse]: https://github.com/lhotse-speech/lhotse
|
|
||||||
[lhotse-install]: https://lhotse.readthedocs.io/en/latest/getting-started.html#installation
|
#### Conformer CTC Model
|
||||||
|
|
||||||
|
The best WER we currently have is:
|
||||||
|
|
||||||
|
||test-clean|test-other|
|
||||||
|
|--|--|--|
|
||||||
|
|WER| 2.57% | 5.94% |
|
||||||
|
|
||||||
|
We provide a Colab notebook to run a pre-trained conformer CTC model: [](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing)
|
||||||
|
|
||||||
|
#### TDNN LSTM CTC Model
|
||||||
|
|
||||||
|
The WER for this model is:
|
||||||
|
|
||||||
|
||test-clean|test-other|
|
||||||
|
|--|--|--|
|
||||||
|
|WER| 6.59% | 17.69% |
|
||||||
|
|
||||||
|
We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [](https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd?usp=sharing)
|
||||||
|
|
||||||
|
[LibriSpeech_tdnn_lstm_ctc]: egs/librispeech/ASR/tdnn_lstm_ctc
|
||||||
|
[LibriSpeech_conformer_ctc]: egs/librispeech/ASR/conformer_ctc
|
||||||
|
[yesno]: egs/yesno/ASR
|
||||||
|
[librispeech]: egs/librispeech/ASR
|
||||||
|
1
docs/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
build/
|
20
docs/Makefile
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
# Minimal makefile for Sphinx documentation
|
||||||
|
#
|
||||||
|
|
||||||
|
# You can set these variables from the command line, and also
|
||||||
|
# from the environment for the first two.
|
||||||
|
SPHINXOPTS ?=
|
||||||
|
SPHINXBUILD ?= sphinx-build
|
||||||
|
SOURCEDIR = source
|
||||||
|
BUILDDIR = build
|
||||||
|
|
||||||
|
# Put it first so that "make" without argument is like "make help".
|
||||||
|
help:
|
||||||
|
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||||
|
|
||||||
|
.PHONY: help Makefile
|
||||||
|
|
||||||
|
# Catch-all target: route all unknown targets to Sphinx using the new
|
||||||
|
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
|
||||||
|
%: Makefile
|
||||||
|
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
35
docs/make.bat
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
@ECHO OFF
|
||||||
|
|
||||||
|
pushd %~dp0
|
||||||
|
|
||||||
|
REM Command file for Sphinx documentation
|
||||||
|
|
||||||
|
if "%SPHINXBUILD%" == "" (
|
||||||
|
set SPHINXBUILD=sphinx-build
|
||||||
|
)
|
||||||
|
set SOURCEDIR=source
|
||||||
|
set BUILDDIR=build
|
||||||
|
|
||||||
|
if "%1" == "" goto help
|
||||||
|
|
||||||
|
%SPHINXBUILD% >NUL 2>NUL
|
||||||
|
if errorlevel 9009 (
|
||||||
|
echo.
|
||||||
|
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
|
||||||
|
echo.installed, then set the SPHINXBUILD environment variable to point
|
||||||
|
echo.to the full path of the 'sphinx-build' executable. Alternatively you
|
||||||
|
echo.may add the Sphinx directory to PATH.
|
||||||
|
echo.
|
||||||
|
echo.If you don't have Sphinx installed, grab it from
|
||||||
|
echo.http://sphinx-doc.org/
|
||||||
|
exit /b 1
|
||||||
|
)
|
||||||
|
|
||||||
|
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||||
|
goto end
|
||||||
|
|
||||||
|
:help
|
||||||
|
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
|
||||||
|
|
||||||
|
:end
|
||||||
|
popd
|
2
docs/requirements.txt
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
sphinx_rtd_theme
|
||||||
|
sphinx
|
BIN
docs/source/_static/logo.png
Normal file
After Width: | Height: | Size: 666 KiB |
76
docs/source/conf.py
Normal file
@ -0,0 +1,76 @@
|
|||||||
|
# Configuration file for the Sphinx documentation builder.
|
||||||
|
#
|
||||||
|
# This file only contains a selection of the most common options. For a full
|
||||||
|
# list see the documentation:
|
||||||
|
# https://www.sphinx-doc.org/en/master/usage/configuration.html
|
||||||
|
|
||||||
|
# -- Path setup --------------------------------------------------------------
|
||||||
|
|
||||||
|
# If extensions (or modules to document with autodoc) are in another directory,
|
||||||
|
# add these directories to sys.path here. If the directory is relative to the
|
||||||
|
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||||
|
#
|
||||||
|
# import os
|
||||||
|
# import sys
|
||||||
|
# sys.path.insert(0, os.path.abspath('.'))
|
||||||
|
|
||||||
|
import sphinx_rtd_theme
|
||||||
|
|
||||||
|
# -- Project information -----------------------------------------------------
|
||||||
|
|
||||||
|
project = "icefall"
|
||||||
|
copyright = "2021, icefall development team"
|
||||||
|
author = "icefall development team"
|
||||||
|
|
||||||
|
# The full version, including alpha/beta/rc tags
|
||||||
|
release = "0.1"
|
||||||
|
|
||||||
|
|
||||||
|
# -- General configuration ---------------------------------------------------
|
||||||
|
|
||||||
|
# Add any Sphinx extension module names here, as strings. They can be
|
||||||
|
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||||
|
# ones.
|
||||||
|
extensions = [
|
||||||
|
"sphinx_rtd_theme",
|
||||||
|
]
|
||||||
|
|
||||||
|
# Add any paths that contain templates here, relative to this directory.
|
||||||
|
templates_path = ["_templates"]
|
||||||
|
|
||||||
|
# List of patterns, relative to source directory, that match files and
|
||||||
|
# directories to ignore when looking for source files.
|
||||||
|
# This pattern also affects html_static_path and html_extra_path.
|
||||||
|
exclude_patterns = []
|
||||||
|
|
||||||
|
source_suffix = {
|
||||||
|
".rst": "restructuredtext",
|
||||||
|
}
|
||||||
|
master_doc = "index"
|
||||||
|
|
||||||
|
|
||||||
|
# -- Options for HTML output -------------------------------------------------
|
||||||
|
|
||||||
|
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||||
|
# a list of builtin themes.
|
||||||
|
#
|
||||||
|
html_theme = "sphinx_rtd_theme"
|
||||||
|
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
|
||||||
|
html_show_sourcelink = True
|
||||||
|
|
||||||
|
# Add any paths that contain custom static files (such as style sheets) here,
|
||||||
|
# relative to this directory. They are copied after the builtin static files,
|
||||||
|
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||||
|
html_static_path = ["_static", "installation/images"]
|
||||||
|
|
||||||
|
pygments_style = "sphinx"
|
||||||
|
|
||||||
|
numfig = True
|
||||||
|
|
||||||
|
html_context = {
|
||||||
|
"display_github": True,
|
||||||
|
"github_user": "k2-fsa",
|
||||||
|
"github_repo": "icefall",
|
||||||
|
"github_version": "master",
|
||||||
|
"conf_py_path": "/icefall/docs/source/",
|
||||||
|
}
|
67
docs/source/contributing/code-style.rst
Normal file
@ -0,0 +1,67 @@
|
|||||||
|
.. _follow the code style:
|
||||||
|
|
||||||
|
Follow the code style
|
||||||
|
=====================
|
||||||
|
|
||||||
|
We use the following tools to make the code style to be as consistent as possible:
|
||||||
|
|
||||||
|
- `black <https://github.com/psf/black>`_, to format the code
|
||||||
|
- `flake8 <https://github.com/PyCQA/flake8>`_, to check the style and quality of the code
|
||||||
|
- `isort <https://github.com/PyCQA/isort>`_, to sort ``imports``
|
||||||
|
|
||||||
|
The following versions of the above tools are used:
|
||||||
|
|
||||||
|
- ``black == 12.6b0``
|
||||||
|
- ``flake8 == 3.9.2``
|
||||||
|
- ``isort == 5.9.2``
|
||||||
|
|
||||||
|
After running the following commands:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
$ git clone https://github.com/k2-fsa/icefall
|
||||||
|
$ cd icefall
|
||||||
|
$ pip install pre-commit
|
||||||
|
$ pre-commit install
|
||||||
|
|
||||||
|
it will run the following checks whenever you run ``git commit``, **automatically**:
|
||||||
|
|
||||||
|
.. figure:: images/pre-commit-check.png
|
||||||
|
:width: 600
|
||||||
|
:align: center
|
||||||
|
|
||||||
|
pre-commit hooks invoked by ``git commit`` (Failed).
|
||||||
|
|
||||||
|
If any of the above checks failed, your ``git commit`` was not successful.
|
||||||
|
Please fix any issues reported by the check tools.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
Some of the check tools, i.e., ``black`` and ``isort`` will modify
|
||||||
|
the files to be commited **in-place**. So please run ``git status``
|
||||||
|
after failure to see which file has been modified by the tools
|
||||||
|
before you make any further changes.
|
||||||
|
|
||||||
|
After fixing all the failures, run ``git commit`` again and
|
||||||
|
it should succeed this time:
|
||||||
|
|
||||||
|
.. figure:: images/pre-commit-check-success.png
|
||||||
|
:width: 600
|
||||||
|
:align: center
|
||||||
|
|
||||||
|
pre-commit hooks invoked by ``git commit`` (Succeeded).
|
||||||
|
|
||||||
|
If you want to check the style of your code before ``git commit``, you
|
||||||
|
can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd icefall
|
||||||
|
$ pip install black==21.6b0 flake8==3.9.2 isort==5.9.2
|
||||||
|
$ black --check your_changed_file.py
|
||||||
|
$ black your_changed_file.py # modify it in-place
|
||||||
|
$
|
||||||
|
$ flake8 your_changed_file.py
|
||||||
|
$
|
||||||
|
$ isort --check your_changed_file.py # modify it in-place
|
||||||
|
$ isort your_changed_file.py
|
45
docs/source/contributing/doc.rst
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
Contributing to Documentation
|
||||||
|
=============================
|
||||||
|
|
||||||
|
We use `sphinx <https://www.sphinx-doc.org/en/master/>`_
|
||||||
|
for documentation.
|
||||||
|
|
||||||
|
Before writing documentation, you have to prepare the environment:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd docs
|
||||||
|
$ pip install -r requirements.txt
|
||||||
|
|
||||||
|
After setting up the environment, you are ready to write documentation.
|
||||||
|
Please refer to `reStructuredText Primer <https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html>`_
|
||||||
|
if you are not familiar with ``reStructuredText``.
|
||||||
|
|
||||||
|
After writing some documentation, you can build the documentation **locally**
|
||||||
|
to preview what it looks like if it is published:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd docs
|
||||||
|
$ make html
|
||||||
|
|
||||||
|
The generated documentation is in ``docs/build/html`` and can be viewed
|
||||||
|
with the following commands:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd docs/build/html
|
||||||
|
$ python3 -m http.server
|
||||||
|
|
||||||
|
It will print::
|
||||||
|
|
||||||
|
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...
|
||||||
|
|
||||||
|
Open your browser, go to `<http://0.0.0.0:8000/>`_, and you will see
|
||||||
|
the following:
|
||||||
|
|
||||||
|
.. figure:: images/doc-contrib.png
|
||||||
|
:width: 600
|
||||||
|
:align: center
|
||||||
|
|
||||||
|
View generated documentation locally with ``python3 -m http.server``.
|
156
docs/source/contributing/how-to-create-a-recipe.rst
Normal file
@ -0,0 +1,156 @@
|
|||||||
|
How to create a recipe
|
||||||
|
======================
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
Please read :ref:`follow the code style` to adjust your code sytle.
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
|
||||||
|
``icefall`` is designed to be as Pythonic as possible. Please use
|
||||||
|
Python in your recipe if possible.
|
||||||
|
|
||||||
|
Data Preparation
|
||||||
|
----------------
|
||||||
|
|
||||||
|
We recommend you to prepare your training/test/validate dataset
|
||||||
|
with `lhotse <https://github.com/lhotse-speech/lhotse>`_.
|
||||||
|
|
||||||
|
Please refer to `<https://lhotse.readthedocs.io/en/latest/index.html>`_
|
||||||
|
for how to create a recipe in ``lhotse``.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
The ``yesno`` recipe in ``lhotse`` is a very good example.
|
||||||
|
|
||||||
|
Please refer to `<https://github.com/lhotse-speech/lhotse/pull/380>`_,
|
||||||
|
which shows how to add a new recipe to ``lhotse``.
|
||||||
|
|
||||||
|
Suppose you would like to add a recipe for a dataset named ``foo``.
|
||||||
|
You can do the following:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
$ cd egs
|
||||||
|
$ mkdir -p foo/ASR
|
||||||
|
$ cd foo/ASR
|
||||||
|
$ touch prepare.sh
|
||||||
|
$ chmod +x prepare.sh
|
||||||
|
|
||||||
|
If your dataset is very simple, please follow
|
||||||
|
`egs/yesno/ASR/prepare.sh <https://github.com/k2-fsa/icefall/blob/master/egs/yesno/ASR/prepare.sh>`_
|
||||||
|
to write your own ``prepare.sh``.
|
||||||
|
Otherwise, please refer to
|
||||||
|
`egs/librispeech/ASR/prepare.sh <https://github.com/k2-fsa/icefall/blob/master/egs/yesno/ASR/prepare.sh>`_
|
||||||
|
to prepare your data.
|
||||||
|
|
||||||
|
|
||||||
|
Training
|
||||||
|
--------
|
||||||
|
|
||||||
|
Assume you have a fancy model, called ``bar`` for the ``foo`` recipe, you can
|
||||||
|
organize your files in the following way:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
$ cd egs/foo/ASR
|
||||||
|
$ mkdir bar
|
||||||
|
$ cd bar
|
||||||
|
$ touch README.md model.py train.py decode.py asr_datamodule.py pretrained.py
|
||||||
|
|
||||||
|
For instance , the ``yesno`` recipe has a ``tdnn`` model and its directory structure
|
||||||
|
looks like the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
egs/yesno/ASR/tdnn/
|
||||||
|
|-- README.md
|
||||||
|
|-- asr_datamodule.py
|
||||||
|
|-- decode.py
|
||||||
|
|-- model.py
|
||||||
|
|-- pretrained.py
|
||||||
|
`-- train.py
|
||||||
|
|
||||||
|
**File description**:
|
||||||
|
|
||||||
|
- ``README.md``
|
||||||
|
|
||||||
|
It contains information of this recipe, e.g., how to run it, what the WER is, etc.
|
||||||
|
|
||||||
|
- ``asr_datamodule.py``
|
||||||
|
|
||||||
|
It provides code to create PyTorch dataloaders with train/test/validation dataset.
|
||||||
|
|
||||||
|
- ``decode.py``
|
||||||
|
|
||||||
|
It takes as inputs the checkpoints saved during the training stage to decode the test
|
||||||
|
dataset(s).
|
||||||
|
|
||||||
|
- ``model.py``
|
||||||
|
|
||||||
|
It contains the definition of your fancy neural network model.
|
||||||
|
|
||||||
|
- ``pretrained.py``
|
||||||
|
|
||||||
|
We can use this script to do inference with a pre-trained model.
|
||||||
|
|
||||||
|
- ``train.py``
|
||||||
|
|
||||||
|
It contains training code.
|
||||||
|
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
Please take a look at
|
||||||
|
|
||||||
|
- `egs/yesno/tdnn <https://github.com/k2-fsa/icefall/tree/master/egs/yesno/ASR/tdnn>`_
|
||||||
|
- `egs/librispeech/tdnn_lstm_ctc <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/tdnn_lstm_ctc>`_
|
||||||
|
- `egs/librispeech/conformer_ctc <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/conformer_ctc>`_
|
||||||
|
|
||||||
|
to get a feel what the resulting files look like.
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
Every model in a recipe is kept to be as self-contained as possible.
|
||||||
|
We tolerate duplicate code among different recipes.
|
||||||
|
|
||||||
|
|
||||||
|
The training stage should be invocable by:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
$ cd egs/foo/ASR
|
||||||
|
$ ./bar/train.py
|
||||||
|
$ ./bar/train.py --help
|
||||||
|
|
||||||
|
|
||||||
|
Decoding
|
||||||
|
--------
|
||||||
|
|
||||||
|
Please refer to
|
||||||
|
|
||||||
|
- `<https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/conformer_ctc/decode.py>`_
|
||||||
|
|
||||||
|
If your model is transformer/conformer based.
|
||||||
|
|
||||||
|
- `<https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/tdnn_lstm_ctc/decode.py>`_
|
||||||
|
|
||||||
|
If your model is TDNN/LSTM based, i.e., there is no attention decoder.
|
||||||
|
|
||||||
|
- `<https://github.com/k2-fsa/icefall/blob/master/egs/yesno/ASR/tdnn/decode.py>`_
|
||||||
|
|
||||||
|
If there is no LM rescoring.
|
||||||
|
|
||||||
|
The decoding stage should be invocable by:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
$ cd egs/foo/ASR
|
||||||
|
$ ./bar/decode.py
|
||||||
|
$ ./bar/decode.py --help
|
||||||
|
|
||||||
|
Pre-trained model
|
||||||
|
-----------------
|
||||||
|
|
||||||
|
Please demonstrate how to use your model for inference in ``egs/foo/ASR/bar/pretrained.py``.
|
||||||
|
If possible, please consider creating a Colab notebook to show that.
|
BIN
docs/source/contributing/images/doc-contrib.png
Normal file
After Width: | Height: | Size: 198 KiB |
BIN
docs/source/contributing/images/pre-commit-check-success.png
Normal file
After Width: | Height: | Size: 153 KiB |
BIN
docs/source/contributing/images/pre-commit-check.png
Normal file
After Width: | Height: | Size: 214 KiB |
22
docs/source/contributing/index.rst
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
Contributing
|
||||||
|
============
|
||||||
|
|
||||||
|
Contributions to ``icefall`` are very welcomed.
|
||||||
|
There are many possible ways to make contributions and
|
||||||
|
two of them are:
|
||||||
|
|
||||||
|
- To write documentation
|
||||||
|
- To write code
|
||||||
|
|
||||||
|
- (1) To follow the code style in the repository
|
||||||
|
- (2) To write a new recipe
|
||||||
|
|
||||||
|
In this page, we describe how to contribute documentation
|
||||||
|
and code to ``icefall``.
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 2
|
||||||
|
|
||||||
|
doc
|
||||||
|
code-style
|
||||||
|
how-to-create-a-recipe
|
25
docs/source/index.rst
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
.. icefall documentation master file, created by
|
||||||
|
sphinx-quickstart on Mon Aug 23 16:07:39 2021.
|
||||||
|
You can adapt this file completely to your liking, but it should at least
|
||||||
|
contain the root `toctree` directive.
|
||||||
|
|
||||||
|
Icefall
|
||||||
|
=======
|
||||||
|
|
||||||
|
.. image:: _static/logo.png
|
||||||
|
:alt: icefall logo
|
||||||
|
:width: 168px
|
||||||
|
:align: center
|
||||||
|
:target: https://github.com/k2-fsa/icefall
|
||||||
|
|
||||||
|
|
||||||
|
Documentation for `icefall <https://github.com/k2-fsa/icefall>`_, containing
|
||||||
|
speech recognition recipes using `k2 <https://github.com/k2-fsa/k2>`_.
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 2
|
||||||
|
:caption: Contents:
|
||||||
|
|
||||||
|
installation/index
|
||||||
|
recipes/index
|
||||||
|
contributing/index
|
@ -0,0 +1 @@
|
|||||||
|
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="122" height="20" role="img" aria-label="device: CPU | CUDA"><title>device: CPU | CUDA</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="122" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="45" height="20" fill="#555"/><rect x="45" width="77" height="20" fill="#fe7d37"/><rect width="122" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="235" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="350">device</text><text x="235" y="140" transform="scale(.1)" fill="#fff" textLength="350">device</text><text aria-hidden="true" x="825" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="670">CPU | CUDA</text><text x="825" y="140" transform="scale(.1)" fill="#fff" textLength="670">CPU | CUDA</text></g></svg>
|
After Width: | Height: | Size: 1.1 KiB |
1
docs/source/installation/images/k2-v-1.7.svg
Normal file
@ -0,0 +1 @@
|
|||||||
|
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="80" height="20" role="img" aria-label="k2: >= v1.7"><title>k2: >= v1.7</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="80" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="23" height="20" fill="#555"/><rect x="23" width="57" height="20" fill="blueviolet"/><rect width="80" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="125" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="130">k2</text><text x="125" y="140" transform="scale(.1)" fill="#fff" textLength="130">k2</text><text aria-hidden="true" x="505" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="470">>= v1.7</text><text x="505" y="140" transform="scale(.1)" fill="#fff" textLength="470">>= v1.7</text></g></svg>
|
After Width: | Height: | Size: 1.1 KiB |
@ -0,0 +1 @@
|
|||||||
|
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="114" height="20" role="img" aria-label="os: Linux | macOS"><title>os: Linux | macOS</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="114" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="23" height="20" fill="#555"/><rect x="23" width="91" height="20" fill="#ff69b4"/><rect width="114" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="125" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="130">os</text><text x="125" y="140" transform="scale(.1)" fill="#fff" textLength="130">os</text><text aria-hidden="true" x="675" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="810">Linux | macOS</text><text x="675" y="140" transform="scale(.1)" fill="#fff" textLength="810">Linux | macOS</text></g></svg>
|
After Width: | Height: | Size: 1.1 KiB |
@ -0,0 +1 @@
|
|||||||
|
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="170" height="20" role="img" aria-label="python: 3.6 | 3.7 | 3.8 | 3.9"><title>python: 3.6 | 3.7 | 3.8 | 3.9</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="170" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="49" height="20" fill="#555"/><rect x="49" width="121" height="20" fill="#007ec6"/><rect width="170" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="255" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="390">python</text><text x="255" y="140" transform="scale(.1)" fill="#fff" textLength="390">python</text><text aria-hidden="true" x="1085" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="1110">3.6 | 3.7 | 3.8 | 3.9</text><text x="1085" y="140" transform="scale(.1)" fill="#fff" textLength="1110">3.6 | 3.7 | 3.8 | 3.9</text></g></svg>
|
After Width: | Height: | Size: 1.2 KiB |
@ -0,0 +1 @@
|
|||||||
|
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="286" height="20" role="img" aria-label="torch: 1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0"><title>torch: 1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="286" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="39" height="20" fill="#555"/><rect x="39" width="247" height="20" fill="#97ca00"/><rect width="286" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="205" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="290">torch</text><text x="205" y="140" transform="scale(.1)" fill="#fff" textLength="290">torch</text><text aria-hidden="true" x="1615" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="2370">1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0</text><text x="1615" y="140" transform="scale(.1)" fill="#fff" textLength="2370">1.6.0 | 1.7.0 | 1.7.1 | 1.8.0 | 1.8.1 | 1.9.0</text></g></svg>
|
After Width: | Height: | Size: 1.3 KiB |
466
docs/source/installation/index.rst
Normal file
@ -0,0 +1,466 @@
|
|||||||
|
.. _install icefall:
|
||||||
|
|
||||||
|
Installation
|
||||||
|
============
|
||||||
|
|
||||||
|
- |os|
|
||||||
|
- |device|
|
||||||
|
- |python_versions|
|
||||||
|
- |torch_versions|
|
||||||
|
- |k2_versions|
|
||||||
|
|
||||||
|
.. |os| image:: ./images/os-Linux_macOS-ff69b4.svg
|
||||||
|
:alt: Supported operating systems
|
||||||
|
|
||||||
|
.. |device| image:: ./images/device-CPU_CUDA-orange.svg
|
||||||
|
:alt: Supported devices
|
||||||
|
|
||||||
|
.. |python_versions| image:: ./images/python-3.6_3.7_3.8_3.9-blue.svg
|
||||||
|
:alt: Supported python versions
|
||||||
|
|
||||||
|
.. |torch_versions| image:: ./images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg
|
||||||
|
:alt: Supported PyTorch versions
|
||||||
|
|
||||||
|
.. |k2_versions| image:: ./images/k2-v-1.7.svg
|
||||||
|
:alt: Supported k2 versions
|
||||||
|
|
||||||
|
``icefall`` depends on `k2 <https://github.com/k2-fsa/k2>`_ and
|
||||||
|
`lhotse <https://github.com/lhotse-speech/lhotse>`_.
|
||||||
|
|
||||||
|
We recommend you to install ``k2`` first, as ``k2`` is bound to
|
||||||
|
a specific version of PyTorch after compilation. Install ``k2`` also
|
||||||
|
installs its dependency PyTorch, which can be reused by ``lhotse``.
|
||||||
|
|
||||||
|
|
||||||
|
(1) Install k2
|
||||||
|
--------------
|
||||||
|
|
||||||
|
Please refer to `<https://k2.readthedocs.io/en/latest/installation/index.html>`_
|
||||||
|
to install ``k2``.
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
|
||||||
|
You need to install ``k2`` with a version at least **v1.7**.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
If you have already installed PyTorch and don't want to replace it,
|
||||||
|
please install a version of ``k2`` that is compiled against the version
|
||||||
|
of PyTorch you are using.
|
||||||
|
|
||||||
|
(2) Install lhotse
|
||||||
|
------------------
|
||||||
|
|
||||||
|
Please refer to `<https://lhotse.readthedocs.io/en/latest/getting-started.html#installation>`_
|
||||||
|
to install ``lhotse``.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
Install ``lhotse`` also installs its dependency `torchaudio <https://github.com/pytorch/audio>`_.
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
|
||||||
|
If you have installed ``torchaudio``, please consider uninstalling it before
|
||||||
|
installing ``lhotse``. Otherwise, it may update your already installed PyTorch.
|
||||||
|
|
||||||
|
(3) Download icefall
|
||||||
|
--------------------
|
||||||
|
|
||||||
|
``icefall`` is a collection of Python scripts, so you don't need to install it
|
||||||
|
and we don't provide a ``setup.py`` to install it.
|
||||||
|
|
||||||
|
What you need is to download it and set the environment variable ``PYTHONPATH``
|
||||||
|
to point to it.
|
||||||
|
|
||||||
|
Assume you want to place ``icefall`` in the folder ``/tmp``. The
|
||||||
|
following commands show you how to setup ``icefall``:
|
||||||
|
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
cd /tmp
|
||||||
|
git clone https://github.com/k2-fsa/icefall
|
||||||
|
cd icefall
|
||||||
|
pip install -r requirements.txt
|
||||||
|
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
You can put several versions of ``icefall`` in the same virtual environment.
|
||||||
|
To switch among different versions of ``icefall``, just set ``PYTHONPATH``
|
||||||
|
to point to the version you want.
|
||||||
|
|
||||||
|
|
||||||
|
Installation example
|
||||||
|
--------------------
|
||||||
|
|
||||||
|
The following shows an example about setting up the environment.
|
||||||
|
|
||||||
|
|
||||||
|
(1) Create a virtual environment
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ virtualenv -p python3.8 test-icefall
|
||||||
|
|
||||||
|
created virtual environment CPython3.8.6.final.0-64 in 1540ms
|
||||||
|
creator CPython3Posix(dest=/ceph-fj/fangjun/test-icefall, clear=False, no_vcs_ignore=False, global=False)
|
||||||
|
seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle, via=copy, app_data_dir=/root/fangjun/.local/share/v
|
||||||
|
irtualenv)
|
||||||
|
added seed packages: pip==21.1.3, setuptools==57.4.0, wheel==0.36.2
|
||||||
|
activators BashActivator,CShellActivator,FishActivator,PowerShellActivator,PythonActivator,XonshActivator
|
||||||
|
|
||||||
|
|
||||||
|
(2) Activate your virtual environment
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ source test-icefall/bin/activate
|
||||||
|
|
||||||
|
(3) Install k2
|
||||||
|
~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ pip install k2==1.4.dev20210822+cpu.torch1.9.0 -f https://k2-fsa.org/nightly/index.html
|
||||||
|
|
||||||
|
Looking in links: https://k2-fsa.org/nightly/index.html
|
||||||
|
Collecting k2==1.4.dev20210822+cpu.torch1.9.0
|
||||||
|
Downloading https://k2-fsa.org/nightly/whl/k2-1.4.dev20210822%2Bcpu.torch1.9.0-cp38-cp38-linux_x86_64.whl (1.6 MB)
|
||||||
|
|________________________________| 1.6 MB 185 kB/s
|
||||||
|
Collecting graphviz
|
||||||
|
Downloading graphviz-0.17-py3-none-any.whl (18 kB)
|
||||||
|
Collecting torch==1.9.0
|
||||||
|
Using cached torch-1.9.0-cp38-cp38-manylinux1_x86_64.whl (831.4 MB)
|
||||||
|
Collecting typing-extensions
|
||||||
|
Using cached typing_extensions-3.10.0.0-py3-none-any.whl (26 kB)
|
||||||
|
Installing collected packages: typing-extensions, torch, graphviz, k2
|
||||||
|
Successfully installed graphviz-0.17 k2-1.4.dev20210822+cpu.torch1.9.0 torch-1.9.0 typing-extensions-3.10.0.0
|
||||||
|
|
||||||
|
.. WARNING::
|
||||||
|
|
||||||
|
We choose to install a CPU version of k2 for testing. You would probably want to install
|
||||||
|
a CUDA version of k2.
|
||||||
|
|
||||||
|
|
||||||
|
(4) Install lhotse
|
||||||
|
~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
$ pip install git+https://github.com/lhotse-speech/lhotse
|
||||||
|
|
||||||
|
Collecting git+https://github.com/lhotse-speech/lhotse
|
||||||
|
Cloning https://github.com/lhotse-speech/lhotse to /tmp/pip-req-build-7b1b76ge
|
||||||
|
Running command git clone -q https://github.com/lhotse-speech/lhotse /tmp/pip-req-build-7b1b76ge
|
||||||
|
Collecting audioread>=2.1.9
|
||||||
|
Using cached audioread-2.1.9-py3-none-any.whl
|
||||||
|
Collecting SoundFile>=0.10
|
||||||
|
Using cached SoundFile-0.10.3.post1-py2.py3-none-any.whl (21 kB)
|
||||||
|
Collecting click>=7.1.1
|
||||||
|
Using cached click-8.0.1-py3-none-any.whl (97 kB)
|
||||||
|
Collecting cytoolz>=0.10.1
|
||||||
|
Using cached cytoolz-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB)
|
||||||
|
Collecting dataclasses
|
||||||
|
Using cached dataclasses-0.6-py3-none-any.whl (14 kB)
|
||||||
|
Collecting h5py>=2.10.0
|
||||||
|
Downloading h5py-3.4.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (4.5 MB)
|
||||||
|
|________________________________| 4.5 MB 684 kB/s
|
||||||
|
Collecting intervaltree>=3.1.0
|
||||||
|
Using cached intervaltree-3.1.0-py2.py3-none-any.whl
|
||||||
|
Collecting lilcom>=1.1.0
|
||||||
|
Using cached lilcom-1.1.1-cp38-cp38-linux_x86_64.whl
|
||||||
|
Collecting numpy>=1.18.1
|
||||||
|
Using cached numpy-1.21.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.8 MB)
|
||||||
|
Collecting packaging
|
||||||
|
Using cached packaging-21.0-py3-none-any.whl (40 kB)
|
||||||
|
Collecting pyyaml>=5.3.1
|
||||||
|
Using cached PyYAML-5.4.1-cp38-cp38-manylinux1_x86_64.whl (662 kB)
|
||||||
|
Collecting tqdm
|
||||||
|
Downloading tqdm-4.62.1-py2.py3-none-any.whl (76 kB)
|
||||||
|
|________________________________| 76 kB 2.7 MB/s
|
||||||
|
Collecting torchaudio==0.9.0
|
||||||
|
Downloading torchaudio-0.9.0-cp38-cp38-manylinux1_x86_64.whl (1.9 MB)
|
||||||
|
|________________________________| 1.9 MB 73.1 MB/s
|
||||||
|
Requirement already satisfied: torch==1.9.0 in ./test-icefall/lib/python3.8/site-packages (from torchaudio==0.9.0->lhotse===0.8.0.dev
|
||||||
|
-2a1410b-clean) (1.9.0)
|
||||||
|
Requirement already satisfied: typing-extensions in ./test-icefall/lib/python3.8/site-packages (from torch==1.9.0->torchaudio==0.9.0-
|
||||||
|
>lhotse===0.8.0.dev-2a1410b-clean) (3.10.0.0)
|
||||||
|
Collecting toolz>=0.8.0
|
||||||
|
Using cached toolz-0.11.1-py3-none-any.whl (55 kB)
|
||||||
|
Collecting sortedcontainers<3.0,>=2.0
|
||||||
|
Using cached sortedcontainers-2.4.0-py2.py3-none-any.whl (29 kB)
|
||||||
|
Collecting cffi>=1.0
|
||||||
|
Using cached cffi-1.14.6-cp38-cp38-manylinux1_x86_64.whl (411 kB)
|
||||||
|
Collecting pycparser
|
||||||
|
Using cached pycparser-2.20-py2.py3-none-any.whl (112 kB)
|
||||||
|
Collecting pyparsing>=2.0.2
|
||||||
|
Using cached pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)
|
||||||
|
Building wheels for collected packages: lhotse
|
||||||
|
Building wheel for lhotse (setup.py) ... done
|
||||||
|
Created wheel for lhotse: filename=lhotse-0.8.0.dev_2a1410b_clean-py3-none-any.whl size=342242 sha256=f683444afa4dc0881133206b4646a
|
||||||
|
9d0f774224cc84000f55d0a67f6e4a37997
|
||||||
|
Stored in directory: /tmp/pip-ephem-wheel-cache-ftu0qysz/wheels/7f/7a/8e/a0bf241336e2e3cb573e1e21e5600952d49f5162454f2e612f
|
||||||
|
WARNING: Built wheel for lhotse is invalid: Metadata 1.2 mandates PEP 440 version, but '0.8.0.dev-2a1410b-clean' is not
|
||||||
|
Failed to build lhotse
|
||||||
|
Installing collected packages: pycparser, toolz, sortedcontainers, pyparsing, numpy, cffi, tqdm, torchaudio, SoundFile, pyyaml, packa
|
||||||
|
ging, lilcom, intervaltree, h5py, dataclasses, cytoolz, click, audioread, lhotse
|
||||||
|
Running setup.py install for lhotse ... done
|
||||||
|
DEPRECATION: lhotse was installed using the legacy 'setup.py install' method, because a wheel could not be built for it. A possible
|
||||||
|
replacement is to fix the wheel build issue reported above. You can find discussion regarding this at https://github.com/pypa/pip/is
|
||||||
|
sues/8368.
|
||||||
|
Successfully installed SoundFile-0.10.3.post1 audioread-2.1.9 cffi-1.14.6 click-8.0.1 cytoolz-0.11.0 dataclasses-0.6 h5py-3.4.0 inter
|
||||||
|
valtree-3.1.0 lhotse-0.8.0.dev-2a1410b-clean lilcom-1.1.1 numpy-1.21.2 packaging-21.0 pycparser-2.20 pyparsing-2.4.7 pyyaml-5.4.1 sor
|
||||||
|
tedcontainers-2.4.0 toolz-0.11.1 torchaudio-0.9.0 tqdm-4.62.1
|
||||||
|
|
||||||
|
(5) Download icefall
|
||||||
|
~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
$ cd /tmp
|
||||||
|
$ git clone https://github.com/k2-fsa/icefall
|
||||||
|
|
||||||
|
Cloning into 'icefall'...
|
||||||
|
remote: Enumerating objects: 500, done.
|
||||||
|
remote: Counting objects: 100% (500/500), done.
|
||||||
|
remote: Compressing objects: 100% (308/308), done.
|
||||||
|
remote: Total 500 (delta 263), reused 307 (delta 102), pack-reused 0
|
||||||
|
Receiving objects: 100% (500/500), 172.49 KiB | 385.00 KiB/s, done.
|
||||||
|
Resolving deltas: 100% (263/263), done.
|
||||||
|
|
||||||
|
$ cd icefall
|
||||||
|
$ pip install -r requirements.txt
|
||||||
|
|
||||||
|
Collecting kaldilm
|
||||||
|
Downloading kaldilm-1.8.tar.gz (48 kB)
|
||||||
|
|________________________________| 48 kB 574 kB/s
|
||||||
|
Collecting kaldialign
|
||||||
|
Using cached kaldialign-0.2-cp38-cp38-linux_x86_64.whl
|
||||||
|
Collecting sentencepiece>=0.1.96
|
||||||
|
Using cached sentencepiece-0.1.96-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)
|
||||||
|
Collecting tensorboard
|
||||||
|
Using cached tensorboard-2.6.0-py3-none-any.whl (5.6 MB)
|
||||||
|
Requirement already satisfied: setuptools>=41.0.0 in /ceph-fj/fangjun/test-icefall/lib/python3.8/site-packages (from tensorboard->-r
|
||||||
|
requirements.txt (line 4)) (57.4.0)
|
||||||
|
Collecting absl-py>=0.4
|
||||||
|
Using cached absl_py-0.13.0-py3-none-any.whl (132 kB)
|
||||||
|
Collecting google-auth-oauthlib<0.5,>=0.4.1
|
||||||
|
Using cached google_auth_oauthlib-0.4.5-py2.py3-none-any.whl (18 kB)
|
||||||
|
Collecting grpcio>=1.24.3
|
||||||
|
Using cached grpcio-1.39.0-cp38-cp38-manylinux2014_x86_64.whl (4.3 MB)
|
||||||
|
Requirement already satisfied: wheel>=0.26 in /ceph-fj/fangjun/test-icefall/lib/python3.8/site-packages (from tensorboard->-r require
|
||||||
|
ments.txt (line 4)) (0.36.2)
|
||||||
|
Requirement already satisfied: numpy>=1.12.0 in /ceph-fj/fangjun/test-icefall/lib/python3.8/site-packages (from tensorboard->-r requi
|
||||||
|
rements.txt (line 4)) (1.21.2)
|
||||||
|
Collecting protobuf>=3.6.0
|
||||||
|
Using cached protobuf-3.17.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB)
|
||||||
|
Collecting werkzeug>=0.11.15
|
||||||
|
Using cached Werkzeug-2.0.1-py3-none-any.whl (288 kB)
|
||||||
|
Collecting tensorboard-data-server<0.7.0,>=0.6.0
|
||||||
|
Using cached tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl (4.9 MB)
|
||||||
|
Collecting google-auth<2,>=1.6.3
|
||||||
|
Downloading google_auth-1.35.0-py2.py3-none-any.whl (152 kB)
|
||||||
|
|________________________________| 152 kB 1.4 MB/s
|
||||||
|
Collecting requests<3,>=2.21.0
|
||||||
|
Using cached requests-2.26.0-py2.py3-none-any.whl (62 kB)
|
||||||
|
Collecting tensorboard-plugin-wit>=1.6.0
|
||||||
|
Using cached tensorboard_plugin_wit-1.8.0-py3-none-any.whl (781 kB)
|
||||||
|
Collecting markdown>=2.6.8
|
||||||
|
Using cached Markdown-3.3.4-py3-none-any.whl (97 kB)
|
||||||
|
Collecting six
|
||||||
|
Using cached six-1.16.0-py2.py3-none-any.whl (11 kB)
|
||||||
|
Collecting cachetools<5.0,>=2.0.0
|
||||||
|
Using cached cachetools-4.2.2-py3-none-any.whl (11 kB)
|
||||||
|
Collecting rsa<5,>=3.1.4
|
||||||
|
Using cached rsa-4.7.2-py3-none-any.whl (34 kB)
|
||||||
|
Collecting pyasn1-modules>=0.2.1
|
||||||
|
Using cached pyasn1_modules-0.2.8-py2.py3-none-any.whl (155 kB)
|
||||||
|
Collecting requests-oauthlib>=0.7.0
|
||||||
|
Using cached requests_oauthlib-1.3.0-py2.py3-none-any.whl (23 kB)
|
||||||
|
Collecting pyasn1<0.5.0,>=0.4.6
|
||||||
|
Using cached pyasn1-0.4.8-py2.py3-none-any.whl (77 kB)
|
||||||
|
Collecting urllib3<1.27,>=1.21.1
|
||||||
|
Using cached urllib3-1.26.6-py2.py3-none-any.whl (138 kB)
|
||||||
|
Collecting certifi>=2017.4.17
|
||||||
|
Using cached certifi-2021.5.30-py2.py3-none-any.whl (145 kB)
|
||||||
|
Collecting charset-normalizer~=2.0.0
|
||||||
|
Using cached charset_normalizer-2.0.4-py3-none-any.whl (36 kB)
|
||||||
|
Collecting idna<4,>=2.5
|
||||||
|
Using cached idna-3.2-py3-none-any.whl (59 kB)
|
||||||
|
Collecting oauthlib>=3.0.0
|
||||||
|
Using cached oauthlib-3.1.1-py2.py3-none-any.whl (146 kB)
|
||||||
|
Building wheels for collected packages: kaldilm
|
||||||
|
Building wheel for kaldilm (setup.py) ... done
|
||||||
|
Created wheel for kaldilm: filename=kaldilm-1.8-cp38-cp38-linux_x86_64.whl size=897233 sha256=eccb906cafcd45bf9a7e1a1718e4534254bfb
|
||||||
|
f4c0d0cbc66eee6c88d68a63862
|
||||||
|
Stored in directory: /root/fangjun/.cache/pip/wheels/85/7d/63/f2dd586369b8797cb36d213bf3a84a789eeb92db93d2e723c9
|
||||||
|
Successfully built kaldilm
|
||||||
|
Installing collected packages: urllib3, pyasn1, idna, charset-normalizer, certifi, six, rsa, requests, pyasn1-modules, oauthlib, cach
|
||||||
|
etools, requests-oauthlib, google-auth, werkzeug, tensorboard-plugin-wit, tensorboard-data-server, protobuf, markdown, grpcio, google
|
||||||
|
-auth-oauthlib, absl-py, tensorboard, sentencepiece, kaldilm, kaldialign
|
||||||
|
Successfully installed absl-py-0.13.0 cachetools-4.2.2 certifi-2021.5.30 charset-normalizer-2.0.4 google-auth-1.35.0 google-auth-oaut
|
||||||
|
hlib-0.4.5 grpcio-1.39.0 idna-3.2 kaldialign-0.2 kaldilm-1.8 markdown-3.3.4 oauthlib-3.1.1 protobuf-3.17.3 pyasn1-0.4.8 pyasn1-module
|
||||||
|
s-0.2.8 requests-2.26.0 requests-oauthlib-1.3.0 rsa-4.7.2 sentencepiece-0.1.96 six-1.16.0 tensorboard-2.6.0 tensorboard-data-server-0
|
||||||
|
.6.1 tensorboard-plugin-wit-1.8.0 urllib3-1.26.6 werkzeug-2.0.1
|
||||||
|
|
||||||
|
|
||||||
|
Test Your Installation
|
||||||
|
----------------------
|
||||||
|
|
||||||
|
To test that your installation is successful, let us run
|
||||||
|
the `yesno recipe <https://github.com/k2-fsa/icefall/tree/master/egs/yesno/ASR>`_
|
||||||
|
on CPU.
|
||||||
|
|
||||||
|
Data preparation
|
||||||
|
~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ export PYTHONPATH=/tmp/icefall:$PYTHONPATH
|
||||||
|
$ cd /tmp/icefall
|
||||||
|
$ cd egs/yesno/ASR
|
||||||
|
$ ./prepare.sh
|
||||||
|
|
||||||
|
The log of running ``./prepare.sh`` is:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
2021-08-23 19:27:26 (prepare.sh:24:main) dl_dir: /tmp/icefall/egs/yesno/ASR/download
|
||||||
|
2021-08-23 19:27:26 (prepare.sh:27:main) stage 0: Download data
|
||||||
|
Downloading waves_yesno.tar.gz: 4.49MB [00:03, 1.39MB/s]
|
||||||
|
2021-08-23 19:27:30 (prepare.sh:36:main) Stage 1: Prepare yesno manifest
|
||||||
|
2021-08-23 19:27:31 (prepare.sh:42:main) Stage 2: Compute fbank for yesno
|
||||||
|
2021-08-23 19:27:32,803 INFO [compute_fbank_yesno.py:52] Processing train
|
||||||
|
Extracting and storing features: 100%|_______________________________________________________________| 90/90 [00:01<00:00, 80.57it/s]
|
||||||
|
2021-08-23 19:27:34,085 INFO [compute_fbank_yesno.py:52] Processing test
|
||||||
|
Extracting and storing features: 100%|______________________________________________________________| 30/30 [00:00<00:00, 248.21it/s]
|
||||||
|
2021-08-23 19:27:34 (prepare.sh:48:main) Stage 3: Prepare lang
|
||||||
|
2021-08-23 19:27:35 (prepare.sh:63:main) Stage 4: Prepare G
|
||||||
|
/tmp/pip-install-fcordre9/kaldilm_6899d26f2d684ad48f21025950cd2866/kaldilm/csrc/arpa_file_parser.cc:void kaldilm::ArpaFileParser::Rea
|
||||||
|
d(std::istream&):79
|
||||||
|
[I] Reading \data\ section.
|
||||||
|
/tmp/pip-install-fcordre9/kaldilm_6899d26f2d684ad48f21025950cd2866/kaldilm/csrc/arpa_file_parser.cc:void kaldilm::ArpaFileParser::Rea
|
||||||
|
d(std::istream&):140
|
||||||
|
[I] Reading \1-grams: section.
|
||||||
|
2021-08-23 19:27:35 (prepare.sh:89:main) Stage 5: Compile HLG
|
||||||
|
2021-08-23 19:27:35,928 INFO [compile_hlg.py:120] Processing data/lang_phone
|
||||||
|
2021-08-23 19:27:35,929 INFO [lexicon.py:116] Converting L.pt to Linv.pt
|
||||||
|
2021-08-23 19:27:35,931 INFO [compile_hlg.py:48] Building ctc_topo. max_token_id: 3
|
||||||
|
2021-08-23 19:27:35,932 INFO [compile_hlg.py:52] Loading G.fst.txt
|
||||||
|
2021-08-23 19:27:35,932 INFO [compile_hlg.py:62] Intersecting L and G
|
||||||
|
2021-08-23 19:27:35,933 INFO [compile_hlg.py:64] LG shape: (4, None)
|
||||||
|
2021-08-23 19:27:35,933 INFO [compile_hlg.py:66] Connecting LG
|
||||||
|
2021-08-23 19:27:35,933 INFO [compile_hlg.py:68] LG shape after k2.connect: (4, None)
|
||||||
|
2021-08-23 19:27:35,933 INFO [compile_hlg.py:70] <class 'torch.Tensor'>
|
||||||
|
2021-08-23 19:27:35,933 INFO [compile_hlg.py:71] Determinizing LG
|
||||||
|
2021-08-23 19:27:35,934 INFO [compile_hlg.py:74] <class '_k2.RaggedInt'>
|
||||||
|
2021-08-23 19:27:35,934 INFO [compile_hlg.py:76] Connecting LG after k2.determinize
|
||||||
|
2021-08-23 19:27:35,934 INFO [compile_hlg.py:79] Removing disambiguation symbols on LG
|
||||||
|
2021-08-23 19:27:35,934 INFO [compile_hlg.py:87] LG shape after k2.remove_epsilon: (6, None)
|
||||||
|
2021-08-23 19:27:35,935 INFO [compile_hlg.py:92] Arc sorting LG
|
||||||
|
2021-08-23 19:27:35,935 INFO [compile_hlg.py:95] Composing H and LG
|
||||||
|
2021-08-23 19:27:35,935 INFO [compile_hlg.py:102] Connecting LG
|
||||||
|
2021-08-23 19:27:35,935 INFO [compile_hlg.py:105] Arc sorting LG
|
||||||
|
2021-08-23 19:27:35,936 INFO [compile_hlg.py:107] HLG.shape: (8, None)
|
||||||
|
2021-08-23 19:27:35,936 INFO [compile_hlg.py:123] Saving HLG.pt to data/lang_phone
|
||||||
|
|
||||||
|
|
||||||
|
Training
|
||||||
|
~~~~~~~~
|
||||||
|
|
||||||
|
Now let us run the training part:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
$ export CUDA_VISIBLE_DEVICES=""
|
||||||
|
$ ./tdnn/train.py
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
|
||||||
|
We use ``export CUDA_VISIBLE_DEVICES=""`` so that ``icefall`` uses CPU
|
||||||
|
even if there are GPUs available.
|
||||||
|
|
||||||
|
The training log is given below:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
2021-08-23 19:30:31,072 INFO [train.py:465] Training started
|
||||||
|
2021-08-23 19:30:31,072 INFO [train.py:466] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'lr': 0.01,
|
||||||
|
'feature_dim': 23, 'weight_decay': 1e-06, 'start_epoch': 0, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, '
|
||||||
|
best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 10, 'valid_interval': 10, 'beam_size': 10, 'reduction': 'sum', 'use_doub
|
||||||
|
le_scores': True, 'world_size': 1, 'master_port': 12354, 'tensorboard': True, 'num_epochs': 15, 'feature_dir': PosixPath('data/fbank'
|
||||||
|
), 'max_duration': 30.0, 'bucketing_sampler': False, 'num_buckets': 10, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0
|
||||||
|
, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 2}
|
||||||
|
2021-08-23 19:30:31,074 INFO [lexicon.py:113] Loading pre-compiled data/lang_phone/Linv.pt
|
||||||
|
2021-08-23 19:30:31,098 INFO [asr_datamodule.py:146] About to get train cuts
|
||||||
|
2021-08-23 19:30:31,098 INFO [asr_datamodule.py:240] About to get train cuts
|
||||||
|
2021-08-23 19:30:31,102 INFO [asr_datamodule.py:149] About to create train dataset
|
||||||
|
2021-08-23 19:30:31,102 INFO [asr_datamodule.py:200] Using SingleCutSampler.
|
||||||
|
2021-08-23 19:30:31,102 INFO [asr_datamodule.py:206] About to create train dataloader
|
||||||
|
2021-08-23 19:30:31,102 INFO [asr_datamodule.py:219] About to get test cuts
|
||||||
|
2021-08-23 19:30:31,102 INFO [asr_datamodule.py:246] About to get test cuts
|
||||||
|
2021-08-23 19:30:31,357 INFO [train.py:416] Epoch 0, batch 0, batch avg loss 1.0789, total avg loss: 1.0789, batch size: 4
|
||||||
|
2021-08-23 19:30:31,848 INFO [train.py:416] Epoch 0, batch 10, batch avg loss 0.5356, total avg loss: 0.7556, batch size: 4
|
||||||
|
2021-08-23 19:30:32,301 INFO [train.py:432] Epoch 0, valid loss 0.9972, best valid loss: 0.9972 best valid epoch: 0
|
||||||
|
2021-08-23 19:30:32,805 INFO [train.py:416] Epoch 0, batch 20, batch avg loss 0.2436, total avg loss: 0.5717, batch size: 3
|
||||||
|
2021-08-23 19:30:33,109 INFO [train.py:432] Epoch 0, valid loss 0.4167, best valid loss: 0.4167 best valid epoch: 0
|
||||||
|
2021-08-23 19:30:33,121 INFO [checkpoint.py:62] Saving checkpoint to tdnn/exp/epoch-0.pt
|
||||||
|
2021-08-23 19:30:33,325 INFO [train.py:416] Epoch 1, batch 0, batch avg loss 0.2214, total avg loss: 0.2214, batch size: 5
|
||||||
|
2021-08-23 19:30:33,798 INFO [train.py:416] Epoch 1, batch 10, batch avg loss 0.0781, total avg loss: 0.1343, batch size: 5
|
||||||
|
2021-08-23 19:30:34,065 INFO [train.py:432] Epoch 1, valid loss 0.0859, best valid loss: 0.0859 best valid epoch: 1
|
||||||
|
2021-08-23 19:30:34,556 INFO [train.py:416] Epoch 1, batch 20, batch avg loss 0.0421, total avg loss: 0.0975, batch size: 3
|
||||||
|
2021-08-23 19:30:34,810 INFO [train.py:432] Epoch 1, valid loss 0.0431, best valid loss: 0.0431 best valid epoch: 1
|
||||||
|
2021-08-23 19:30:34,824 INFO [checkpoint.py:62] Saving checkpoint to tdnn/exp/epoch-1.pt
|
||||||
|
|
||||||
|
... ...
|
||||||
|
|
||||||
|
2021-08-23 19:30:49,657 INFO [train.py:416] Epoch 13, batch 0, batch avg loss 0.0109, total avg loss: 0.0109, batch size: 5
|
||||||
|
2021-08-23 19:30:49,984 INFO [train.py:416] Epoch 13, batch 10, batch avg loss 0.0093, total avg loss: 0.0096, batch size: 4
|
||||||
|
2021-08-23 19:30:50,239 INFO [train.py:432] Epoch 13, valid loss 0.0104, best valid loss: 0.0101 best valid epoch: 12
|
||||||
|
2021-08-23 19:30:50,569 INFO [train.py:416] Epoch 13, batch 20, batch avg loss 0.0092, total avg loss: 0.0096, batch size: 2
|
||||||
|
2021-08-23 19:30:50,819 INFO [train.py:432] Epoch 13, valid loss 0.0101, best valid loss: 0.0101 best valid epoch: 13
|
||||||
|
2021-08-23 19:30:50,835 INFO [checkpoint.py:62] Saving checkpoint to tdnn/exp/epoch-13.pt
|
||||||
|
2021-08-23 19:30:51,024 INFO [train.py:416] Epoch 14, batch 0, batch avg loss 0.0105, total avg loss: 0.0105, batch size: 5
|
||||||
|
2021-08-23 19:30:51,317 INFO [train.py:416] Epoch 14, batch 10, batch avg loss 0.0099, total avg loss: 0.0097, batch size: 4
|
||||||
|
2021-08-23 19:30:51,552 INFO [train.py:432] Epoch 14, valid loss 0.0108, best valid loss: 0.0101 best valid epoch: 13
|
||||||
|
2021-08-23 19:30:51,869 INFO [train.py:416] Epoch 14, batch 20, batch avg loss 0.0096, total avg loss: 0.0097, batch size: 5
|
||||||
|
2021-08-23 19:30:52,107 INFO [train.py:432] Epoch 14, valid loss 0.0102, best valid loss: 0.0101 best valid epoch: 13
|
||||||
|
2021-08-23 19:30:52,126 INFO [checkpoint.py:62] Saving checkpoint to tdnn/exp/epoch-14.pt
|
||||||
|
2021-08-23 19:30:52,128 INFO [train.py:537] Done!
|
||||||
|
|
||||||
|
Decoding
|
||||||
|
~~~~~~~~
|
||||||
|
|
||||||
|
Let us use the trained model to decode the test set:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
$ ./tdnn/decode.py
|
||||||
|
|
||||||
|
The decoding log is:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
2021-08-23 19:35:30,192 INFO [decode.py:249] Decoding started
|
||||||
|
2021-08-23 19:35:30,192 INFO [decode.py:250] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'lm_dir': PosixPath('data/lm'), 'feature_dim': 23, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'epoch': 14, 'avg': 2, 'feature_dir': PosixPath('data/fbank'), 'max_duration': 30.0, 'bucketing_sampler': False, 'num_buckets': 10, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 2}
|
||||||
|
2021-08-23 19:35:30,193 INFO [lexicon.py:113] Loading pre-compiled data/lang_phone/Linv.pt
|
||||||
|
2021-08-23 19:35:30,213 INFO [decode.py:259] device: cpu
|
||||||
|
2021-08-23 19:35:30,217 INFO [decode.py:279] averaging ['tdnn/exp/epoch-13.pt', 'tdnn/exp/epoch-14.pt']
|
||||||
|
/tmp/icefall/icefall/checkpoint.py:146: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch.
|
||||||
|
It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.
|
||||||
|
To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at /pytorch/aten/src/ATen/native/BinaryOps.cpp:450.)
|
||||||
|
avg[k] //= n
|
||||||
|
2021-08-23 19:35:30,220 INFO [asr_datamodule.py:219] About to get test cuts
|
||||||
|
2021-08-23 19:35:30,220 INFO [asr_datamodule.py:246] About to get test cuts
|
||||||
|
2021-08-23 19:35:30,409 INFO [decode.py:190] batch 0/8, cuts processed until now is 4
|
||||||
|
2021-08-23 19:35:30,571 INFO [decode.py:228] The transcripts are stored in tdnn/exp/recogs-test_set.txt
|
||||||
|
2021-08-23 19:35:30,572 INFO [utils.py:317] [test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
|
||||||
|
2021-08-23 19:35:30,573 INFO [decode.py:236] Wrote detailed error stats to tdnn/exp/errs-test_set.txt
|
||||||
|
2021-08-23 19:35:30,573 INFO [decode.py:299] Done!
|
||||||
|
|
||||||
|
**Congratulations!** You have successfully setup the environment and have run the first recipe in ``icefall``.
|
||||||
|
|
||||||
|
Have fun with ``icefall``!
|
BIN
docs/source/recipes/images/yesno-tdnn-tensorboard-log.png
Normal file
After Width: | Height: | Size: 121 KiB |
17
docs/source/recipes/index.rst
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
Recipes
|
||||||
|
=======
|
||||||
|
|
||||||
|
This page contains various recipes in ``icefall``.
|
||||||
|
Currently, only speech recognition recipes are provided.
|
||||||
|
|
||||||
|
We may add recipes for other tasks as well in the future.
|
||||||
|
|
||||||
|
.. we put the yesno recipe as the first recipe since it is the simplest one.
|
||||||
|
.. Other recipes are listed in a alphabetical order.
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 2
|
||||||
|
|
||||||
|
yesno
|
||||||
|
|
||||||
|
librispeech
|
10
docs/source/recipes/librispeech.rst
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
LibriSpeech
|
||||||
|
===========
|
||||||
|
|
||||||
|
We provide the following models for the LibriSpeech dataset:
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 2
|
||||||
|
|
||||||
|
librispeech/tdnn_lstm_ctc
|
||||||
|
librispeech/conformer_ctc
|
627
docs/source/recipes/librispeech/conformer_ctc.rst
Normal file
@ -0,0 +1,627 @@
|
|||||||
|
Confromer CTC
|
||||||
|
=============
|
||||||
|
|
||||||
|
This tutorial shows you how to run a conformer ctc model
|
||||||
|
with the `LibriSpeech <https://www.openslr.org/12>`_ dataset.
|
||||||
|
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
We assume you have read the page :ref:`install icefall` and have setup
|
||||||
|
the environment for ``icefall``.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
We recommend you to use a GPU or several GPUs to run this recipe.
|
||||||
|
|
||||||
|
In this tutorial, you will learn:
|
||||||
|
|
||||||
|
- (1) How to prepare data for training and decoding
|
||||||
|
- (2) How to start the training, either with a single GPU or multiple GPUs
|
||||||
|
- (3) How to do decoding after training, with n-gram LM rescoring and attention decoder rescoring
|
||||||
|
- (4) How to use a pre-trained model, provided by us
|
||||||
|
|
||||||
|
Data preparation
|
||||||
|
----------------
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./prepare.sh
|
||||||
|
|
||||||
|
The script ``./prepare.sh`` handles the data preparation for you, **automagically**.
|
||||||
|
All you need to do is to run it.
|
||||||
|
|
||||||
|
The data preparation contains several stages, you can use the following two
|
||||||
|
options:
|
||||||
|
|
||||||
|
- ``--stage``
|
||||||
|
- ``--stop-stage``
|
||||||
|
|
||||||
|
to control which stage(s) should be run. By default, all stages are executed.
|
||||||
|
|
||||||
|
|
||||||
|
For example,
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/yesno/ASR
|
||||||
|
$ ./prepare.sh --stage 0 --stop-stage 0
|
||||||
|
|
||||||
|
means to run only stage 0.
|
||||||
|
|
||||||
|
To run stage 2 to stage 5, use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./prepare.sh --stage 2 --stop-stage 5
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
If you have pre-downloaded the `LibriSpeech <https://www.openslr.org/12>`_
|
||||||
|
dataset and the `musan <http://www.openslr.org/17/>`_ dataset, say,
|
||||||
|
they are saved in ``/tmp/LibriSpeech`` and ``/tmp/musan``, you can modify
|
||||||
|
the ``dl_dir`` variable in ``./prepare.sh`` to point to ``/tmp`` so that
|
||||||
|
``./prepare.sh`` won't re-download them.
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
All generated files by ``./prepare.sh``, e.g., features, lexicon, etc,
|
||||||
|
are saved in ``./data`` directory.
|
||||||
|
|
||||||
|
|
||||||
|
Training
|
||||||
|
--------
|
||||||
|
|
||||||
|
Configurable options
|
||||||
|
~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./conformer_ctc/train.py --help
|
||||||
|
|
||||||
|
shows you the training options that can be passed from the commandline.
|
||||||
|
The following options are used quite often:
|
||||||
|
|
||||||
|
- ``--full-libri``
|
||||||
|
|
||||||
|
If it's True, the training part uses all the training data, i.e.,
|
||||||
|
960 hours. Otherwise, the training part uses only the subset
|
||||||
|
``train-clean-100``, which has 100 hours of training data.
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
|
||||||
|
The training set is perturbed by speed with two factors: 0.9 and 1.1.
|
||||||
|
If ``--full-libri`` is True, each epoch actually processes
|
||||||
|
``3x960 == 2880`` hours of data.
|
||||||
|
|
||||||
|
- ``--num-epochs``
|
||||||
|
|
||||||
|
It is the number of epochs to train. For instance,
|
||||||
|
``./conformer_ctc/train.py --num-epochs 30`` trains for 30 epochs
|
||||||
|
and generates ``epoch-0.pt``, ``epoch-1.pt``, ..., ``epoch-29.pt``
|
||||||
|
in the folder ``./conformer_ctc/exp``.
|
||||||
|
|
||||||
|
- ``--start-epoch``
|
||||||
|
|
||||||
|
It's used to resume training.
|
||||||
|
``./conformer_ctc/train.py --start-epoch 10`` loads the
|
||||||
|
checkpoint ``./conformer_ctc/exp/epoch-9.pt`` and starts
|
||||||
|
training from epoch 10, based on the state from epoch 9.
|
||||||
|
|
||||||
|
- ``--world-size``
|
||||||
|
|
||||||
|
It is used for multi-GPU single-machine DDP training.
|
||||||
|
|
||||||
|
- (a) If it is 1, then no DDP training is used.
|
||||||
|
|
||||||
|
- (b) If it is 2, then GPU 0 and GPU 1 are used for DDP training.
|
||||||
|
|
||||||
|
The following shows some use cases with it.
|
||||||
|
|
||||||
|
**Use case 1**: You have 4 GPUs, but you only want to use GPU 0 and
|
||||||
|
GPU 2 for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="0,2"
|
||||||
|
$ ./conformer_ctc/train.py --world-size 2
|
||||||
|
|
||||||
|
**Use case 2**: You have 4 GPUs and you want to use all of them
|
||||||
|
for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./conformer_ctc/train.py --world-size 4
|
||||||
|
|
||||||
|
**Use case 3**: You have 4 GPUs but you only want to use GPU 3
|
||||||
|
for training. You can do the following:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="3"
|
||||||
|
$ ./conformer_ctc/train.py --world-size 1
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
|
||||||
|
Only multi-GPU single-machine DDP training is implemented at present.
|
||||||
|
Multi-GPU multi-machine DDP training will be added later.
|
||||||
|
|
||||||
|
- ``--max-duration``
|
||||||
|
|
||||||
|
It specifies the number of seconds over all utterances in a
|
||||||
|
batch, before **padding**.
|
||||||
|
If you encounter CUDA OOM, please reduce it. For instance, if
|
||||||
|
your are using V100 NVIDIA GPU, we recommend you to set it to ``200``.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
Due to padding, the number of seconds of all utterances in a
|
||||||
|
batch will usually be larger than ``--max-duration``.
|
||||||
|
|
||||||
|
A larger value for ``--max-duration`` may cause OOM during training,
|
||||||
|
while a smaller value may increase the training time. You have to
|
||||||
|
tune it.
|
||||||
|
|
||||||
|
|
||||||
|
Pre-configured options
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
There are some training options, e.g., learning rate,
|
||||||
|
number of warmup steps, results dir, etc,
|
||||||
|
that are not passed from the commandline.
|
||||||
|
They are pre-configured by the function ``get_params()`` in
|
||||||
|
`conformer_ctc/train.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/conformer_ctc/train.py>`_
|
||||||
|
|
||||||
|
You don't need to change these pre-configured parameters. If you really need to change
|
||||||
|
them, please modify ``./conformer_ctc/train.py`` directly.
|
||||||
|
|
||||||
|
|
||||||
|
Training logs
|
||||||
|
~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
Training logs and checkpoints are saved in ``conformer_ctc/exp``.
|
||||||
|
You will find the following files in that directory:
|
||||||
|
|
||||||
|
- ``epoch-0.pt``, ``epoch-1.pt``, ...
|
||||||
|
|
||||||
|
These are checkpoint files, containing model ``state_dict`` and optimizer ``state_dict``.
|
||||||
|
To resume training from some checkpoint, say ``epoch-10.pt``, you can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./conformer_ctc/train.py --start-epoch 11
|
||||||
|
|
||||||
|
- ``tensorboard/``
|
||||||
|
|
||||||
|
This folder contains TensorBoard logs. Training loss, validation loss, learning
|
||||||
|
rate, etc, are recorded in these logs. You can visualize them by:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd conformer_ctc/exp/tensorboard
|
||||||
|
$ tensorboard dev upload --logdir . --description "Conformer CTC training for LibriSpeech with icefall"
|
||||||
|
|
||||||
|
It will print something like below:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
TensorFlow installation not found - running with reduced feature set.
|
||||||
|
Upload started and will continue reading any new data as it's added to the logdir.
|
||||||
|
|
||||||
|
To stop uploading, press Ctrl-C.
|
||||||
|
|
||||||
|
New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/lzGnETjwRxC3yghNMd4kPw/
|
||||||
|
|
||||||
|
[2021-08-24T16:42:43] Started scanning logdir.
|
||||||
|
Uploading 4540 scalars...
|
||||||
|
|
||||||
|
Note there is a URL in the above output, click it and you will see
|
||||||
|
the following screenshot:
|
||||||
|
|
||||||
|
.. figure:: images/librispeech-conformer-ctc-tensorboard-log.png
|
||||||
|
:width: 600
|
||||||
|
:alt: TensorBoard screenshot
|
||||||
|
:align: center
|
||||||
|
:target: https://tensorboard.dev/experiment/lzGnETjwRxC3yghNMd4kPw/
|
||||||
|
|
||||||
|
TensorBoard screenshot.
|
||||||
|
|
||||||
|
- ``log/log-train-xxxx``
|
||||||
|
|
||||||
|
It is the detailed training log in text format, same as the one
|
||||||
|
you saw printed to the console during training.
|
||||||
|
|
||||||
|
Usage examples
|
||||||
|
~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
The following shows typical use cases:
|
||||||
|
|
||||||
|
**Case 1**
|
||||||
|
^^^^^^^^^^
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./conformer_ctc/train.py --max-duration 200 --full-libri 0
|
||||||
|
|
||||||
|
It uses ``--max-duration`` of 200 to avoid OOM. Also, it uses only
|
||||||
|
a subset of the LibriSpeech data for training.
|
||||||
|
|
||||||
|
|
||||||
|
**Case 2**
|
||||||
|
^^^^^^^^^^
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="0,3"
|
||||||
|
$ ./conformer_ctc/train.py --world-size 2
|
||||||
|
|
||||||
|
It uses GPU 0 and GPU 3 for DDP training.
|
||||||
|
|
||||||
|
**Case 3**
|
||||||
|
^^^^^^^^^^
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./conformer_ctc/train.py --num-epochs 10 --start-epoch 3
|
||||||
|
|
||||||
|
It loads checkpoint ``./conformer_ctc/exp/epoch-2.pt`` and starts
|
||||||
|
training from epoch 3. Also, it trains for 10 epochs.
|
||||||
|
|
||||||
|
Decoding
|
||||||
|
--------
|
||||||
|
|
||||||
|
The decoding part uses checkpoints saved by the training part, so you have
|
||||||
|
to run the training part first.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./conformer_ctc/decode.py --help
|
||||||
|
|
||||||
|
shows the options for decoding.
|
||||||
|
|
||||||
|
The commonly used options are:
|
||||||
|
|
||||||
|
- ``--method``
|
||||||
|
|
||||||
|
This specifies the decoding method.
|
||||||
|
|
||||||
|
The following command uses attention decoder for rescoring:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./conformer_ctc/decode.py --method attention-decoder --max-duration 30 --lattice-score-scale 0.5
|
||||||
|
|
||||||
|
- ``--lattice-score-scale``
|
||||||
|
|
||||||
|
It is used to scale down lattice scores so that there are more unique
|
||||||
|
paths for rescoring.
|
||||||
|
|
||||||
|
- ``--max-duration``
|
||||||
|
|
||||||
|
It has the same meaning as the one during training. A larger
|
||||||
|
value may cause OOM.
|
||||||
|
|
||||||
|
Pre-trained Model
|
||||||
|
-----------------
|
||||||
|
|
||||||
|
We have uploaded a pre-trained model to
|
||||||
|
`<https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc>`_.
|
||||||
|
|
||||||
|
We describe how to use the pre-trained model to transcribe a sound file or
|
||||||
|
multiple sound files in the following.
|
||||||
|
|
||||||
|
Install kaldifeat
|
||||||
|
~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
`kaldifeat <https://github.com/csukuangfj/kaldifeat>`_ is used to
|
||||||
|
extract features for a single sound file or multiple sound files
|
||||||
|
at the same time.
|
||||||
|
|
||||||
|
Please refer to `<https://github.com/csukuangfj/kaldifeat>`_ for installation.
|
||||||
|
|
||||||
|
Download the pre-trained model
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
The following commands describe how to download the pre-trained model:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ mkdir tmp
|
||||||
|
$ cd tmp
|
||||||
|
$ git lfs install
|
||||||
|
$ git clone https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
|
||||||
|
You have to use ``git lfs`` to download the pre-trained model.
|
||||||
|
|
||||||
|
After downloading, you will have the following files:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ tree tmp
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
tmp
|
||||||
|
`-- icefall_asr_librispeech_conformer_ctc
|
||||||
|
|-- README.md
|
||||||
|
|-- data
|
||||||
|
| |-- lang_bpe
|
||||||
|
| | |-- HLG.pt
|
||||||
|
| | |-- bpe.model
|
||||||
|
| | |-- tokens.txt
|
||||||
|
| | `-- words.txt
|
||||||
|
| `-- lm
|
||||||
|
| `-- G_4_gram.pt
|
||||||
|
|-- exp
|
||||||
|
| `-- pretrained.pt
|
||||||
|
`-- test_wavs
|
||||||
|
|-- 1089-134686-0001.flac
|
||||||
|
|-- 1221-135766-0001.flac
|
||||||
|
|-- 1221-135766-0002.flac
|
||||||
|
`-- trans.txt
|
||||||
|
|
||||||
|
6 directories, 11 files
|
||||||
|
|
||||||
|
**File descriptions**:
|
||||||
|
|
||||||
|
- ``data/lang_bpe/HLG.pt``
|
||||||
|
|
||||||
|
It is the decoding graph.
|
||||||
|
|
||||||
|
- ``data/lang_bpe/bpe.model``
|
||||||
|
|
||||||
|
It is a sentencepiece model. You can use it to reproduce our results.
|
||||||
|
|
||||||
|
- ``data/lang_bpe/tokens.txt``
|
||||||
|
|
||||||
|
It contains tokens and their IDs, generated from ``bpe.model``.
|
||||||
|
Provided only for convenience so that you can look up the SOS/EOS ID easily.
|
||||||
|
|
||||||
|
- ``data/lang_bpe/words.txt``
|
||||||
|
|
||||||
|
It contains words and their IDs.
|
||||||
|
|
||||||
|
- ``data/lm/G_4_gram.pt``
|
||||||
|
|
||||||
|
It is a 4-gram LM, used for n-gram LM rescoring.
|
||||||
|
|
||||||
|
- ``exp/pretrained.pt``
|
||||||
|
|
||||||
|
It contains pre-trained model parameters, obtained by averaging
|
||||||
|
checkpoints from ``epoch-15.pt`` to ``epoch-34.pt``.
|
||||||
|
Note: We have removed optimizer ``state_dict`` to reduce file size.
|
||||||
|
|
||||||
|
- ``test_waves/*.flac``
|
||||||
|
|
||||||
|
It contains some test sound files from LibriSpeech ``test-clean`` dataset.
|
||||||
|
|
||||||
|
- `test_waves/trans.txt`
|
||||||
|
|
||||||
|
It contains the reference transcripts for the sound files in `test_waves/`.
|
||||||
|
|
||||||
|
The information of the test sound files is listed below:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ soxi tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/*.flac
|
||||||
|
|
||||||
|
Input File : 'tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac'
|
||||||
|
Channels : 1
|
||||||
|
Sample Rate : 16000
|
||||||
|
Precision : 16-bit
|
||||||
|
Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors
|
||||||
|
File Size : 116k
|
||||||
|
Bit Rate : 140k
|
||||||
|
Sample Encoding: 16-bit FLAC
|
||||||
|
|
||||||
|
Input File : 'tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac'
|
||||||
|
Channels : 1
|
||||||
|
Sample Rate : 16000
|
||||||
|
Precision : 16-bit
|
||||||
|
Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors
|
||||||
|
File Size : 343k
|
||||||
|
Bit Rate : 164k
|
||||||
|
Sample Encoding: 16-bit FLAC
|
||||||
|
|
||||||
|
Input File : 'tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac'
|
||||||
|
Channels : 1
|
||||||
|
Sample Rate : 16000
|
||||||
|
Precision : 16-bit
|
||||||
|
Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors
|
||||||
|
File Size : 105k
|
||||||
|
Bit Rate : 174k
|
||||||
|
Sample Encoding: 16-bit FLAC
|
||||||
|
|
||||||
|
Total Duration of 3 files: 00:00:28.16
|
||||||
|
|
||||||
|
Usage
|
||||||
|
~~~~~
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./conformer_ctc/pretrained.py --help
|
||||||
|
|
||||||
|
displays the help information.
|
||||||
|
|
||||||
|
It supports three decoding methods:
|
||||||
|
|
||||||
|
- HLG decoding
|
||||||
|
- HLG + n-gram LM rescoring
|
||||||
|
- HLG + n-gram LM rescoring + attention decoder rescoring
|
||||||
|
|
||||||
|
HLG decoding
|
||||||
|
^^^^^^^^^^^^
|
||||||
|
|
||||||
|
HLG decoding uses the best path of the decoding lattice as the decoding result.
|
||||||
|
|
||||||
|
The command to run HLG decoding is:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./conformer_ctc/pretrained.py \
|
||||||
|
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \
|
||||||
|
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
|
||||||
|
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||||
|
|
||||||
|
The output is given below:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
2021-08-20 11:03:05,712 INFO [pretrained.py:217] device: cuda:0
|
||||||
|
2021-08-20 11:03:05,712 INFO [pretrained.py:219] Creating model
|
||||||
|
2021-08-20 11:03:11,345 INFO [pretrained.py:238] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
|
||||||
|
2021-08-20 11:03:18,442 INFO [pretrained.py:255] Constructing Fbank computer
|
||||||
|
2021-08-20 11:03:18,444 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
|
||||||
|
2021-08-20 11:03:18,507 INFO [pretrained.py:271] Decoding started
|
||||||
|
2021-08-20 11:03:18,795 INFO [pretrained.py:300] Use HLG decoding
|
||||||
|
2021-08-20 11:03:19,149 INFO [pretrained.py:339]
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
|
||||||
|
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||||
|
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac:
|
||||||
|
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
||||||
|
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||||
|
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
|
||||||
|
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||||
|
|
||||||
|
2021-08-20 11:03:19,149 INFO [pretrained.py:341] Decoding Done
|
||||||
|
|
||||||
|
HLG decoding + LM rescoring
|
||||||
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||||
|
|
||||||
|
It uses an n-gram LM to rescore the decoding lattice and the best
|
||||||
|
path of the rescored lattice is the decoding result.
|
||||||
|
|
||||||
|
The command to run HLG decoding + LM rescoring is:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./conformer_ctc/pretrained.py \
|
||||||
|
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \
|
||||||
|
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
|
||||||
|
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
|
||||||
|
--method whole-lattice-rescoring \
|
||||||
|
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
|
||||||
|
--ngram-lm-scale 0.8 \
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||||
|
|
||||||
|
Its output is:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
2021-08-20 11:12:17,565 INFO [pretrained.py:217] device: cuda:0
|
||||||
|
2021-08-20 11:12:17,565 INFO [pretrained.py:219] Creating model
|
||||||
|
2021-08-20 11:12:23,728 INFO [pretrained.py:238] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
|
||||||
|
2021-08-20 11:12:30,035 INFO [pretrained.py:246] Loading G from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt
|
||||||
|
2021-08-20 11:13:10,779 INFO [pretrained.py:255] Constructing Fbank computer
|
||||||
|
2021-08-20 11:13:10,787 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
|
||||||
|
2021-08-20 11:13:10,798 INFO [pretrained.py:271] Decoding started
|
||||||
|
2021-08-20 11:13:11,085 INFO [pretrained.py:305] Use HLG decoding + LM rescoring
|
||||||
|
2021-08-20 11:13:11,736 INFO [pretrained.py:339]
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
|
||||||
|
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||||
|
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac:
|
||||||
|
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
||||||
|
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||||
|
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
|
||||||
|
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||||
|
|
||||||
|
2021-08-20 11:13:11,737 INFO [pretrained.py:341] Decoding Done
|
||||||
|
|
||||||
|
HLG decoding + LM rescoring + attention decoder rescoring
|
||||||
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||||
|
|
||||||
|
It uses an n-gram LM to rescore the decoding lattice, extracts
|
||||||
|
n paths from the rescored lattice, recores the extracted paths with
|
||||||
|
an attention decoder. The path with the highest score is the decoding result.
|
||||||
|
|
||||||
|
The command to run HLG decoding + LM rescoring + attention decoder rescoring is:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./conformer_ctc/pretrained.py \
|
||||||
|
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretrained.pt \
|
||||||
|
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
|
||||||
|
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
|
||||||
|
--method attention-decoder \
|
||||||
|
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
|
||||||
|
--ngram-lm-scale 1.3 \
|
||||||
|
--attention-decoder-scale 1.2 \
|
||||||
|
--lattice-score-scale 0.5 \
|
||||||
|
--num-paths 100 \
|
||||||
|
--sos-id 1 \
|
||||||
|
--eos-id 1 \
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||||
|
|
||||||
|
The output is below:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
2021-08-20 11:19:11,397 INFO [pretrained.py:217] device: cuda:0
|
||||||
|
2021-08-20 11:19:11,397 INFO [pretrained.py:219] Creating model
|
||||||
|
2021-08-20 11:19:17,354 INFO [pretrained.py:238] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
|
||||||
|
2021-08-20 11:19:24,615 INFO [pretrained.py:246] Loading G from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt
|
||||||
|
2021-08-20 11:20:04,576 INFO [pretrained.py:255] Constructing Fbank computer
|
||||||
|
2021-08-20 11:20:04,584 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
|
||||||
|
2021-08-20 11:20:04,595 INFO [pretrained.py:271] Decoding started
|
||||||
|
2021-08-20 11:20:04,854 INFO [pretrained.py:313] Use HLG + LM rescoring + attention decoder rescoring
|
||||||
|
2021-08-20 11:20:05,805 INFO [pretrained.py:339]
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
|
||||||
|
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||||
|
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac:
|
||||||
|
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
||||||
|
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||||
|
|
||||||
|
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
|
||||||
|
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||||
|
|
||||||
|
2021-08-20 11:20:05,805 INFO [pretrained.py:341] Decoding Done
|
||||||
|
|
||||||
|
Colab notebook
|
||||||
|
--------------
|
||||||
|
|
||||||
|
We do provide a colab notebook for this recipe showing how to use a pre-trained model.
|
||||||
|
|
||||||
|
|librispeech asr conformer ctc colab notebook|
|
||||||
|
|
||||||
|
.. |librispeech asr conformer ctc colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg
|
||||||
|
:target: https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
Due to limited memory provided by Colab, you have to upgrade to Colab Pro to
|
||||||
|
run ``HLG decoding + LM rescoring`` and
|
||||||
|
``HLG decoding + LM rescoring + attention decoder rescoring``.
|
||||||
|
Otherwise, you can only run ``HLG decoding`` with Colab.
|
||||||
|
|
||||||
|
**Congratulations!** You have finished the librispeech ASR recipe with
|
||||||
|
conformer CTC models in ``icefall``.
|
After Width: | Height: | Size: 422 KiB |
322
docs/source/recipes/librispeech/tdnn_lstm_ctc.rst
Normal file
@ -0,0 +1,322 @@
|
|||||||
|
TDNN-LSTM-CTC
|
||||||
|
=============
|
||||||
|
|
||||||
|
This tutorial shows you how to run a TDNN-LSTM-CTC model with the `LibriSpeech <https://www.openslr.org/12>`_ dataset.
|
||||||
|
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
We assume you have read the page :ref:`install icefall` and have setup
|
||||||
|
the environment for ``icefall``.
|
||||||
|
|
||||||
|
|
||||||
|
Data preparation
|
||||||
|
----------------
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./prepare.sh
|
||||||
|
|
||||||
|
The script ``./prepare.sh`` handles the data preparation for you, **automagically**.
|
||||||
|
All you need to do is to run it.
|
||||||
|
|
||||||
|
The data preparation contains several stages, you can use the following two
|
||||||
|
options:
|
||||||
|
|
||||||
|
- ``--stage``
|
||||||
|
- ``--stop-stage``
|
||||||
|
|
||||||
|
to control which stage(s) should be run. By default, all stages are executed.
|
||||||
|
|
||||||
|
|
||||||
|
For example,
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./prepare.sh --stage 0 --stop-stage 0
|
||||||
|
|
||||||
|
means to run only stage 0.
|
||||||
|
|
||||||
|
To run stage 2 to stage 5, use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./prepare.sh --stage 2 --stop-stage 5
|
||||||
|
|
||||||
|
|
||||||
|
Training
|
||||||
|
--------
|
||||||
|
|
||||||
|
Now describing the training of TDNN-LSTM-CTC model, contained in
|
||||||
|
the `tdnn_lstm_ctc <https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/tdnn_lstm_ctc>`_
|
||||||
|
folder.
|
||||||
|
|
||||||
|
The command to run the training part is:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
$ ./tdnn_lstm_ctc/train.py --world-size 4
|
||||||
|
|
||||||
|
By default, it will run ``20`` epochs. Training logs and checkpoints are saved
|
||||||
|
in ``tdnn_lstm_ctc/exp``.
|
||||||
|
|
||||||
|
In ``tdnn_lstm_ctc/exp``, you will find the following files:
|
||||||
|
|
||||||
|
- ``epoch-0.pt``, ``epoch-1.pt``, ..., ``epoch-19.pt``
|
||||||
|
|
||||||
|
These are checkpoint files, containing model ``state_dict`` and optimizer ``state_dict``.
|
||||||
|
To resume training from some checkpoint, say ``epoch-10.pt``, you can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./tdnn_lstm_ctc/train.py --start-epoch 11
|
||||||
|
|
||||||
|
- ``tensorboard/``
|
||||||
|
|
||||||
|
This folder contains TensorBoard logs. Training loss, validation loss, learning
|
||||||
|
rate, etc, are recorded in these logs. You can visualize them by:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd tdnn_lstm_ctc/exp/tensorboard
|
||||||
|
$ tensorboard dev upload --logdir . --description "TDNN LSTM training for librispeech with icefall"
|
||||||
|
|
||||||
|
- ``log/log-train-xxxx``
|
||||||
|
|
||||||
|
It is the detailed training log in text format, same as the one
|
||||||
|
you saw printed to the console during training.
|
||||||
|
|
||||||
|
|
||||||
|
To see available training options, you can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./tdnn_lstm_ctc/train.py --help
|
||||||
|
|
||||||
|
Other training options, e.g., learning rate, results dir, etc., are
|
||||||
|
pre-configured in the function ``get_params()``
|
||||||
|
in `tdnn_lstm_ctc/train.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/tdnn_lstm_ctc/train.py>`_.
|
||||||
|
Normally, you don't need to change them. You can change them by modifying the code, if
|
||||||
|
you want.
|
||||||
|
|
||||||
|
Decoding
|
||||||
|
--------
|
||||||
|
|
||||||
|
The decoding part uses checkpoints saved by the training part, so you have
|
||||||
|
to run the training part first.
|
||||||
|
|
||||||
|
The command for decoding is:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="0"
|
||||||
|
$ ./tdnn_lstm_ctc/decode.py
|
||||||
|
|
||||||
|
You will see the WER in the output log.
|
||||||
|
|
||||||
|
Decoded results are saved in ``tdnn_lstm_ctc/exp``.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./tdnn_lstm_ctc/decode.py --help
|
||||||
|
|
||||||
|
shows you the available decoding options.
|
||||||
|
|
||||||
|
Some commonly used options are:
|
||||||
|
|
||||||
|
- ``--epoch``
|
||||||
|
|
||||||
|
You can select which checkpoint to be used for decoding.
|
||||||
|
For instance, ``./tdnn_lstm_ctc/decode.py --epoch 10`` means to use
|
||||||
|
``./tdnn_lstm_ctc/exp/epoch-10.pt`` for decoding.
|
||||||
|
|
||||||
|
- ``--avg``
|
||||||
|
|
||||||
|
It's related to model averaging. It specifies number of checkpoints
|
||||||
|
to be averaged. The averaged model is used for decoding.
|
||||||
|
For example, the following command:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./tdnn_lstm_ctc/decode.py --epoch 10 --avg 3
|
||||||
|
|
||||||
|
uses the average of ``epoch-8.pt``, ``epoch-9.pt`` and ``epoch-10.pt``
|
||||||
|
for decoding.
|
||||||
|
|
||||||
|
- ``--export``
|
||||||
|
|
||||||
|
If it is ``True``, i.e., ``./tdnn_lstm_ctc/decode.py --export 1``, the code
|
||||||
|
will save the averaged model to ``tdnn_lstm_ctc/exp/pretrained.pt``.
|
||||||
|
See :ref:`tdnn_lstm_ctc use a pre-trained model` for how to use it.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
There are several decoding methods provided in `tdnn_lstm_ctc/decode.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/tdnn_lstm_ctc/train.py>`_, you can change the decoding method by modifying ``method`` parameter in function ``get_params()``.
|
||||||
|
|
||||||
|
|
||||||
|
.. _tdnn_lstm_ctc use a pre-trained model:
|
||||||
|
|
||||||
|
Pre-trained Model
|
||||||
|
-----------------
|
||||||
|
|
||||||
|
We have uploaded the pre-trained model to
|
||||||
|
`<https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc>`_.
|
||||||
|
|
||||||
|
The following shows you how to use the pre-trained model.
|
||||||
|
|
||||||
|
Download the pre-trained model
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ mkdir tmp
|
||||||
|
$ cd tmp
|
||||||
|
$ git lfs install
|
||||||
|
$ git clone https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
|
||||||
|
You have to use ``git lfs`` to download the pre-trained model.
|
||||||
|
|
||||||
|
After downloading, you will have the following files:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ tree tmp
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
tmp/
|
||||||
|
`-- icefall_asr_librispeech_tdnn-lstm_ctc
|
||||||
|
|-- README.md
|
||||||
|
|-- data
|
||||||
|
| |-- lang_phone
|
||||||
|
| | |-- HLG.pt
|
||||||
|
| | |-- tokens.txt
|
||||||
|
| | `-- words.txt
|
||||||
|
| `-- lm
|
||||||
|
| `-- G_4_gram.pt
|
||||||
|
|-- exp
|
||||||
|
| `-- pretrained.pt
|
||||||
|
`-- test_wavs
|
||||||
|
|-- 1089-134686-0001.flac
|
||||||
|
|-- 1221-135766-0001.flac
|
||||||
|
|-- 1221-135766-0002.flac
|
||||||
|
`-- trans.txt
|
||||||
|
|
||||||
|
6 directories, 10 files
|
||||||
|
|
||||||
|
|
||||||
|
Download kaldifeat
|
||||||
|
~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
`kaldifeat <https://github.com/csukuangfj/kaldifeat>`_ is used for extracting
|
||||||
|
features from a single or multiple sound files. Please refer to
|
||||||
|
`<https://github.com/csukuangfj/kaldifeat>`_ to install ``kaldifeat`` first.
|
||||||
|
|
||||||
|
Inference with a pre-trained model
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/librispeech/ASR
|
||||||
|
$ ./tdnn_lstm_ctc/pretrained.py --help
|
||||||
|
|
||||||
|
shows the usage information of ``./tdnn_lstm_ctc/pretrained.py``.
|
||||||
|
|
||||||
|
To decode with ``1best`` method, we can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./tdnn_lstm_ctc/pretrained.py \
|
||||||
|
--checkpoint ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt \
|
||||||
|
--words-file ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt \
|
||||||
|
--HLG ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt \
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac \
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac \
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac
|
||||||
|
|
||||||
|
The output is:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
2021-08-24 16:57:13,315 INFO [pretrained.py:168] device: cuda:0
|
||||||
|
2021-08-24 16:57:13,315 INFO [pretrained.py:170] Creating model
|
||||||
|
2021-08-24 16:57:18,331 INFO [pretrained.py:182] Loading HLG from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt
|
||||||
|
2021-08-24 16:57:27,581 INFO [pretrained.py:199] Constructing Fbank computer
|
||||||
|
2021-08-24 16:57:27,584 INFO [pretrained.py:209] Reading sound files: ['./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac']
|
||||||
|
2021-08-24 16:57:27,599 INFO [pretrained.py:215] Decoding started
|
||||||
|
2021-08-24 16:57:27,791 INFO [pretrained.py:245] Use HLG decoding
|
||||||
|
2021-08-24 16:57:28,098 INFO [pretrained.py:266]
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
|
||||||
|
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||||
|
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
|
||||||
|
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||||
|
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
|
||||||
|
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||||
|
|
||||||
|
|
||||||
|
2021-08-24 16:57:28,099 INFO [pretrained.py:268] Decoding Done
|
||||||
|
|
||||||
|
|
||||||
|
To decode with ``whole-lattice-rescoring`` methond, you can use
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./tdnn_lstm_ctc/pretrained.py \
|
||||||
|
--checkpoint ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt \
|
||||||
|
--words-file ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt \
|
||||||
|
--HLG ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt \
|
||||||
|
--method whole-lattice-rescoring \
|
||||||
|
--G ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lm/G_4_gram.pt \
|
||||||
|
--ngram-lm-scale 0.8 \
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac \
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac \
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac
|
||||||
|
|
||||||
|
The decoding output is:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
2021-08-24 16:39:24,725 INFO [pretrained.py:168] device: cuda:0
|
||||||
|
2021-08-24 16:39:24,725 INFO [pretrained.py:170] Creating model
|
||||||
|
2021-08-24 16:39:29,403 INFO [pretrained.py:182] Loading HLG from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt
|
||||||
|
2021-08-24 16:39:40,631 INFO [pretrained.py:190] Loading G from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lm/G_4_gram.pt
|
||||||
|
2021-08-24 16:39:53,098 INFO [pretrained.py:199] Constructing Fbank computer
|
||||||
|
2021-08-24 16:39:53,107 INFO [pretrained.py:209] Reading sound files: ['./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac']
|
||||||
|
2021-08-24 16:39:53,121 INFO [pretrained.py:215] Decoding started
|
||||||
|
2021-08-24 16:39:53,443 INFO [pretrained.py:250] Use HLG decoding + LM rescoring
|
||||||
|
2021-08-24 16:39:54,010 INFO [pretrained.py:266]
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
|
||||||
|
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||||
|
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
|
||||||
|
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||||
|
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
|
||||||
|
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||||
|
|
||||||
|
|
||||||
|
2021-08-24 16:39:54,010 INFO [pretrained.py:268] Decoding Done
|
||||||
|
|
||||||
|
|
||||||
|
Colab notebook
|
||||||
|
--------------
|
||||||
|
|
||||||
|
We provide a colab notebook for decoding with pre-trained model.
|
||||||
|
|
||||||
|
|librispeech tdnn_lstm_ctc colab notebook|
|
||||||
|
|
||||||
|
.. |librispeech tdnn_lstm_ctc colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg
|
||||||
|
:target: https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd
|
||||||
|
|
||||||
|
|
||||||
|
**Congratulations!** You have finished the TDNN-LSTM-CTC recipe on librispeech in ``icefall``.
|
445
docs/source/recipes/yesno.rst
Normal file
@ -0,0 +1,445 @@
|
|||||||
|
yesno
|
||||||
|
=====
|
||||||
|
|
||||||
|
This page shows you how to run the `yesno <https://www.openslr.org/1>`_ recipe. It contains:
|
||||||
|
|
||||||
|
- (1) Prepare data for training
|
||||||
|
- (2) Train a TDNN model
|
||||||
|
|
||||||
|
- (a) View text format logs and visualize TensorBoard logs
|
||||||
|
- (b) Select device type, i.e., CPU and GPU, for training
|
||||||
|
- (c) Change training options
|
||||||
|
- (d) Resume training from a checkpoint
|
||||||
|
|
||||||
|
- (3) Decode with a trained model
|
||||||
|
|
||||||
|
- (a) Select a checkpoint for decoding
|
||||||
|
- (b) Model averaging
|
||||||
|
|
||||||
|
- (4) Colab notebook
|
||||||
|
|
||||||
|
- (a) It shows you step by step how to setup the environment, how to do training,
|
||||||
|
and how to do decoding
|
||||||
|
- (b) How to use a pre-trained model
|
||||||
|
|
||||||
|
- (5) Inference with a pre-trained model
|
||||||
|
|
||||||
|
- (a) Download a pre-trained model, provided by us
|
||||||
|
- (b) Decode a single sound file with a pre-trained model
|
||||||
|
- (c) Decode multiple sound files at the same time
|
||||||
|
|
||||||
|
It does **NOT** show you:
|
||||||
|
|
||||||
|
- (1) How to train with multiple GPUs
|
||||||
|
|
||||||
|
The ``yesno`` dataset is so small that CPU is more than enough
|
||||||
|
for training as well as for decoding.
|
||||||
|
|
||||||
|
- (2) How to use LM rescoring for decoding
|
||||||
|
|
||||||
|
The dataset does not have an LM for rescoring.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
We assume you have read the page :ref:`install icefall` and have setup
|
||||||
|
the environment for ``icefall``.
|
||||||
|
|
||||||
|
.. HINT::
|
||||||
|
|
||||||
|
You **don't** need a **GPU** to run this recipe. It can be run on a **CPU**.
|
||||||
|
The training part takes less than 30 **seconds** on a CPU and you will get
|
||||||
|
the following WER at the end::
|
||||||
|
|
||||||
|
[test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
|
||||||
|
|
||||||
|
Data preparation
|
||||||
|
----------------
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/yesno/ASR
|
||||||
|
$ ./prepare.sh
|
||||||
|
|
||||||
|
The script ``./prepare.sh`` handles the data preparation for you, **automagically**.
|
||||||
|
All you need to do is to run it.
|
||||||
|
|
||||||
|
The data preparation contains several stages, you can use the following two
|
||||||
|
options:
|
||||||
|
|
||||||
|
- ``--stage``
|
||||||
|
- ``--stop-stage``
|
||||||
|
|
||||||
|
to control which stage(s) should be run. By default, all stages are executed.
|
||||||
|
|
||||||
|
|
||||||
|
For example,
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/yesno/ASR
|
||||||
|
$ ./prepare.sh --stage 0 --stop-stage 0
|
||||||
|
|
||||||
|
means to run only stage 0.
|
||||||
|
|
||||||
|
To run stage 2 to stage 5, use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./prepare.sh --stage 2 --stop-stage 5
|
||||||
|
|
||||||
|
|
||||||
|
Training
|
||||||
|
--------
|
||||||
|
|
||||||
|
We provide only a TDNN model, contained in
|
||||||
|
the `tdnn <https://github.com/k2-fsa/icefall/tree/master/egs/yesno/ASR/tdnn>`_
|
||||||
|
folder, for ``yesno``.
|
||||||
|
|
||||||
|
The command to run the training part is:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/yesno/ASR
|
||||||
|
$ export CUDA_VISIBLE_DEVICES=""
|
||||||
|
$ ./tdnn/train.py
|
||||||
|
|
||||||
|
By default, it will run ``15`` epochs. Training logs and checkpoints are saved
|
||||||
|
in ``tdnn/exp``.
|
||||||
|
|
||||||
|
In ``tdnn/exp``, you will find the following files:
|
||||||
|
|
||||||
|
- ``epoch-0.pt``, ``epoch-1.pt``, ...
|
||||||
|
|
||||||
|
These are checkpoint files, containing model ``state_dict`` and optimizer ``state_dict``.
|
||||||
|
To resume training from some checkpoint, say ``epoch-10.pt``, you can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./tdnn/train.py --start-epoch 11
|
||||||
|
|
||||||
|
- ``tensorboard/``
|
||||||
|
|
||||||
|
This folder contains TensorBoard logs. Training loss, validation loss, learning
|
||||||
|
rate, etc, are recorded in these logs. You can visualize them by:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd tdnn/exp/tensorboard
|
||||||
|
$ tensorboard dev upload --logdir . --description "TDNN training for yesno with icefall"
|
||||||
|
|
||||||
|
It will print something like below:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
TensorFlow installation not found - running with reduced feature set.
|
||||||
|
Upload started and will continue reading any new data as it's added to the logdir.
|
||||||
|
|
||||||
|
To stop uploading, press Ctrl-C.
|
||||||
|
|
||||||
|
New experiment created. View your TensorBoard at: https://tensorboard.dev/experiment/yKUbhb5wRmOSXYkId1z9eg/
|
||||||
|
|
||||||
|
[2021-08-23T23:49:41] Started scanning logdir.
|
||||||
|
[2021-08-23T23:49:42] Total uploaded: 135 scalars, 0 tensors, 0 binary objects
|
||||||
|
Listening for new data in logdir...
|
||||||
|
|
||||||
|
Note there is a URL in the above output, click it and you will see
|
||||||
|
the following screenshot:
|
||||||
|
|
||||||
|
.. figure:: images/yesno-tdnn-tensorboard-log.png
|
||||||
|
:width: 600
|
||||||
|
:alt: TensorBoard screenshot
|
||||||
|
:align: center
|
||||||
|
:target: https://tensorboard.dev/experiment/yKUbhb5wRmOSXYkId1z9eg/
|
||||||
|
|
||||||
|
TensorBoard screenshot.
|
||||||
|
|
||||||
|
- ``log/log-train-xxxx``
|
||||||
|
|
||||||
|
It is the detailed training log in text format, same as the one
|
||||||
|
you saw printed to the console during training.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
.. NOTE::
|
||||||
|
|
||||||
|
By default, ``./tdnn/train.py`` uses GPU 0 for training if GPUs are available.
|
||||||
|
If you have two GPUs, say, GPU 0 and GPU 1, and you want to use GPU 1 for
|
||||||
|
training, you can run:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ export CUDA_VISIBLE_DEVICES="1"
|
||||||
|
$ ./tdnn/train.py
|
||||||
|
|
||||||
|
Since the ``yesno`` dataset is very small, containing only 30 sound files
|
||||||
|
for training, and the model in use is also very small, we use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ export CUDA_VISIBLE_DEVICES=""
|
||||||
|
|
||||||
|
so that ``./tdnn/train.py`` uses CPU during training.
|
||||||
|
|
||||||
|
If you don't have GPUs, then you don't need to
|
||||||
|
run ``export CUDA_VISIBLE_DEVICES=""``.
|
||||||
|
|
||||||
|
To see available training options, you can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./tdnn/train.py --help
|
||||||
|
|
||||||
|
Other training options, e.g., learning rate, results dir, etc., are
|
||||||
|
pre-configured in the function ``get_params()``
|
||||||
|
in `tdnn/train.py <https://github.com/k2-fsa/icefall/blob/master/egs/yesno/ASR/tdnn/train.py>`_.
|
||||||
|
Normally, you don't need to change them. You can change them by modifying the code, if
|
||||||
|
you want.
|
||||||
|
|
||||||
|
Decoding
|
||||||
|
--------
|
||||||
|
|
||||||
|
The decoding part uses checkpoints saved by the training part, so you have
|
||||||
|
to run the training part first.
|
||||||
|
|
||||||
|
The command for decoding is:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ export CUDA_VISIBLE_DEVICES=""
|
||||||
|
$ ./tdnn/decode.py
|
||||||
|
|
||||||
|
You will see the WER in the output log.
|
||||||
|
|
||||||
|
Decoded results are saved in ``tdnn/exp``.
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./tdnn/decode.py --help
|
||||||
|
|
||||||
|
shows you the available decoding options.
|
||||||
|
|
||||||
|
Some commonly used options are:
|
||||||
|
|
||||||
|
- ``--epoch``
|
||||||
|
|
||||||
|
You can select which checkpoint to be used for decoding.
|
||||||
|
For instance, ``./tdnn/decode.py --epoch 10`` means to use
|
||||||
|
``./tdnn/exp/epoch-10.pt`` for decoding.
|
||||||
|
|
||||||
|
- ``--avg``
|
||||||
|
|
||||||
|
It's related to model averaging. It specifies number of checkpoints
|
||||||
|
to be averaged. The averaged model is used for decoding.
|
||||||
|
For example, the following command:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ ./tdnn/decode.py --epoch 10 --avg 3
|
||||||
|
|
||||||
|
uses the average of ``epoch-8.pt``, ``epoch-9.pt`` and ``epoch-10.pt``
|
||||||
|
for decoding.
|
||||||
|
|
||||||
|
- ``--export``
|
||||||
|
|
||||||
|
If it is ``True``, i.e., ``./tdnn/decode.py --export 1``, the code
|
||||||
|
will save the averaged model to ``tdnn/exp/pretrained.pt``.
|
||||||
|
See :ref:`yesno use a pre-trained model` for how to use it.
|
||||||
|
|
||||||
|
|
||||||
|
.. _yesno use a pre-trained model:
|
||||||
|
|
||||||
|
Pre-trained Model
|
||||||
|
-----------------
|
||||||
|
|
||||||
|
We have uploaded the pre-trained model to
|
||||||
|
`<https://huggingface.co/csukuangfj/icefall_asr_yesno_tdnn>`_.
|
||||||
|
|
||||||
|
The following shows you how to use the pre-trained model.
|
||||||
|
|
||||||
|
Download the pre-trained model
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/yesno/ASR
|
||||||
|
$ mkdir tmp
|
||||||
|
$ cd tmp
|
||||||
|
$ git lfs install
|
||||||
|
$ git clone https://huggingface.co/csukuangfj/icefall_asr_yesno_tdnn
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
|
||||||
|
You have to use ``git lfs`` to download the pre-trained model.
|
||||||
|
|
||||||
|
After downloading, you will have the following files:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/yesno/ASR
|
||||||
|
$ tree tmp
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
tmp/
|
||||||
|
`-- icefall_asr_yesno_tdnn
|
||||||
|
|-- README.md
|
||||||
|
|-- lang_phone
|
||||||
|
| |-- HLG.pt
|
||||||
|
| |-- L.pt
|
||||||
|
| |-- L_disambig.pt
|
||||||
|
| |-- Linv.pt
|
||||||
|
| |-- lexicon.txt
|
||||||
|
| |-- lexicon_disambig.txt
|
||||||
|
| |-- tokens.txt
|
||||||
|
| `-- words.txt
|
||||||
|
|-- lm
|
||||||
|
| |-- G.arpa
|
||||||
|
| `-- G.fst.txt
|
||||||
|
|-- pretrained.pt
|
||||||
|
`-- test_waves
|
||||||
|
|-- 0_0_0_1_0_0_0_1.wav
|
||||||
|
|-- 0_0_1_0_0_0_1_0.wav
|
||||||
|
|-- 0_0_1_0_0_1_1_1.wav
|
||||||
|
|-- 0_0_1_0_1_0_0_1.wav
|
||||||
|
|-- 0_0_1_1_0_0_0_1.wav
|
||||||
|
|-- 0_0_1_1_0_1_1_0.wav
|
||||||
|
|-- 0_0_1_1_1_0_0_0.wav
|
||||||
|
|-- 0_0_1_1_1_1_0_0.wav
|
||||||
|
|-- 0_1_0_0_0_1_0_0.wav
|
||||||
|
|-- 0_1_0_0_1_0_1_0.wav
|
||||||
|
|-- 0_1_0_1_0_0_0_0.wav
|
||||||
|
|-- 0_1_0_1_1_1_0_0.wav
|
||||||
|
|-- 0_1_1_0_0_1_1_1.wav
|
||||||
|
|-- 0_1_1_1_0_0_1_0.wav
|
||||||
|
|-- 0_1_1_1_1_0_1_0.wav
|
||||||
|
|-- 1_0_0_0_0_0_0_0.wav
|
||||||
|
|-- 1_0_0_0_0_0_1_1.wav
|
||||||
|
|-- 1_0_0_1_0_1_1_1.wav
|
||||||
|
|-- 1_0_1_1_0_1_1_1.wav
|
||||||
|
|-- 1_0_1_1_1_1_0_1.wav
|
||||||
|
|-- 1_1_0_0_0_1_1_1.wav
|
||||||
|
|-- 1_1_0_0_1_0_1_1.wav
|
||||||
|
|-- 1_1_0_1_0_1_0_0.wav
|
||||||
|
|-- 1_1_0_1_1_0_0_1.wav
|
||||||
|
|-- 1_1_0_1_1_1_1_0.wav
|
||||||
|
|-- 1_1_1_0_0_1_0_1.wav
|
||||||
|
|-- 1_1_1_0_1_0_1_0.wav
|
||||||
|
|-- 1_1_1_1_0_0_1_0.wav
|
||||||
|
|-- 1_1_1_1_1_0_0_0.wav
|
||||||
|
`-- 1_1_1_1_1_1_1_1.wav
|
||||||
|
|
||||||
|
4 directories, 42 files
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ soxi tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav
|
||||||
|
|
||||||
|
Input File : 'tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav'
|
||||||
|
Channels : 1
|
||||||
|
Sample Rate : 8000
|
||||||
|
Precision : 16-bit
|
||||||
|
Duration : 00:00:06.76 = 54080 samples ~ 507 CDDA sectors
|
||||||
|
File Size : 108k
|
||||||
|
Bit Rate : 128k
|
||||||
|
Sample Encoding: 16-bit Signed Integer PCM
|
||||||
|
|
||||||
|
- ``0_0_1_0_1_0_0_1.wav``
|
||||||
|
|
||||||
|
0 means No; 1 means Yes. No and Yes are not in English,
|
||||||
|
but in `Hebrew <https://en.wikipedia.org/wiki/Hebrew_language>`_.
|
||||||
|
So this file contains ``NO NO YES NO YES NO NO YES``.
|
||||||
|
|
||||||
|
Download kaldifeat
|
||||||
|
~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
`kaldifeat <https://github.com/csukuangfj/kaldifeat>`_ is used for extracting
|
||||||
|
features from a single or multiple sound files. Please refer to
|
||||||
|
`<https://github.com/csukuangfj/kaldifeat>`_ to install ``kaldifeat`` first.
|
||||||
|
|
||||||
|
Inference with a pre-trained model
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ cd egs/yesno/ASR
|
||||||
|
$ ./tdnn/pretrained.py --help
|
||||||
|
|
||||||
|
shows the usage information of ``./tdnn/pretrained.py``.
|
||||||
|
|
||||||
|
To decode a single file, we can use:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./tdnn/pretrained.py \
|
||||||
|
--checkpoint ./tmp/icefall_asr_yesno_tdnn/pretrained.pt \
|
||||||
|
--words-file ./tmp/icefall_asr_yesno_tdnn/lang_phone/words.txt \
|
||||||
|
--HLG ./tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt \
|
||||||
|
./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav
|
||||||
|
|
||||||
|
The output is:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
2021-08-24 12:22:51,621 INFO [pretrained.py:119] {'feature_dim': 23, 'num_classes': 4, 'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'checkpoint': './tmp/icefall_asr_yesno_tdnn/pretrained.pt', 'words_file': './tmp/icefall_asr_yesno_tdnn/lang_phone/words.txt', 'HLG': './tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt', 'sound_files': ['./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav']}
|
||||||
|
2021-08-24 12:22:51,645 INFO [pretrained.py:125] device: cpu
|
||||||
|
2021-08-24 12:22:51,645 INFO [pretrained.py:127] Creating model
|
||||||
|
2021-08-24 12:22:51,650 INFO [pretrained.py:139] Loading HLG from ./tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt
|
||||||
|
2021-08-24 12:22:51,651 INFO [pretrained.py:143] Constructing Fbank computer
|
||||||
|
2021-08-24 12:22:51,652 INFO [pretrained.py:153] Reading sound files: ['./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav']
|
||||||
|
2021-08-24 12:22:51,684 INFO [pretrained.py:159] Decoding started
|
||||||
|
2021-08-24 12:22:51,708 INFO [pretrained.py:198]
|
||||||
|
./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav:
|
||||||
|
NO NO YES NO YES NO NO YES
|
||||||
|
|
||||||
|
|
||||||
|
2021-08-24 12:22:51,708 INFO [pretrained.py:200] Decoding Done
|
||||||
|
|
||||||
|
You can see that for the sound file ``0_0_1_0_1_0_0_1.wav``, the decoding result is
|
||||||
|
``NO NO YES NO YES NO NO YES``.
|
||||||
|
|
||||||
|
To decode **multiple** files at the same time, you can use
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
./tdnn/pretrained.py \
|
||||||
|
--checkpoint ./tmp/icefall_asr_yesno_tdnn/pretrained.pt \
|
||||||
|
--words-file ./tmp/icefall_asr_yesno_tdnn/lang_phone/words.txt \
|
||||||
|
--HLG ./tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt \
|
||||||
|
./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav \
|
||||||
|
./tmp/icefall_asr_yesno_tdnn/test_waves/1_0_1_1_0_1_1_1.wav
|
||||||
|
|
||||||
|
The decoding output is:
|
||||||
|
|
||||||
|
.. code-block::
|
||||||
|
|
||||||
|
2021-08-24 12:25:20,159 INFO [pretrained.py:119] {'feature_dim': 23, 'num_classes': 4, 'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'checkpoint': './tmp/icefall_asr_yesno_tdnn/pretrained.pt', 'words_file': './tmp/icefall_asr_yesno_tdnn/lang_phone/words.txt', 'HLG': './tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt', 'sound_files': ['./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav', './tmp/icefall_asr_yesno_tdnn/test_waves/1_0_1_1_0_1_1_1.wav']}
|
||||||
|
2021-08-24 12:25:20,181 INFO [pretrained.py:125] device: cpu
|
||||||
|
2021-08-24 12:25:20,181 INFO [pretrained.py:127] Creating model
|
||||||
|
2021-08-24 12:25:20,185 INFO [pretrained.py:139] Loading HLG from ./tmp/icefall_asr_yesno_tdnn/lang_phone/HLG.pt
|
||||||
|
2021-08-24 12:25:20,186 INFO [pretrained.py:143] Constructing Fbank computer
|
||||||
|
2021-08-24 12:25:20,187 INFO [pretrained.py:153] Reading sound files: ['./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav',
|
||||||
|
'./tmp/icefall_asr_yesno_tdnn/test_waves/1_0_1_1_0_1_1_1.wav']
|
||||||
|
2021-08-24 12:25:20,213 INFO [pretrained.py:159] Decoding started
|
||||||
|
2021-08-24 12:25:20,287 INFO [pretrained.py:198]
|
||||||
|
./tmp/icefall_asr_yesno_tdnn/test_waves/0_0_1_0_1_0_0_1.wav:
|
||||||
|
NO NO YES NO YES NO NO YES
|
||||||
|
|
||||||
|
./tmp/icefall_asr_yesno_tdnn/test_waves/1_0_1_1_0_1_1_1.wav:
|
||||||
|
YES NO YES YES NO YES YES YES
|
||||||
|
|
||||||
|
2021-08-24 12:25:20,287 INFO [pretrained.py:200] Decoding Done
|
||||||
|
|
||||||
|
You can see again that it decodes correctly.
|
||||||
|
|
||||||
|
Colab notebook
|
||||||
|
--------------
|
||||||
|
|
||||||
|
We do provide a colab notebook for this recipe.
|
||||||
|
|
||||||
|
|yesno colab notebook|
|
||||||
|
|
||||||
|
.. |yesno colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg
|
||||||
|
:target: https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing
|
||||||
|
|
||||||
|
|
||||||
|
**Congratulations!** You have finished the simplest speech recognition recipe in ``icefall``.
|
@ -1,64 +1,3 @@
|
|||||||
|
|
||||||
## Data preparation
|
Please refer to <https://icefall.readthedocs.io/en/latest/recipes/librispeech.html>
|
||||||
|
for how to run models in this recipe.
|
||||||
If you want to use `./prepare.sh` to download everything for you,
|
|
||||||
you can just run
|
|
||||||
|
|
||||||
```
|
|
||||||
./prepare.sh
|
|
||||||
```
|
|
||||||
|
|
||||||
If you have pre-downloaded the LibriSpeech dataset, please
|
|
||||||
read `./prepare.sh` and modify it to point to the location
|
|
||||||
of your dataset so that it won't re-download it. After modification,
|
|
||||||
please run
|
|
||||||
|
|
||||||
```
|
|
||||||
./prepare.sh
|
|
||||||
```
|
|
||||||
|
|
||||||
The script `./prepare.sh` prepares features, lexicon, LMs, etc.
|
|
||||||
All generated files are saved in the folder `./data`.
|
|
||||||
|
|
||||||
**HINT:** `./prepare.sh` supports options `--stage` and `--stop-stage`.
|
|
||||||
|
|
||||||
## TDNN-LSTM CTC training
|
|
||||||
|
|
||||||
The folder `tdnn_lstm_ctc` contains scripts for CTC training
|
|
||||||
with TDNN-LSTM models.
|
|
||||||
|
|
||||||
Pre-configured parameters for training and decoding are set in the function
|
|
||||||
`get_params()` within `tdnn_lstm_ctc/train.py`
|
|
||||||
and `tdnn_lstm_ctc/decode.py`.
|
|
||||||
|
|
||||||
Parameters that can be passed from the command-line can be found by
|
|
||||||
|
|
||||||
```
|
|
||||||
./tdnn_lstm_ctc/train.py --help
|
|
||||||
./tdnn_lstm_ctc/decode.py --help
|
|
||||||
```
|
|
||||||
|
|
||||||
If you have 4 GPUs on a machine and want to use GPU 0, 2, 3 for
|
|
||||||
mutli-GPU training, you can run
|
|
||||||
|
|
||||||
```
|
|
||||||
export CUDA_VISIBLE_DEVICES="0,2,3"
|
|
||||||
./tdnn_lstm_ctc/train.py \
|
|
||||||
--master-port 12345 \
|
|
||||||
--world-size 3
|
|
||||||
```
|
|
||||||
|
|
||||||
If you want to decode by averaging checkpoints `epoch-8.pt`,
|
|
||||||
`epoch-9.pt` and `epoch-10.pt`, you can run
|
|
||||||
|
|
||||||
```
|
|
||||||
./tdnn_lstm_ctc/decode.py \
|
|
||||||
--epoch 10 \
|
|
||||||
--avg 3
|
|
||||||
```
|
|
||||||
|
|
||||||
## Conformer CTC training
|
|
||||||
|
|
||||||
The folder `conformer-ctc` contains scripts for CTC training
|
|
||||||
with conformer models. The steps of running the training and
|
|
||||||
decoding are similar to `tdnn_lstm_ctc`.
|
|
||||||
|
@ -6,7 +6,7 @@
|
|||||||
|
|
||||||
TensorBoard log is available at https://tensorboard.dev/experiment/GnRzq8WWQW62dK4bklXBTg/#scalars
|
TensorBoard log is available at https://tensorboard.dev/experiment/GnRzq8WWQW62dK4bklXBTg/#scalars
|
||||||
|
|
||||||
Pretrained model is available at https://huggingface.co/pkufool/conformer_ctc
|
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc
|
||||||
|
|
||||||
The best decoding results (WER) are listed below, we got this results by averaging models from epoch 15 to 34, and using `attention-decoder` decoder with num_paths equals to 100.
|
The best decoding results (WER) are listed below, we got this results by averaging models from epoch 15 to 34, and using `attention-decoder` decoder with num_paths equals to 100.
|
||||||
|
|
||||||
@ -21,3 +21,51 @@ To get more unique paths, we scaled the lattice.scores with 0.5 (see https://git
|
|||||||
|test-clean|1.3|1.2|
|
|test-clean|1.3|1.2|
|
||||||
|test-other|1.2|1.1|
|
|test-other|1.2|1.1|
|
||||||
|
|
||||||
|
You can use the following commands to reproduce our results:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/k2-fsa/icefall
|
||||||
|
cd icefall
|
||||||
|
|
||||||
|
# It was using ef233486, you may not need to switch to it
|
||||||
|
# git checkout ef233486
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
./prepare.sh
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
python conformer_ctc/train.py --bucketing-sampler True \
|
||||||
|
--concatenate-cuts False \
|
||||||
|
--max-duration 200 \
|
||||||
|
--full-libri True \
|
||||||
|
--world-size 4
|
||||||
|
|
||||||
|
python conformer_ctc/decode.py --lattice-score-scale 0.5 \
|
||||||
|
--epoch 34 \
|
||||||
|
--avg 20 \
|
||||||
|
--method attention-decoder \
|
||||||
|
--max-duration 20 \
|
||||||
|
--num-paths 100
|
||||||
|
```
|
||||||
|
|
||||||
|
### LibriSpeech training results (Tdnn-Lstm)
|
||||||
|
#### 2021-08-24
|
||||||
|
|
||||||
|
(Wei Kang): Result of phone based Tdnn-Lstm model.
|
||||||
|
|
||||||
|
Icefall version: https://github.com/k2-fsa/icefall/commit/caa0b9e9425af27e0c6211048acb55a76ed5d315
|
||||||
|
|
||||||
|
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc
|
||||||
|
|
||||||
|
The best decoding results (WER) are listed below, we got this results by averaging models from epoch 19 to 14, and using `whole-lattice-rescoring` decoding method.
|
||||||
|
|
||||||
|
||test-clean|test-other|
|
||||||
|
|--|--|--|
|
||||||
|
|WER| 6.59% | 17.69% |
|
||||||
|
|
||||||
|
We searched the lm_score_scale for best results, the scales that produced the WER above are also listed below.
|
||||||
|
|
||||||
|
||lm_scale|
|
||||||
|
|--|--|
|
||||||
|
|test-clean|0.8|
|
||||||
|
|test-other|0.9|
|
||||||
|
@ -1,351 +1,3 @@
|
|||||||
|
Please visit
|
||||||
# How to use a pre-trained model to transcribe a sound file or multiple sound files
|
<https://icefall.readthedocs.io/en/latest/recipes/librispeech/conformer_ctc.html>
|
||||||
|
for how to run this recipe.
|
||||||
(See the bottom of this document for the link to a colab notebook.)
|
|
||||||
|
|
||||||
You need to prepare 4 files:
|
|
||||||
|
|
||||||
- a model checkpoint file, e.g., epoch-20.pt
|
|
||||||
- HLG.pt, the decoding graph
|
|
||||||
- words.txt, the word symbol table
|
|
||||||
- a sound file, whose sampling rate has to be 16 kHz.
|
|
||||||
Supported formats are those supported by `torchaudio.load()`,
|
|
||||||
e.g., wav and flac.
|
|
||||||
|
|
||||||
Also, you need to install `kaldifeat`. Please refer to
|
|
||||||
<https://github.com/csukuangfj/kaldifeat> for installation.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
./conformer_ctc/pretrained.py --help
|
|
||||||
```
|
|
||||||
|
|
||||||
displays the help information.
|
|
||||||
|
|
||||||
## HLG decoding
|
|
||||||
|
|
||||||
Once you have the above files ready and have `kaldifeat` installed,
|
|
||||||
you can run:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
./conformer_ctc/pretrained.py \
|
|
||||||
--checkpoint /path/to/your/checkpoint.pt \
|
|
||||||
--words-file /path/to/words.txt \
|
|
||||||
--HLG /path/to/HLG.pt \
|
|
||||||
/path/to/your/sound.wav
|
|
||||||
```
|
|
||||||
|
|
||||||
and you will see the transcribed result.
|
|
||||||
|
|
||||||
If you want to transcribe multiple files at the same time, you can use:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
./conformer_ctc/pretrained.py \
|
|
||||||
--checkpoint /path/to/your/checkpoint.pt \
|
|
||||||
--words-file /path/to/words.txt \
|
|
||||||
--HLG /path/to/HLG.pt \
|
|
||||||
/path/to/your/sound1.wav \
|
|
||||||
/path/to/your/sound2.wav \
|
|
||||||
/path/to/your/sound3.wav
|
|
||||||
```
|
|
||||||
|
|
||||||
**Note**: This is the fastest decoding method.
|
|
||||||
|
|
||||||
## HLG decoding + LM rescoring
|
|
||||||
|
|
||||||
`./conformer_ctc/pretrained.py` also supports `whole lattice LM rescoring`
|
|
||||||
and `attention decoder rescoring`.
|
|
||||||
|
|
||||||
To use whole lattice LM rescoring, you also need the following files:
|
|
||||||
|
|
||||||
- G.pt, e.g., `data/lm/G_4_gram.pt` if you have run `./prepare.sh`
|
|
||||||
|
|
||||||
The command to run decoding with LM rescoring is:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
./conformer_ctc/pretrained.py \
|
|
||||||
--checkpoint /path/to/your/checkpoint.pt \
|
|
||||||
--words-file /path/to/words.txt \
|
|
||||||
--HLG /path/to/HLG.pt \
|
|
||||||
--method whole-lattice-rescoring \
|
|
||||||
--G data/lm/G_4_gram.pt \
|
|
||||||
--ngram-lm-scale 0.8 \
|
|
||||||
/path/to/your/sound1.wav \
|
|
||||||
/path/to/your/sound2.wav \
|
|
||||||
/path/to/your/sound3.wav
|
|
||||||
```
|
|
||||||
|
|
||||||
## HLG Decoding + LM rescoring + attention decoder rescoring
|
|
||||||
|
|
||||||
To use attention decoder for rescoring, you need the following extra information:
|
|
||||||
|
|
||||||
- sos token ID
|
|
||||||
- eos token ID
|
|
||||||
|
|
||||||
The command to run decoding with attention decoder rescoring is:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
./conformer_ctc/pretrained.py \
|
|
||||||
--checkpoint /path/to/your/checkpoint.pt \
|
|
||||||
--words-file /path/to/words.txt \
|
|
||||||
--HLG /path/to/HLG.pt \
|
|
||||||
--method attention-decoder \
|
|
||||||
--G data/lm/G_4_gram.pt \
|
|
||||||
--ngram-lm-scale 1.3 \
|
|
||||||
--attention-decoder-scale 1.2 \
|
|
||||||
--lattice-score-scale 0.5 \
|
|
||||||
--num-paths 100 \
|
|
||||||
--sos-id 1 \
|
|
||||||
--eos-id 1 \
|
|
||||||
/path/to/your/sound1.wav \
|
|
||||||
/path/to/your/sound2.wav \
|
|
||||||
/path/to/your/sound3.wav
|
|
||||||
```
|
|
||||||
|
|
||||||
# Decoding with a pre-trained model in action
|
|
||||||
|
|
||||||
We have uploaded a pre-trained model to <https://huggingface.co/pkufool/conformer_ctc>
|
|
||||||
|
|
||||||
The following shows the steps about the usage of the provided pre-trained model.
|
|
||||||
|
|
||||||
### (1) Download the pre-trained model
|
|
||||||
|
|
||||||
```bash
|
|
||||||
sudo apt-get install git-lfs
|
|
||||||
cd /path/to/icefall/egs/librispeech/ASR
|
|
||||||
git lfs install
|
|
||||||
mkdir tmp
|
|
||||||
cd tmp
|
|
||||||
git clone https://huggingface.co/pkufool/conformer_ctc
|
|
||||||
```
|
|
||||||
|
|
||||||
**CAUTION**: You have to install `git-lfst` to download the pre-trained model.
|
|
||||||
|
|
||||||
You will find the following files:
|
|
||||||
|
|
||||||
```
|
|
||||||
tmp
|
|
||||||
`-- conformer_ctc
|
|
||||||
|-- README.md
|
|
||||||
|-- data
|
|
||||||
| |-- lang_bpe
|
|
||||||
| | |-- HLG.pt
|
|
||||||
| | |-- bpe.model
|
|
||||||
| | |-- tokens.txt
|
|
||||||
| | `-- words.txt
|
|
||||||
| `-- lm
|
|
||||||
| `-- G_4_gram.pt
|
|
||||||
|-- exp
|
|
||||||
| `-- pretraind.pt
|
|
||||||
`-- test_wavs
|
|
||||||
|-- 1089-134686-0001.flac
|
|
||||||
|-- 1221-135766-0001.flac
|
|
||||||
|-- 1221-135766-0002.flac
|
|
||||||
`-- trans.txt
|
|
||||||
|
|
||||||
6 directories, 11 files
|
|
||||||
```
|
|
||||||
|
|
||||||
**File descriptions**:
|
|
||||||
|
|
||||||
- `data/lang_bpe/HLG.pt`
|
|
||||||
|
|
||||||
It is the decoding graph.
|
|
||||||
|
|
||||||
- `data/lang_bpe/bpe.model`
|
|
||||||
|
|
||||||
It is a sentencepiece model. You can use it to reproduce our results.
|
|
||||||
|
|
||||||
- `data/lang_bpe/tokens.txt`
|
|
||||||
|
|
||||||
It contains tokens and their IDs, generated from `bpe.model`.
|
|
||||||
Provided only for convienice so that you can look up the SOS/EOS ID easily.
|
|
||||||
|
|
||||||
- `data/lang_bpe/words.txt`
|
|
||||||
|
|
||||||
It contains words and their IDs.
|
|
||||||
|
|
||||||
- `data/lm/G_4_gram.pt`
|
|
||||||
|
|
||||||
It is a 4-gram LM, useful for LM rescoring.
|
|
||||||
|
|
||||||
- `exp/pretrained.pt`
|
|
||||||
|
|
||||||
It contains pre-trained model parameters, obtained by averaging
|
|
||||||
checkpoints from `epoch-15.pt` to `epoch-34.pt`.
|
|
||||||
Note: We have removed optimizer `state_dict` to reduce file size.
|
|
||||||
|
|
||||||
- `test_waves/*.flac`
|
|
||||||
|
|
||||||
It contains some test sound files from LibriSpeech `test-clean` dataset.
|
|
||||||
|
|
||||||
- `test_waves/trans.txt`
|
|
||||||
|
|
||||||
It contains the reference transcripts for the sound files in `test_waves/`.
|
|
||||||
|
|
||||||
The information of the test sound files is listed below:
|
|
||||||
|
|
||||||
```
|
|
||||||
$ soxi tmp/conformer_ctc/test_wavs/*.flac
|
|
||||||
|
|
||||||
Input File : 'tmp/conformer_ctc/test_wavs/1089-134686-0001.flac'
|
|
||||||
Channels : 1
|
|
||||||
Sample Rate : 16000
|
|
||||||
Precision : 16-bit
|
|
||||||
Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors
|
|
||||||
File Size : 116k
|
|
||||||
Bit Rate : 140k
|
|
||||||
Sample Encoding: 16-bit FLAC
|
|
||||||
|
|
||||||
Input File : 'tmp/conformer_ctc/test_wavs/1221-135766-0001.flac'
|
|
||||||
Channels : 1
|
|
||||||
Sample Rate : 16000
|
|
||||||
Precision : 16-bit
|
|
||||||
Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors
|
|
||||||
File Size : 343k
|
|
||||||
Bit Rate : 164k
|
|
||||||
Sample Encoding: 16-bit FLAC
|
|
||||||
|
|
||||||
Input File : 'tmp/conformer_ctc/test_wavs/1221-135766-0002.flac'
|
|
||||||
Channels : 1
|
|
||||||
Sample Rate : 16000
|
|
||||||
Precision : 16-bit
|
|
||||||
Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors
|
|
||||||
File Size : 105k
|
|
||||||
Bit Rate : 174k
|
|
||||||
Sample Encoding: 16-bit FLAC
|
|
||||||
|
|
||||||
Total Duration of 3 files: 00:00:28.16
|
|
||||||
```
|
|
||||||
|
|
||||||
### (2) Use HLG decoding
|
|
||||||
|
|
||||||
```bash
|
|
||||||
cd /path/to/icefall/egs/librispeech/ASR
|
|
||||||
|
|
||||||
./conformer_ctc/pretrained.py \
|
|
||||||
--checkpoint ./tmp/conformer_ctc/exp/pretraind.pt \
|
|
||||||
--words-file ./tmp/conformer_ctc/data/lang_bpe/words.txt \
|
|
||||||
--HLG ./tmp/conformer_ctc/data/lang_bpe/HLG.pt \
|
|
||||||
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac \
|
|
||||||
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac \
|
|
||||||
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac
|
|
||||||
```
|
|
||||||
|
|
||||||
The output is given below:
|
|
||||||
|
|
||||||
```
|
|
||||||
2021-08-20 11:03:05,712 INFO [pretrained.py:217] device: cuda:0
|
|
||||||
2021-08-20 11:03:05,712 INFO [pretrained.py:219] Creating model
|
|
||||||
2021-08-20 11:03:11,345 INFO [pretrained.py:238] Loading HLG from ./tmp/conformer_ctc/data/lang_bpe/HLG.pt
|
|
||||||
2021-08-20 11:03:18,442 INFO [pretrained.py:255] Constructing Fbank computer
|
|
||||||
2021-08-20 11:03:18,444 INFO [pretrained.py:265] Reading sound files: ['./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0002.flac']
|
|
||||||
2021-08-20 11:03:18,507 INFO [pretrained.py:271] Decoding started
|
|
||||||
2021-08-20 11:03:18,795 INFO [pretrained.py:300] Use HLG decoding
|
|
||||||
2021-08-20 11:03:19,149 INFO [pretrained.py:339]
|
|
||||||
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac:
|
|
||||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
|
||||||
|
|
||||||
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac:
|
|
||||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
|
||||||
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
|
||||||
|
|
||||||
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac:
|
|
||||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
|
||||||
|
|
||||||
|
|
||||||
2021-08-20 11:03:19,149 INFO [pretrained.py:341] Decoding Done
|
|
||||||
```
|
|
||||||
|
|
||||||
### (3) Use HLG decoding + LM rescoring
|
|
||||||
|
|
||||||
```bash
|
|
||||||
./conformer_ctc/pretrained.py \
|
|
||||||
--checkpoint ./tmp/conformer_ctc/exp/pretraind.pt \
|
|
||||||
--words-file ./tmp/conformer_ctc/data/lang_bpe/words.txt \
|
|
||||||
--HLG ./tmp/conformer_ctc/data/lang_bpe/HLG.pt \
|
|
||||||
--method whole-lattice-rescoring \
|
|
||||||
--G ./tmp/conformer_ctc/data/lm/G_4_gram.pt \
|
|
||||||
--ngram-lm-scale 0.8 \
|
|
||||||
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac \
|
|
||||||
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac \
|
|
||||||
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac
|
|
||||||
```
|
|
||||||
|
|
||||||
The output is:
|
|
||||||
|
|
||||||
```
|
|
||||||
2021-08-20 11:12:17,565 INFO [pretrained.py:217] device: cuda:0
|
|
||||||
2021-08-20 11:12:17,565 INFO [pretrained.py:219] Creating model
|
|
||||||
2021-08-20 11:12:23,728 INFO [pretrained.py:238] Loading HLG from ./tmp/conformer_ctc/data/lang_bpe/HLG.pt
|
|
||||||
2021-08-20 11:12:30,035 INFO [pretrained.py:246] Loading G from ./tmp/conformer_ctc/data/lm/G_4_gram.pt
|
|
||||||
2021-08-20 11:13:10,779 INFO [pretrained.py:255] Constructing Fbank computer
|
|
||||||
2021-08-20 11:13:10,787 INFO [pretrained.py:265] Reading sound files: ['./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0002.flac']
|
|
||||||
2021-08-20 11:13:10,798 INFO [pretrained.py:271] Decoding started
|
|
||||||
2021-08-20 11:13:11,085 INFO [pretrained.py:305] Use HLG decoding + LM rescoring
|
|
||||||
2021-08-20 11:13:11,736 INFO [pretrained.py:339]
|
|
||||||
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac:
|
|
||||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
|
||||||
|
|
||||||
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac:
|
|
||||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
|
||||||
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
|
||||||
|
|
||||||
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac:
|
|
||||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
|
||||||
|
|
||||||
|
|
||||||
2021-08-20 11:13:11,737 INFO [pretrained.py:341] Decoding Done
|
|
||||||
```
|
|
||||||
|
|
||||||
### (4) Use HLG decoding + LM rescoring + attention decoder rescoring
|
|
||||||
|
|
||||||
```bash
|
|
||||||
./conformer_ctc/pretrained.py \
|
|
||||||
--checkpoint ./tmp/conformer_ctc/exp/pretraind.pt \
|
|
||||||
--words-file ./tmp/conformer_ctc/data/lang_bpe/words.txt \
|
|
||||||
--HLG ./tmp/conformer_ctc/data/lang_bpe/HLG.pt \
|
|
||||||
--method attention-decoder \
|
|
||||||
--G ./tmp/conformer_ctc/data/lm/G_4_gram.pt \
|
|
||||||
--ngram-lm-scale 1.3 \
|
|
||||||
--attention-decoder-scale 1.2 \
|
|
||||||
--lattice-score-scale 0.5 \
|
|
||||||
--num-paths 100 \
|
|
||||||
--sos-id 1 \
|
|
||||||
--eos-id 1 \
|
|
||||||
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac \
|
|
||||||
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac \
|
|
||||||
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac
|
|
||||||
```
|
|
||||||
|
|
||||||
The output is:
|
|
||||||
|
|
||||||
```
|
|
||||||
2021-08-20 11:19:11,397 INFO [pretrained.py:217] device: cuda:0
|
|
||||||
2021-08-20 11:19:11,397 INFO [pretrained.py:219] Creating model
|
|
||||||
2021-08-20 11:19:17,354 INFO [pretrained.py:238] Loading HLG from ./tmp/conformer_ctc/data/lang_bpe/HLG.pt
|
|
||||||
2021-08-20 11:19:24,615 INFO [pretrained.py:246] Loading G from ./tmp/conformer_ctc/data/lm/G_4_gram.pt
|
|
||||||
2021-08-20 11:20:04,576 INFO [pretrained.py:255] Constructing Fbank computer
|
|
||||||
2021-08-20 11:20:04,584 INFO [pretrained.py:265] Reading sound files: ['./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/conformer_ctc/test_wavs/1221-135766-0002.flac']
|
|
||||||
2021-08-20 11:20:04,595 INFO [pretrained.py:271] Decoding started
|
|
||||||
2021-08-20 11:20:04,854 INFO [pretrained.py:313] Use HLG + LM rescoring + attention decoder rescoring
|
|
||||||
2021-08-20 11:20:05,805 INFO [pretrained.py:339]
|
|
||||||
./tmp/conformer_ctc/test_wavs/1089-134686-0001.flac:
|
|
||||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
|
||||||
|
|
||||||
./tmp/conformer_ctc/test_wavs/1221-135766-0001.flac:
|
|
||||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
|
||||||
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
|
||||||
|
|
||||||
./tmp/conformer_ctc/test_wavs/1221-135766-0002.flac:
|
|
||||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
|
||||||
|
|
||||||
|
|
||||||
2021-08-20 11:20:05,805 INFO [pretrained.py:341] Decoding Done
|
|
||||||
```
|
|
||||||
|
|
||||||
**NOTE**: We provide a colab notebook for demonstration.
|
|
||||||
[](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing)
|
|
||||||
|
|
||||||
Due to limited memory provided by Colab, you have to upgrade to Colab Pro to
|
|
||||||
run `HLG decoding + LM rescoring` and `HLG decoding + LM rescoring + attention decoder rescoring`.
|
|
||||||
Otherwise, you can only run `HLG decoding` with Colab.
|
|
||||||
|
@ -45,6 +45,7 @@ from icefall.utils import (
|
|||||||
get_texts,
|
get_texts,
|
||||||
setup_logger,
|
setup_logger,
|
||||||
store_transcripts,
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
write_error_stats,
|
write_error_stats,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -57,28 +58,74 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=9,
|
default=34,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help="It specifies the checkpoint to use for decoding."
|
||||||
"Note: Epoch counts from 0.",
|
"Note: Epoch counts from 0.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=1,
|
default=20,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help="Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. ",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="attention-decoder",
|
||||||
|
help="""Decoding method.
|
||||||
|
Supported values are:
|
||||||
|
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||||
|
decoding result.
|
||||||
|
- (2) nbest. Extract n paths from the decoding lattice; the path
|
||||||
|
with the highest score is the decoding result.
|
||||||
|
- (3) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||||
|
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
||||||
|
the highest score is the decoding result.
|
||||||
|
- (4) whole-lattice-rescoring. Rescore the decoding lattice with an
|
||||||
|
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
|
||||||
|
is the decoding result.
|
||||||
|
- (5) attention-decoder. Extract n paths from the LM rescored
|
||||||
|
lattice, the path with the highest score is the decoding result.
|
||||||
|
- (6) nbest-oracle. Its WER is the lower bound of any n-best
|
||||||
|
rescoring method can achieve. Useful for debugging n-best
|
||||||
|
rescoring method.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="""Number of paths for n-best based decoding method.
|
||||||
|
Used only when "method" is one of the following values:
|
||||||
|
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lattice-score-scale",
|
"--lattice-score-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=1.0,
|
default=1.0,
|
||||||
help="The scale to be applied to `lattice.scores`."
|
help="""The scale to be applied to `lattice.scores`.
|
||||||
"It's needed if you use any kinds of n-best based rescoring. "
|
It's needed if you use any kinds of n-best based rescoring.
|
||||||
"Currently, it is used when the decoding method is: nbest, "
|
Used only when "method" is one of the following values:
|
||||||
"nbest-rescoring, attention-decoder, and nbest-oracle. "
|
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
||||||
"A smaller value results in more unique paths.",
|
A smaller value results in more unique paths.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--export",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""When enabled, the averaged model is saved to
|
||||||
|
conformer_ctc/exp/pretrained.pt. Note: only model.state_dict() is saved.
|
||||||
|
pretrained.pt contains a dict {"model": model.state_dict()},
|
||||||
|
which can be loaded by `icefall.checkpoint.load_checkpoint()`.
|
||||||
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -104,21 +151,6 @@ def get_params() -> AttributeDict:
|
|||||||
"min_active_states": 30,
|
"min_active_states": 30,
|
||||||
"max_active_states": 10000,
|
"max_active_states": 10000,
|
||||||
"use_double_scores": True,
|
"use_double_scores": True,
|
||||||
# Possible values for method:
|
|
||||||
# - 1best
|
|
||||||
# - nbest
|
|
||||||
# - nbest-rescoring
|
|
||||||
# - whole-lattice-rescoring
|
|
||||||
# - attention-decoder
|
|
||||||
# - nbest-oracle
|
|
||||||
# "method": "nbest",
|
|
||||||
# "method": "nbest-rescoring",
|
|
||||||
# "method": "whole-lattice-rescoring",
|
|
||||||
"method": "attention-decoder",
|
|
||||||
# "method": "nbest-oracle",
|
|
||||||
# num_paths is used when method is "nbest", "nbest-rescoring",
|
|
||||||
# attention-decoder, and nbest-oracle
|
|
||||||
"num_paths": 100,
|
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
return params
|
return params
|
||||||
@ -129,7 +161,7 @@ def decode_one_batch(
|
|||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
HLG: k2.Fsa,
|
HLG: k2.Fsa,
|
||||||
batch: dict,
|
batch: dict,
|
||||||
lexicon: Lexicon,
|
word_table: k2.SymbolTable,
|
||||||
sos_id: int,
|
sos_id: int,
|
||||||
eos_id: int,
|
eos_id: int,
|
||||||
G: Optional[k2.Fsa] = None,
|
G: Optional[k2.Fsa] = None,
|
||||||
@ -163,8 +195,8 @@ def decode_one_batch(
|
|||||||
It is the return value from iterating
|
It is the return value from iterating
|
||||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
for the format of the `batch`.
|
for the format of the `batch`.
|
||||||
lexicon:
|
word_table:
|
||||||
It contains word symbol table.
|
The word symbol table.
|
||||||
sos_id:
|
sos_id:
|
||||||
The token ID of the SOS.
|
The token ID of the SOS.
|
||||||
eos_id:
|
eos_id:
|
||||||
@ -217,7 +249,7 @@ def decode_one_batch(
|
|||||||
lattice=lattice,
|
lattice=lattice,
|
||||||
num_paths=params.num_paths,
|
num_paths=params.num_paths,
|
||||||
ref_texts=supervisions["text"],
|
ref_texts=supervisions["text"],
|
||||||
lexicon=lexicon,
|
word_table=word_table,
|
||||||
scale=params.lattice_score_scale,
|
scale=params.lattice_score_scale,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -237,7 +269,7 @@ def decode_one_batch(
|
|||||||
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
|
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
|
||||||
|
|
||||||
hyps = get_texts(best_path)
|
hyps = get_texts(best_path)
|
||||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
return {key: hyps}
|
return {key: hyps}
|
||||||
|
|
||||||
assert params.method in [
|
assert params.method in [
|
||||||
@ -283,7 +315,7 @@ def decode_one_batch(
|
|||||||
ans = dict()
|
ans = dict()
|
||||||
for lm_scale_str, best_path in best_path_dict.items():
|
for lm_scale_str, best_path in best_path_dict.items():
|
||||||
hyps = get_texts(best_path)
|
hyps = get_texts(best_path)
|
||||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
ans[lm_scale_str] = hyps
|
ans[lm_scale_str] = hyps
|
||||||
return ans
|
return ans
|
||||||
|
|
||||||
@ -293,7 +325,7 @@ def decode_dataset(
|
|||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
model: nn.Module,
|
model: nn.Module,
|
||||||
HLG: k2.Fsa,
|
HLG: k2.Fsa,
|
||||||
lexicon: Lexicon,
|
word_table: k2.SymbolTable,
|
||||||
sos_id: int,
|
sos_id: int,
|
||||||
eos_id: int,
|
eos_id: int,
|
||||||
G: Optional[k2.Fsa] = None,
|
G: Optional[k2.Fsa] = None,
|
||||||
@ -309,8 +341,8 @@ def decode_dataset(
|
|||||||
The neural model.
|
The neural model.
|
||||||
HLG:
|
HLG:
|
||||||
The decoding graph.
|
The decoding graph.
|
||||||
lexicon:
|
word_table:
|
||||||
It contains word symbol table.
|
It is the word symbol table.
|
||||||
sos_id:
|
sos_id:
|
||||||
The token ID for SOS.
|
The token ID for SOS.
|
||||||
eos_id:
|
eos_id:
|
||||||
@ -344,7 +376,7 @@ def decode_dataset(
|
|||||||
model=model,
|
model=model,
|
||||||
HLG=HLG,
|
HLG=HLG,
|
||||||
batch=batch,
|
batch=batch,
|
||||||
lexicon=lexicon,
|
word_table=word_table,
|
||||||
G=G,
|
G=G,
|
||||||
sos_id=sos_id,
|
sos_id=sos_id,
|
||||||
eos_id=eos_id,
|
eos_id=eos_id,
|
||||||
@ -521,6 +553,13 @@ def main():
|
|||||||
logging.info(f"averaging {filenames}")
|
logging.info(f"averaging {filenames}")
|
||||||
model.load_state_dict(average_checkpoints(filenames))
|
model.load_state_dict(average_checkpoints(filenames))
|
||||||
|
|
||||||
|
if params.export:
|
||||||
|
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||||
|
torch.save(
|
||||||
|
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
model.to(device)
|
model.to(device)
|
||||||
model.eval()
|
model.eval()
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
@ -540,7 +579,7 @@ def main():
|
|||||||
params=params,
|
params=params,
|
||||||
model=model,
|
model=model,
|
||||||
HLG=HLG,
|
HLG=HLG,
|
||||||
lexicon=lexicon,
|
word_table=lexicon.word_table,
|
||||||
G=G,
|
G=G,
|
||||||
sos_id=sos_id,
|
sos_id=sos_id,
|
||||||
eos_id=eos_id,
|
eos_id=eos_id,
|
||||||
|
@ -16,9 +16,8 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
from subsampling import Conv2dSubsampling
|
|
||||||
from subsampling import VggSubsampling
|
|
||||||
import torch
|
import torch
|
||||||
|
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||||
|
|
||||||
|
|
||||||
def test_conv2d_subsampling():
|
def test_conv2d_subsampling():
|
||||||
|
@ -17,17 +17,16 @@
|
|||||||
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
from transformer import (
|
from transformer import (
|
||||||
Transformer,
|
Transformer,
|
||||||
|
add_eos,
|
||||||
|
add_sos,
|
||||||
|
decoder_padding_mask,
|
||||||
encoder_padding_mask,
|
encoder_padding_mask,
|
||||||
generate_square_subsequent_mask,
|
generate_square_subsequent_mask,
|
||||||
decoder_padding_mask,
|
|
||||||
add_sos,
|
|
||||||
add_eos,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
|
||||||
|
|
||||||
|
|
||||||
def test_encoder_padding_mask():
|
def test_encoder_padding_mask():
|
||||||
supervisions = {
|
supervisions = {
|
||||||
|
@ -74,6 +74,23 @@ def get_parser():
|
|||||||
help="Should various information be logged in tensorboard.",
|
help="Should various information be logged in tensorboard.",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=35,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""Resume training from from this epoch.
|
||||||
|
If it is positive, it will load checkpoint from
|
||||||
|
conformer_ctc/exp/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -103,11 +120,6 @@ def get_params() -> AttributeDict:
|
|||||||
|
|
||||||
- subsampling_factor: The subsampling factor for the model.
|
- subsampling_factor: The subsampling factor for the model.
|
||||||
|
|
||||||
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
|
||||||
and continue training from that checkpoint.
|
|
||||||
|
|
||||||
- num_epochs: Number of epochs to train.
|
|
||||||
|
|
||||||
- best_train_loss: Best training loss so far. It is used to select
|
- best_train_loss: Best training loss so far. It is used to select
|
||||||
the model that has the lowest training loss. It is
|
the model that has the lowest training loss. It is
|
||||||
updated during the training.
|
updated during the training.
|
||||||
@ -143,8 +155,6 @@ def get_params() -> AttributeDict:
|
|||||||
"feature_dim": 80,
|
"feature_dim": 80,
|
||||||
"weight_decay": 1e-6,
|
"weight_decay": 1e-6,
|
||||||
"subsampling_factor": 4,
|
"subsampling_factor": 4,
|
||||||
"start_epoch": 0,
|
|
||||||
"num_epochs": 20,
|
|
||||||
"best_train_loss": float("inf"),
|
"best_train_loss": float("inf"),
|
||||||
"best_valid_loss": float("inf"),
|
"best_valid_loss": float("inf"),
|
||||||
"best_train_epoch": -1,
|
"best_train_epoch": -1,
|
||||||
|
@ -102,14 +102,14 @@ def compile_HLG(lang_dir: str) -> k2.Fsa:
|
|||||||
|
|
||||||
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||||
|
|
||||||
assert isinstance(LG.aux_labels, k2.RaggedInt)
|
assert isinstance(LG.aux_labels, k2.RaggedTensor)
|
||||||
LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0
|
LG.aux_labels.data[LG.aux_labels.data >= first_word_disambig_id] = 0
|
||||||
|
|
||||||
LG = k2.remove_epsilon(LG)
|
LG = k2.remove_epsilon(LG)
|
||||||
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
||||||
|
|
||||||
LG = k2.connect(LG)
|
LG = k2.connect(LG)
|
||||||
LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)
|
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
|
||||||
|
|
||||||
logging.info("Arc sorting LG")
|
logging.info("Arc sorting LG")
|
||||||
LG = k2.arc_sort(LG)
|
LG = k2.arc_sort(LG)
|
||||||
|
270
egs/librispeech/ASR/tdnn_lstm_ctc/Pre-trained.md
Normal file
@ -0,0 +1,270 @@
|
|||||||
|
|
||||||
|
# How to use a pre-trained model to transcribe a sound file or multiple sound files
|
||||||
|
|
||||||
|
(See the bottom of this document for the link to a colab notebook.)
|
||||||
|
|
||||||
|
You need to prepare 4 files:
|
||||||
|
|
||||||
|
- a model checkpoint file, e.g., epoch-20.pt
|
||||||
|
- HLG.pt, the decoding graph
|
||||||
|
- words.txt, the word symbol table
|
||||||
|
- a sound file, whose sampling rate has to be 16 kHz.
|
||||||
|
Supported formats are those supported by `torchaudio.load()`,
|
||||||
|
e.g., wav and flac.
|
||||||
|
|
||||||
|
Also, you need to install `kaldifeat`. Please refer to
|
||||||
|
<https://github.com/csukuangfj/kaldifeat> for installation.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./tdnn_lstm_ctc/pretrained.py --help
|
||||||
|
```
|
||||||
|
|
||||||
|
displays the help information.
|
||||||
|
|
||||||
|
## HLG decoding
|
||||||
|
|
||||||
|
Once you have the above files ready and have `kaldifeat` installed,
|
||||||
|
you can run:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./tdnn_lstm_ctc/pretrained.py \
|
||||||
|
--checkpoint /path/to/your/checkpoint.pt \
|
||||||
|
--words-file /path/to/words.txt \
|
||||||
|
--HLG /path/to/HLG.pt \
|
||||||
|
/path/to/your/sound.wav
|
||||||
|
```
|
||||||
|
|
||||||
|
and you will see the transcribed result.
|
||||||
|
|
||||||
|
If you want to transcribe multiple files at the same time, you can use:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./tdnn_lstm_ctc/pretrained.py \
|
||||||
|
--checkpoint /path/to/your/checkpoint.pt \
|
||||||
|
--words-file /path/to/words.txt \
|
||||||
|
--HLG /path/to/HLG.pt \
|
||||||
|
/path/to/your/sound1.wav \
|
||||||
|
/path/to/your/sound2.wav \
|
||||||
|
/path/to/your/sound3.wav
|
||||||
|
```
|
||||||
|
|
||||||
|
**Note**: This is the fastest decoding method.
|
||||||
|
|
||||||
|
## HLG decoding + LM rescoring
|
||||||
|
|
||||||
|
`./tdnn_lstm_ctc/pretrained.py` also supports `whole lattice LM rescoring`.
|
||||||
|
|
||||||
|
To use whole lattice LM rescoring, you also need the following files:
|
||||||
|
|
||||||
|
- G.pt, e.g., `data/lm/G_4_gram.pt` if you have run `./prepare.sh`
|
||||||
|
|
||||||
|
The command to run decoding with LM rescoring is:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./tdnn_lstm_ctc/pretrained.py \
|
||||||
|
--checkpoint /path/to/your/checkpoint.pt \
|
||||||
|
--words-file /path/to/words.txt \
|
||||||
|
--HLG /path/to/HLG.pt \
|
||||||
|
--method whole-lattice-rescoring \
|
||||||
|
--G data/lm/G_4_gram.pt \
|
||||||
|
--ngram-lm-scale 0.8 \
|
||||||
|
/path/to/your/sound1.wav \
|
||||||
|
/path/to/your/sound2.wav \
|
||||||
|
/path/to/your/sound3.wav
|
||||||
|
```
|
||||||
|
|
||||||
|
# Decoding with a pre-trained model in action
|
||||||
|
|
||||||
|
We have uploaded a pre-trained model to <https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc>
|
||||||
|
|
||||||
|
The following shows the steps about the usage of the provided pre-trained model.
|
||||||
|
|
||||||
|
### (1) Download the pre-trained model
|
||||||
|
|
||||||
|
```bash
|
||||||
|
sudo apt-get install git-lfs
|
||||||
|
cd /path/to/icefall/egs/librispeech/ASR
|
||||||
|
git lfs install
|
||||||
|
mkdir tmp
|
||||||
|
cd tmp
|
||||||
|
git clone https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc
|
||||||
|
```
|
||||||
|
|
||||||
|
**CAUTION**: You have to install `git-lfs` to download the pre-trained model.
|
||||||
|
|
||||||
|
You will find the following files:
|
||||||
|
|
||||||
|
```
|
||||||
|
tmp/
|
||||||
|
`-- icefall_asr_librispeech_tdnn-lstm_ctc
|
||||||
|
|-- README.md
|
||||||
|
|-- data
|
||||||
|
| |-- lang_phone
|
||||||
|
| | |-- HLG.pt
|
||||||
|
| | |-- tokens.txt
|
||||||
|
| | `-- words.txt
|
||||||
|
| `-- lm
|
||||||
|
| `-- G_4_gram.pt
|
||||||
|
|-- exp
|
||||||
|
| `-- pretrained.pt
|
||||||
|
`-- test_wavs
|
||||||
|
|-- 1089-134686-0001.flac
|
||||||
|
|-- 1221-135766-0001.flac
|
||||||
|
|-- 1221-135766-0002.flac
|
||||||
|
`-- trans.txt
|
||||||
|
|
||||||
|
6 directories, 10 files
|
||||||
|
```
|
||||||
|
|
||||||
|
**File descriptions**:
|
||||||
|
|
||||||
|
- `data/lang_phone/HLG.pt`
|
||||||
|
|
||||||
|
It is the decoding graph.
|
||||||
|
|
||||||
|
- `data/lang_phone/tokens.txt`
|
||||||
|
|
||||||
|
It contains tokens and their IDs.
|
||||||
|
|
||||||
|
- `data/lang_phone/words.txt`
|
||||||
|
|
||||||
|
It contains words and their IDs.
|
||||||
|
|
||||||
|
- `data/lm/G_4_gram.pt`
|
||||||
|
|
||||||
|
It is a 4-gram LM, useful for LM rescoring.
|
||||||
|
|
||||||
|
- `exp/pretrained.pt`
|
||||||
|
|
||||||
|
It contains pre-trained model parameters, obtained by averaging
|
||||||
|
checkpoints from `epoch-14.pt` to `epoch-19.pt`.
|
||||||
|
Note: We have removed optimizer `state_dict` to reduce file size.
|
||||||
|
|
||||||
|
- `test_waves/*.flac`
|
||||||
|
|
||||||
|
It contains some test sound files from LibriSpeech `test-clean` dataset.
|
||||||
|
|
||||||
|
- `test_waves/trans.txt`
|
||||||
|
|
||||||
|
It contains the reference transcripts for the sound files in `test_waves/`.
|
||||||
|
|
||||||
|
The information of the test sound files is listed below:
|
||||||
|
|
||||||
|
```
|
||||||
|
$ soxi tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/*.flac
|
||||||
|
|
||||||
|
Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac'
|
||||||
|
Channels : 1
|
||||||
|
Sample Rate : 16000
|
||||||
|
Precision : 16-bit
|
||||||
|
Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors
|
||||||
|
File Size : 116k
|
||||||
|
Bit Rate : 140k
|
||||||
|
Sample Encoding: 16-bit FLAC
|
||||||
|
|
||||||
|
|
||||||
|
Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac'
|
||||||
|
Channels : 1
|
||||||
|
Sample Rate : 16000
|
||||||
|
Precision : 16-bit
|
||||||
|
Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors
|
||||||
|
File Size : 343k
|
||||||
|
Bit Rate : 164k
|
||||||
|
Sample Encoding: 16-bit FLAC
|
||||||
|
|
||||||
|
|
||||||
|
Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac'
|
||||||
|
Channels : 1
|
||||||
|
Sample Rate : 16000
|
||||||
|
Precision : 16-bit
|
||||||
|
Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors
|
||||||
|
File Size : 105k
|
||||||
|
Bit Rate : 174k
|
||||||
|
Sample Encoding: 16-bit FLAC
|
||||||
|
|
||||||
|
Total Duration of 3 files: 00:00:28.16
|
||||||
|
```
|
||||||
|
|
||||||
|
### (2) Use HLG decoding
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd /path/to/icefall/egs/librispeech/ASR
|
||||||
|
|
||||||
|
./tdnn_lstm_ctc/pretrained.py \
|
||||||
|
--checkpoint ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt \
|
||||||
|
--words-file ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt \
|
||||||
|
--HLG ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt \
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac \
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac \
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac
|
||||||
|
```
|
||||||
|
|
||||||
|
The output is given below:
|
||||||
|
|
||||||
|
```
|
||||||
|
2021-08-24 16:57:13,315 INFO [pretrained.py:168] device: cuda:0
|
||||||
|
2021-08-24 16:57:13,315 INFO [pretrained.py:170] Creating model
|
||||||
|
2021-08-24 16:57:18,331 INFO [pretrained.py:182] Loading HLG from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt
|
||||||
|
2021-08-24 16:57:27,581 INFO [pretrained.py:199] Constructing Fbank computer
|
||||||
|
2021-08-24 16:57:27,584 INFO [pretrained.py:209] Reading sound files: ['./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac']
|
||||||
|
2021-08-24 16:57:27,599 INFO [pretrained.py:215] Decoding started
|
||||||
|
2021-08-24 16:57:27,791 INFO [pretrained.py:245] Use HLG decoding
|
||||||
|
2021-08-24 16:57:28,098 INFO [pretrained.py:266]
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
|
||||||
|
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||||
|
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
|
||||||
|
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||||
|
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
|
||||||
|
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||||
|
|
||||||
|
|
||||||
|
2021-08-24 16:57:28,099 INFO [pretrained.py:268] Decoding Done
|
||||||
|
```
|
||||||
|
|
||||||
|
### (3) Use HLG decoding + LM rescoring
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./tdnn_lstm_ctc/pretrained.py \
|
||||||
|
--checkpoint ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt \
|
||||||
|
--words-file ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt \
|
||||||
|
--HLG ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt \
|
||||||
|
--method whole-lattice-rescoring \
|
||||||
|
--G ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lm/G_4_gram.pt \
|
||||||
|
--ngram-lm-scale 0.8 \
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac \
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac \
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac
|
||||||
|
```
|
||||||
|
|
||||||
|
The output is:
|
||||||
|
|
||||||
|
```
|
||||||
|
2021-08-24 16:39:24,725 INFO [pretrained.py:168] device: cuda:0
|
||||||
|
2021-08-24 16:39:24,725 INFO [pretrained.py:170] Creating model
|
||||||
|
2021-08-24 16:39:29,403 INFO [pretrained.py:182] Loading HLG from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt
|
||||||
|
2021-08-24 16:39:40,631 INFO [pretrained.py:190] Loading G from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lm/G_4_gram.pt
|
||||||
|
2021-08-24 16:39:53,098 INFO [pretrained.py:199] Constructing Fbank computer
|
||||||
|
2021-08-24 16:39:53,107 INFO [pretrained.py:209] Reading sound files: ['./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac']
|
||||||
|
2021-08-24 16:39:53,121 INFO [pretrained.py:215] Decoding started
|
||||||
|
2021-08-24 16:39:53,443 INFO [pretrained.py:250] Use HLG decoding + LM rescoring
|
||||||
|
2021-08-24 16:39:54,010 INFO [pretrained.py:266]
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
|
||||||
|
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||||
|
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
|
||||||
|
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||||
|
|
||||||
|
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
|
||||||
|
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||||
|
|
||||||
|
|
||||||
|
2021-08-24 16:39:54,010 INFO [pretrained.py:268] Decoding Done
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: We provide a colab notebook for demonstration.
|
||||||
|
[](https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd?usp=sharing)
|
||||||
|
|
||||||
|
Due to limited memory provided by Colab, you have to upgrade to Colab Pro to run `HLG decoding + LM rescoring`.
|
||||||
|
Otherwise, you can only run `HLG decoding` with Colab.
|
@ -1,2 +1,4 @@
|
|||||||
|
|
||||||
Will add results later.
|
Please visit
|
||||||
|
<https://icefall.readthedocs.io/en/latest/recipes/librispeech/tdnn_lstm_ctc.html>
|
||||||
|
for how to run this recipe.
|
||||||
|
@ -82,14 +82,14 @@ class LibriSpeechAsrDataModule(DataModule):
|
|||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--max-duration",
|
"--max-duration",
|
||||||
type=int,
|
type=int,
|
||||||
default=500.0,
|
default=200.0,
|
||||||
help="Maximum pooled recordings duration (seconds) in a "
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--bucketing-sampler",
|
"--bucketing-sampler",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=True,
|
||||||
help="When enabled, the batches will come from buckets of "
|
help="When enabled, the batches will come from buckets of "
|
||||||
"similar duration (saves padding frames).",
|
"similar duration (saves padding frames).",
|
||||||
)
|
)
|
||||||
|
@ -42,6 +42,7 @@ from icefall.utils import (
|
|||||||
get_texts,
|
get_texts,
|
||||||
setup_logger,
|
setup_logger,
|
||||||
store_transcripts,
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
write_error_stats,
|
write_error_stats,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -54,7 +55,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=9,
|
default=19,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help="It specifies the checkpoint to use for decoding."
|
||||||
"Note: Epoch counts from 0.",
|
"Note: Epoch counts from 0.",
|
||||||
)
|
)
|
||||||
@ -66,6 +67,16 @@ def get_parser():
|
|||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. ",
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--export",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""When enabled, the averaged model is saved to
|
||||||
|
tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved.
|
||||||
|
pretrained.pt contains a dict {"model": model.state_dict()},
|
||||||
|
which can be loaded by `icefall.checkpoint.load_checkpoint()`.
|
||||||
|
""",
|
||||||
|
)
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -87,9 +98,11 @@ def get_params() -> AttributeDict:
|
|||||||
# - nbest
|
# - nbest
|
||||||
# - nbest-rescoring
|
# - nbest-rescoring
|
||||||
# - whole-lattice-rescoring
|
# - whole-lattice-rescoring
|
||||||
"method": "1best",
|
"method": "whole-lattice-rescoring",
|
||||||
|
# "method": "1best",
|
||||||
|
# "method": "nbest",
|
||||||
# num_paths is used when method is "nbest" and "nbest-rescoring"
|
# num_paths is used when method is "nbest" and "nbest-rescoring"
|
||||||
"num_paths": 30,
|
"num_paths": 100,
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
return params
|
return params
|
||||||
@ -408,6 +421,13 @@ def main():
|
|||||||
logging.info(f"averaging {filenames}")
|
logging.info(f"averaging {filenames}")
|
||||||
model.load_state_dict(average_checkpoints(filenames))
|
model.load_state_dict(average_checkpoints(filenames))
|
||||||
|
|
||||||
|
if params.export:
|
||||||
|
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||||
|
torch.save(
|
||||||
|
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
model.to(device)
|
model.to(device)
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
|
277
egs/librispeech/ASR/tdnn_lstm_ctc/pretrained.py
Executable file
@ -0,0 +1,277 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import kaldifeat
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from model import TdnnLstm
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
|
||||||
|
from icefall.decode import (
|
||||||
|
get_lattice,
|
||||||
|
one_best_decoding,
|
||||||
|
rescore_with_whole_lattice,
|
||||||
|
)
|
||||||
|
from icefall.utils import AttributeDict, get_texts
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--checkpoint",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the checkpoint. "
|
||||||
|
"The checkpoint is assumed to be saved by "
|
||||||
|
"icefall.checkpoint.save_checkpoint().",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--words-file",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to words.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--HLG", type=str, required=True, help="Path to HLG.pt."
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="1best",
|
||||||
|
help="""Decoding method.
|
||||||
|
Possible values are:
|
||||||
|
(1) 1best - Use the best path as decoding output. Only
|
||||||
|
the transformer encoder output is used for decoding.
|
||||||
|
We call it HLG decoding.
|
||||||
|
(2) whole-lattice-rescoring - Use an LM to rescore the
|
||||||
|
decoding lattice and then use 1best to decode the
|
||||||
|
rescored lattice.
|
||||||
|
We call it HLG decoding + n-gram LM rescoring.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--G",
|
||||||
|
type=str,
|
||||||
|
help="""An LM for rescoring.
|
||||||
|
Used only when method is
|
||||||
|
whole-lattice-rescoring.
|
||||||
|
It's usually a 4-gram LM.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ngram-lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.8,
|
||||||
|
help="""
|
||||||
|
Used only when method is whole-lattice-rescoring.
|
||||||
|
It specifies the scale for n-gram LM scores.
|
||||||
|
(Note: You need to tune it on a dataset.)
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"feature_dim": 80,
|
||||||
|
"subsampling_factor": 3,
|
||||||
|
"num_classes": 72,
|
||||||
|
"sample_rate": 16000,
|
||||||
|
"search_beam": 20,
|
||||||
|
"output_beam": 5,
|
||||||
|
"min_active_states": 30,
|
||||||
|
"max_active_states": 10000,
|
||||||
|
"use_double_scores": True,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert sample_rate == expected_sample_rate, (
|
||||||
|
f"expected sample rate: {expected_sample_rate}. "
|
||||||
|
f"Given: {sample_rate}"
|
||||||
|
)
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
logging.info(f"{params}")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
logging.info("Creating model")
|
||||||
|
model = TdnnLstm(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
num_classes=params.num_classes,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
|
model.load_state_dict(checkpoint["model"])
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
logging.info(f"Loading HLG from {params.HLG}")
|
||||||
|
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||||
|
HLG = HLG.to(device)
|
||||||
|
if not hasattr(HLG, "lm_scores"):
|
||||||
|
# For whole-lattice-rescoring and attention-decoder
|
||||||
|
HLG.lm_scores = HLG.scores.clone()
|
||||||
|
|
||||||
|
if params.method == "whole-lattice-rescoring":
|
||||||
|
logging.info(f"Loading G from {params.G}")
|
||||||
|
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
|
||||||
|
# Add epsilon self-loops to G as we will compose
|
||||||
|
# it with the whole lattice later
|
||||||
|
G = G.to(device)
|
||||||
|
G = k2.add_epsilon_self_loops(G)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
G.lm_scores = G.scores.clone()
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = params.sample_rate
|
||||||
|
opts.mel_opts.num_bins = params.feature_dim
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {params.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
|
||||||
|
features = pad_sequence(
|
||||||
|
features, batch_first=True, padding_value=math.log(1e-10)
|
||||||
|
)
|
||||||
|
features = features.permute(0, 2, 1) # now features is [N, C, T]
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
nnet_output = model(features)
|
||||||
|
# nnet_output is [N, T, C]
|
||||||
|
|
||||||
|
batch_size = nnet_output.shape[0]
|
||||||
|
supervision_segments = torch.tensor(
|
||||||
|
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
|
||||||
|
dtype=torch.int32,
|
||||||
|
)
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=nnet_output,
|
||||||
|
HLG=HLG,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.method == "1best":
|
||||||
|
logging.info("Use HLG decoding")
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
elif params.method == "whole-lattice-rescoring":
|
||||||
|
logging.info("Use HLG decoding + LM rescoring")
|
||||||
|
best_path_dict = rescore_with_whole_lattice(
|
||||||
|
lattice=lattice,
|
||||||
|
G_with_epsilon_loops=G,
|
||||||
|
lm_scale_list=[params.ngram_lm_scale],
|
||||||
|
)
|
||||||
|
best_path = next(iter(best_path_dict.values()))
|
||||||
|
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||||
|
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
words = " ".join(hyp)
|
||||||
|
s += f"{filename}:\n{words}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
@ -75,6 +75,23 @@ def get_parser():
|
|||||||
help="Should various information be logged in tensorboard.",
|
help="Should various information be logged in tensorboard.",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=20,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""Resume training from from this epoch.
|
||||||
|
If it is positive, it will load checkpoint from
|
||||||
|
tdnn_lstm_ctc/exp/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -104,11 +121,6 @@ def get_params() -> AttributeDict:
|
|||||||
|
|
||||||
- subsampling_factor: The subsampling factor for the model.
|
- subsampling_factor: The subsampling factor for the model.
|
||||||
|
|
||||||
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
|
||||||
and continue training from that checkpoint.
|
|
||||||
|
|
||||||
- num_epochs: Number of epochs to train.
|
|
||||||
|
|
||||||
- best_train_loss: Best training loss so far. It is used to select
|
- best_train_loss: Best training loss so far. It is used to select
|
||||||
the model that has the lowest training loss. It is
|
the model that has the lowest training loss. It is
|
||||||
updated during the training.
|
updated during the training.
|
||||||
@ -127,6 +139,8 @@ def get_params() -> AttributeDict:
|
|||||||
|
|
||||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||||
|
|
||||||
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||||
|
|
||||||
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
- valid_interval: Run validation if batch_idx % valid_interval` is 0
|
||||||
|
|
||||||
- beam_size: It is used in k2.ctc_loss
|
- beam_size: It is used in k2.ctc_loss
|
||||||
@ -143,14 +157,13 @@ def get_params() -> AttributeDict:
|
|||||||
"feature_dim": 80,
|
"feature_dim": 80,
|
||||||
"weight_decay": 5e-4,
|
"weight_decay": 5e-4,
|
||||||
"subsampling_factor": 3,
|
"subsampling_factor": 3,
|
||||||
"start_epoch": 0,
|
|
||||||
"num_epochs": 10,
|
|
||||||
"best_train_loss": float("inf"),
|
"best_train_loss": float("inf"),
|
||||||
"best_valid_loss": float("inf"),
|
"best_valid_loss": float("inf"),
|
||||||
"best_train_epoch": -1,
|
"best_train_epoch": -1,
|
||||||
"best_valid_epoch": -1,
|
"best_valid_epoch": -1,
|
||||||
"batch_idx_train": 0,
|
"batch_idx_train": 0,
|
||||||
"log_interval": 10,
|
"log_interval": 10,
|
||||||
|
"reset_interval": 200,
|
||||||
"valid_interval": 1000,
|
"valid_interval": 1000,
|
||||||
"beam_size": 10,
|
"beam_size": 10,
|
||||||
"reduction": "sum",
|
"reduction": "sum",
|
||||||
@ -398,8 +411,12 @@ def train_one_epoch(
|
|||||||
"""
|
"""
|
||||||
model.train()
|
model.train()
|
||||||
|
|
||||||
tot_loss = 0.0 # sum of losses over all batches
|
tot_loss = 0.0 # reset after params.reset_interval of batches
|
||||||
tot_frames = 0.0 # sum of frames over all batches
|
tot_frames = 0.0 # reset after params.reset_interval of batches
|
||||||
|
|
||||||
|
params.tot_loss = 0.0
|
||||||
|
params.tot_frames = 0.0
|
||||||
|
|
||||||
for batch_idx, batch in enumerate(train_dl):
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
params.batch_idx_train += 1
|
params.batch_idx_train += 1
|
||||||
batch_size = len(batch["supervisions"]["text"])
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
@ -426,6 +443,9 @@ def train_one_epoch(
|
|||||||
tot_loss += loss_cpu
|
tot_loss += loss_cpu
|
||||||
tot_avg_loss = tot_loss / tot_frames
|
tot_avg_loss = tot_loss / tot_frames
|
||||||
|
|
||||||
|
params.tot_frames += params.train_frames
|
||||||
|
params.tot_loss += loss_cpu
|
||||||
|
|
||||||
if batch_idx % params.log_interval == 0:
|
if batch_idx % params.log_interval == 0:
|
||||||
logging.info(
|
logging.info(
|
||||||
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
||||||
@ -433,6 +453,22 @@ def train_one_epoch(
|
|||||||
f"total avg loss: {tot_avg_loss:.4f}, "
|
f"total avg loss: {tot_avg_loss:.4f}, "
|
||||||
f"batch size: {batch_size}"
|
f"batch size: {batch_size}"
|
||||||
)
|
)
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/current_loss",
|
||||||
|
loss_cpu / params.train_frames,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/tot_avg_loss",
|
||||||
|
tot_avg_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_idx > 0 and batch_idx % params.reset_interval == 0:
|
||||||
|
tot_loss = 0
|
||||||
|
tot_frames = 0
|
||||||
|
|
||||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
compute_validation_loss(
|
compute_validation_loss(
|
||||||
@ -449,7 +485,7 @@ def train_one_epoch(
|
|||||||
f"best valid epoch: {params.best_valid_epoch}"
|
f"best valid epoch: {params.best_valid_epoch}"
|
||||||
)
|
)
|
||||||
|
|
||||||
params.train_loss = tot_loss / tot_frames
|
params.train_loss = params.tot_loss / params.tot_frames
|
||||||
|
|
||||||
if params.train_loss < params.best_train_loss:
|
if params.train_loss < params.best_train_loss:
|
||||||
params.best_train_epoch = params.cur_epoch
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
@ -1,15 +1,14 @@
|
|||||||
## Yesno recipe
|
## Yesno recipe
|
||||||
|
|
||||||
You can run the recipe with **CPU**.
|
This is the simplest ASR recipe in `icefall`.
|
||||||
|
|
||||||
|
It can be run on CPU and takes less than 30 seconds to
|
||||||
[](https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing)
|
get the following WER:
|
||||||
|
|
||||||
The above Colab notebook finishes the training using **CPU**
|
|
||||||
within two minutes (50 epochs in total).
|
|
||||||
|
|
||||||
The WER is
|
|
||||||
|
|
||||||
```
|
```
|
||||||
[test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
|
[test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Please refer to
|
||||||
|
<https://icefall.readthedocs.io/en/latest/recipes/yesno.html>
|
||||||
|
for detailed instructions.
|
||||||
|
@ -80,14 +80,14 @@ def compile_HLG(lang_dir: str) -> k2.Fsa:
|
|||||||
|
|
||||||
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||||
|
|
||||||
assert isinstance(LG.aux_labels, k2.RaggedInt)
|
assert isinstance(LG.aux_labels, k2.RaggedTensor)
|
||||||
LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0
|
LG.aux_labels.data[LG.aux_labels.data >= first_word_disambig_id] = 0
|
||||||
|
|
||||||
LG = k2.remove_epsilon(LG)
|
LG = k2.remove_epsilon(LG)
|
||||||
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
||||||
|
|
||||||
LG = k2.connect(LG)
|
LG = k2.connect(LG)
|
||||||
LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)
|
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
|
||||||
|
|
||||||
logging.info("Arc sorting LG")
|
logging.info("Arc sorting LG")
|
||||||
LG = k2.arc_sort(LG)
|
LG = k2.arc_sort(LG)
|
||||||
|
8
egs/yesno/ASR/tdnn/README.md
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
|
||||||
|
## How to run this recipe
|
||||||
|
|
||||||
|
You can find detailed instructions by visiting
|
||||||
|
<https://icefall.readthedocs.io/en/latest/recipes/yesno.html>
|
||||||
|
|
||||||
|
It describes how to run this recipe and how to use
|
||||||
|
a pre-trained model with `./pretrained.py`.
|
@ -27,7 +27,6 @@ from lhotse.dataset import (
|
|||||||
K2SpeechRecognitionDataset,
|
K2SpeechRecognitionDataset,
|
||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SingleCutSampler,
|
SingleCutSampler,
|
||||||
SpecAugment,
|
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
@ -163,18 +162,8 @@ class YesNoAsrDataModule(DataModule):
|
|||||||
)
|
)
|
||||||
] + transforms
|
] + transforms
|
||||||
|
|
||||||
input_transforms = [
|
|
||||||
SpecAugment(
|
|
||||||
num_frame_masks=2,
|
|
||||||
features_mask_size=27,
|
|
||||||
num_feature_masks=2,
|
|
||||||
frames_mask_size=100,
|
|
||||||
)
|
|
||||||
]
|
|
||||||
|
|
||||||
train = K2SpeechRecognitionDataset(
|
train = K2SpeechRecognitionDataset(
|
||||||
cut_transforms=transforms,
|
cut_transforms=transforms,
|
||||||
input_transforms=input_transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -194,7 +183,6 @@ class YesNoAsrDataModule(DataModule):
|
|||||||
input_strategy=OnTheFlyFeatures(
|
input_strategy=OnTheFlyFeatures(
|
||||||
Fbank(FbankConfig(num_mel_bins=23))
|
Fbank(FbankConfig(num_mel_bins=23))
|
||||||
),
|
),
|
||||||
input_transforms=input_transforms,
|
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -20,6 +20,7 @@ from icefall.utils import (
|
|||||||
get_texts,
|
get_texts,
|
||||||
setup_logger,
|
setup_logger,
|
||||||
store_transcripts,
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
write_error_stats,
|
write_error_stats,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -32,18 +33,29 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=9,
|
default=14,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help="It specifies the checkpoint to use for decoding."
|
||||||
"Note: Epoch counts from 0.",
|
"Note: Epoch counts from 0.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--avg",
|
"--avg",
|
||||||
type=int,
|
type=int,
|
||||||
default=15,
|
default=2,
|
||||||
help="Number of checkpoints to average. Automatically select "
|
help="Number of checkpoints to average. Automatically select "
|
||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. ",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--export",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""When enabled, the averaged model is saved to
|
||||||
|
tdnn/exp/pretrained.pt. Note: only model.state_dict() is saved.
|
||||||
|
pretrained.pt contains a dict {"model": model.state_dict()},
|
||||||
|
which can be loaded by `icefall.checkpoint.load_checkpoint()`.
|
||||||
|
""",
|
||||||
|
)
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -104,16 +116,11 @@ def decode_one_batch(
|
|||||||
nnet_output = model(feature)
|
nnet_output = model(feature)
|
||||||
# nnet_output is [N, T, C]
|
# nnet_output is [N, T, C]
|
||||||
|
|
||||||
supervisions = batch["supervisions"]
|
batch_size = nnet_output.shape[0]
|
||||||
|
supervision_segments = torch.tensor(
|
||||||
supervision_segments = torch.stack(
|
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
|
||||||
(
|
dtype=torch.int32,
|
||||||
supervisions["sequence_idx"],
|
)
|
||||||
supervisions["start_frame"],
|
|
||||||
supervisions["num_frames"],
|
|
||||||
),
|
|
||||||
1,
|
|
||||||
).to(torch.int32)
|
|
||||||
|
|
||||||
lattice = get_lattice(
|
lattice = get_lattice(
|
||||||
nnet_output=nnet_output,
|
nnet_output=nnet_output,
|
||||||
@ -284,6 +291,13 @@ def main():
|
|||||||
logging.info(f"averaging {filenames}")
|
logging.info(f"averaging {filenames}")
|
||||||
model.load_state_dict(average_checkpoints(filenames))
|
model.load_state_dict(average_checkpoints(filenames))
|
||||||
|
|
||||||
|
if params.export:
|
||||||
|
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||||
|
torch.save(
|
||||||
|
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
model.to(device)
|
model.to(device)
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
|
@ -23,7 +23,6 @@ class Tdnn(nn.Module):
|
|||||||
in_channels=num_features,
|
in_channels=num_features,
|
||||||
out_channels=32,
|
out_channels=32,
|
||||||
kernel_size=3,
|
kernel_size=3,
|
||||||
padding=1,
|
|
||||||
),
|
),
|
||||||
nn.ReLU(inplace=True),
|
nn.ReLU(inplace=True),
|
||||||
nn.BatchNorm1d(num_features=32, affine=False),
|
nn.BatchNorm1d(num_features=32, affine=False),
|
||||||
@ -31,7 +30,6 @@ class Tdnn(nn.Module):
|
|||||||
in_channels=32,
|
in_channels=32,
|
||||||
out_channels=32,
|
out_channels=32,
|
||||||
kernel_size=5,
|
kernel_size=5,
|
||||||
padding=4,
|
|
||||||
dilation=2,
|
dilation=2,
|
||||||
),
|
),
|
||||||
nn.ReLU(inplace=True),
|
nn.ReLU(inplace=True),
|
||||||
@ -40,7 +38,6 @@ class Tdnn(nn.Module):
|
|||||||
in_channels=32,
|
in_channels=32,
|
||||||
out_channels=32,
|
out_channels=32,
|
||||||
kernel_size=5,
|
kernel_size=5,
|
||||||
padding=8,
|
|
||||||
dilation=4,
|
dilation=4,
|
||||||
),
|
),
|
||||||
nn.ReLU(inplace=True),
|
nn.ReLU(inplace=True),
|
||||||
|
209
egs/yesno/ASR/tdnn/pretrained.py
Executable file
@ -0,0 +1,209 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import kaldifeat
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from model import Tdnn
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
|
||||||
|
from icefall.decode import get_lattice, one_best_decoding
|
||||||
|
from icefall.utils import AttributeDict, get_texts
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--checkpoint",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the checkpoint. "
|
||||||
|
"The checkpoint is assumed to be saved by "
|
||||||
|
"icefall.checkpoint.save_checkpoint().",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--words-file",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to words.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--HLG", type=str, required=True, help="Path to HLG.pt."
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"feature_dim": 23,
|
||||||
|
"num_classes": 4, # [<blk>, N, SIL, Y]
|
||||||
|
"sample_rate": 8000,
|
||||||
|
"search_beam": 20,
|
||||||
|
"output_beam": 8,
|
||||||
|
"min_active_states": 30,
|
||||||
|
"max_active_states": 10000,
|
||||||
|
"use_double_scores": True,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert sample_rate == expected_sample_rate, (
|
||||||
|
f"expected sample rate: {expected_sample_rate}. "
|
||||||
|
f"Given: {sample_rate}"
|
||||||
|
)
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
logging.info(f"{params}")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
logging.info("Creating model")
|
||||||
|
|
||||||
|
model = Tdnn(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
num_classes=params.num_classes,
|
||||||
|
)
|
||||||
|
|
||||||
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
|
model.load_state_dict(checkpoint["model"])
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
logging.info(f"Loading HLG from {params.HLG}")
|
||||||
|
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||||
|
HLG = HLG.to(device)
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = params.sample_rate
|
||||||
|
opts.mel_opts.num_bins = params.feature_dim
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {params.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
|
||||||
|
features = pad_sequence(
|
||||||
|
features, batch_first=True, padding_value=math.log(1e-10)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Note: We don't use key padding mask for attention during decoding
|
||||||
|
with torch.no_grad():
|
||||||
|
nnet_output = model(features)
|
||||||
|
|
||||||
|
batch_size = nnet_output.shape[0]
|
||||||
|
supervision_segments = torch.tensor(
|
||||||
|
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
|
||||||
|
dtype=torch.int32,
|
||||||
|
)
|
||||||
|
|
||||||
|
lattice = get_lattice(
|
||||||
|
nnet_output=nnet_output,
|
||||||
|
HLG=HLG,
|
||||||
|
supervision_segments=supervision_segments,
|
||||||
|
search_beam=params.search_beam,
|
||||||
|
output_beam=params.output_beam,
|
||||||
|
min_active_states=params.min_active_states,
|
||||||
|
max_active_states=params.max_active_states,
|
||||||
|
)
|
||||||
|
|
||||||
|
best_path = one_best_decoding(
|
||||||
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
|
)
|
||||||
|
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
word_sym_table = k2.SymbolTable.from_file(params.words_file)
|
||||||
|
hyps = [[word_sym_table[i] for i in ids] for ids in hyps]
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
words = " ".join(hyp)
|
||||||
|
s += f"{filename}:\n{words}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
@ -24,12 +24,7 @@ from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
|||||||
from icefall.dist import cleanup_dist, setup_dist
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
from icefall.graph_compiler import CtcTrainingGraphCompiler
|
||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
from icefall.utils import (
|
from icefall.utils import AttributeDict, setup_logger, str2bool
|
||||||
AttributeDict,
|
|
||||||
encode_supervisions,
|
|
||||||
setup_logger,
|
|
||||||
str2bool,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
@ -61,10 +56,20 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--num-epochs",
|
"--num-epochs",
|
||||||
type=int,
|
type=int,
|
||||||
default=50,
|
default=15,
|
||||||
help="Number of epochs to train.",
|
help="Number of epochs to train.",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""Resume training from from this epoch.
|
||||||
|
If it is positive, it will load checkpoint from
|
||||||
|
tdnn/exp/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -97,8 +102,6 @@ def get_params() -> AttributeDict:
|
|||||||
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
- start_epoch: If it is not zero, load checkpoint `start_epoch-1`
|
||||||
and continue training from that checkpoint.
|
and continue training from that checkpoint.
|
||||||
|
|
||||||
- num_epochs: Number of epochs to train.
|
|
||||||
|
|
||||||
- best_train_loss: Best training loss so far. It is used to select
|
- best_train_loss: Best training loss so far. It is used to select
|
||||||
the model that has the lowest training loss. It is
|
the model that has the lowest training loss. It is
|
||||||
updated during the training.
|
updated during the training.
|
||||||
@ -129,11 +132,10 @@ def get_params() -> AttributeDict:
|
|||||||
{
|
{
|
||||||
"exp_dir": Path("tdnn/exp"),
|
"exp_dir": Path("tdnn/exp"),
|
||||||
"lang_dir": Path("data/lang_phone"),
|
"lang_dir": Path("data/lang_phone"),
|
||||||
"lr": 1e-3,
|
"lr": 1e-2,
|
||||||
"feature_dim": 23,
|
"feature_dim": 23,
|
||||||
"weight_decay": 1e-6,
|
"weight_decay": 1e-6,
|
||||||
"start_epoch": 0,
|
"start_epoch": 0,
|
||||||
"num_epochs": 50,
|
|
||||||
"best_train_loss": float("inf"),
|
"best_train_loss": float("inf"),
|
||||||
"best_valid_loss": float("inf"),
|
"best_valid_loss": float("inf"),
|
||||||
"best_train_epoch": -1,
|
"best_train_epoch": -1,
|
||||||
@ -278,9 +280,14 @@ def compute_loss(
|
|||||||
# different duration in decreasing order, required by
|
# different duration in decreasing order, required by
|
||||||
# `k2.intersect_dense` called in `k2.ctc_loss`
|
# `k2.intersect_dense` called in `k2.ctc_loss`
|
||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
supervision_segments, texts = encode_supervisions(
|
texts = supervisions["text"]
|
||||||
supervisions, subsampling_factor=1
|
|
||||||
|
batch_size = nnet_output.shape[0]
|
||||||
|
supervision_segments = torch.tensor(
|
||||||
|
[[i, 0, nnet_output.shape[1]] for i in range(batch_size)],
|
||||||
|
dtype=torch.int32,
|
||||||
)
|
)
|
||||||
|
|
||||||
decoding_graph = graph_compiler.compile(texts)
|
decoding_graph = graph_compiler.compile(texts)
|
||||||
|
|
||||||
dense_fsa_vec = k2.DenseFsaVec(
|
dense_fsa_vec = k2.DenseFsaVec(
|
||||||
@ -421,6 +428,19 @@ def train_one_epoch(
|
|||||||
f"batch size: {batch_size}"
|
f"batch size: {batch_size}"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/current_loss",
|
||||||
|
loss_cpu / params.train_frames,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/tot_avg_loss",
|
||||||
|
tot_avg_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
|
||||||
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
compute_validation_loss(
|
compute_validation_loss(
|
||||||
params=params,
|
params=params,
|
||||||
@ -435,6 +455,12 @@ def train_one_epoch(
|
|||||||
f" best valid loss: {params.best_valid_loss:.4f} "
|
f" best valid loss: {params.best_valid_loss:.4f} "
|
||||||
f"best valid epoch: {params.best_valid_epoch}"
|
f"best valid epoch: {params.best_valid_epoch}"
|
||||||
)
|
)
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/valid_loss",
|
||||||
|
params.valid_loss,
|
||||||
|
params.batch_idx_train,
|
||||||
|
)
|
||||||
|
|
||||||
params.train_loss = tot_loss / tot_frames
|
params.train_loss = tot_loss / tot_frames
|
||||||
|
|
||||||
@ -491,7 +517,7 @@ def run(rank, world_size, args):
|
|||||||
if world_size > 1:
|
if world_size > 1:
|
||||||
model = DDP(model, device_ids=[rank])
|
model = DDP(model, device_ids=[rank])
|
||||||
|
|
||||||
optimizer = optim.AdamW(
|
optimizer = optim.SGD(
|
||||||
model.parameters(),
|
model.parameters(),
|
||||||
lr=params.lr,
|
lr=params.lr,
|
||||||
weight_decay=params.weight_decay,
|
weight_decay=params.weight_decay,
|
||||||
|
@ -22,8 +22,6 @@ import kaldialign
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
from icefall.lexicon import Lexicon
|
|
||||||
|
|
||||||
|
|
||||||
def _get_random_paths(
|
def _get_random_paths(
|
||||||
lattice: k2.Fsa,
|
lattice: k2.Fsa,
|
||||||
@ -86,8 +84,8 @@ def _intersect_device(
|
|||||||
for start, end in splits:
|
for start, end in splits:
|
||||||
indexes = torch.arange(start, end).to(b_to_a_map)
|
indexes = torch.arange(start, end).to(b_to_a_map)
|
||||||
|
|
||||||
fsas = k2.index(b_fsas, indexes)
|
fsas = k2.index_fsa(b_fsas, indexes)
|
||||||
b_to_a = k2.index(b_to_a_map, indexes)
|
b_to_a = k2.index_select(b_to_a_map, indexes)
|
||||||
path_lattice = k2.intersect_device(
|
path_lattice = k2.intersect_device(
|
||||||
a_fsas, fsas, b_to_a_map=b_to_a, sorted_match_a=sorted_match_a
|
a_fsas, fsas, b_to_a_map=b_to_a, sorted_match_a=sorted_match_a
|
||||||
)
|
)
|
||||||
@ -217,18 +215,16 @@ def nbest_decoding(
|
|||||||
scale=scale,
|
scale=scale,
|
||||||
)
|
)
|
||||||
|
|
||||||
# word_seq is a k2.RaggedInt sharing the same shape as `path`
|
# word_seq is a k2.RaggedTensor sharing the same shape as `path`
|
||||||
# but it contains word IDs. Note that it also contains 0s and -1s.
|
# but it contains word IDs. Note that it also contains 0s and -1s.
|
||||||
# The last entry in each sublist is -1.
|
# The last entry in each sublist is -1.
|
||||||
word_seq = k2.index(lattice.aux_labels, path)
|
if isinstance(lattice.aux_labels, torch.Tensor):
|
||||||
# Note: the above operation supports also the case when
|
word_seq = k2.ragged.index(lattice.aux_labels, path)
|
||||||
# lattice.aux_labels is a ragged tensor. In that case,
|
else:
|
||||||
# `remove_axis=True` is used inside the pybind11 binding code,
|
word_seq = lattice.aux_labels.index(path, remove_axis=True)
|
||||||
# so the resulting `word_seq` still has 3 axes, like `path`.
|
|
||||||
# The 3 axes are [seq][path][word_id]
|
|
||||||
|
|
||||||
# Remove 0 (epsilon) and -1 from word_seq
|
# Remove 0 (epsilon) and -1 from word_seq
|
||||||
word_seq = k2.ragged.remove_values_leq(word_seq, 0)
|
word_seq = word_seq.remove_values_leq(0)
|
||||||
|
|
||||||
# Remove sequences with identical word sequences.
|
# Remove sequences with identical word sequences.
|
||||||
#
|
#
|
||||||
@ -236,12 +232,12 @@ def nbest_decoding(
|
|||||||
# `new2old` is a 1-D torch.Tensor mapping from the output path index
|
# `new2old` is a 1-D torch.Tensor mapping from the output path index
|
||||||
# to the input path index.
|
# to the input path index.
|
||||||
# new2old.numel() == unique_word_seqs.tot_size(1)
|
# new2old.numel() == unique_word_seqs.tot_size(1)
|
||||||
unique_word_seq, _, new2old = k2.ragged.unique_sequences(
|
unique_word_seq, _, new2old = word_seq.unique(
|
||||||
word_seq, need_num_repeats=False, need_new2old_indexes=True
|
need_num_repeats=False, need_new2old_indexes=True
|
||||||
)
|
)
|
||||||
# Note: unique_word_seq still has the same axes as word_seq
|
# Note: unique_word_seq still has the same axes as word_seq
|
||||||
|
|
||||||
seq_to_path_shape = k2.ragged.get_layer(unique_word_seq.shape(), 0)
|
seq_to_path_shape = unique_word_seq.shape.get_layer(0)
|
||||||
|
|
||||||
# path_to_seq_map is a 1-D torch.Tensor.
|
# path_to_seq_map is a 1-D torch.Tensor.
|
||||||
# path_to_seq_map[i] is the seq to which the i-th path belongs
|
# path_to_seq_map[i] is the seq to which the i-th path belongs
|
||||||
@ -249,7 +245,7 @@ def nbest_decoding(
|
|||||||
|
|
||||||
# Remove the seq axis.
|
# Remove the seq axis.
|
||||||
# Now unique_word_seq has only two axes [path][word]
|
# Now unique_word_seq has only two axes [path][word]
|
||||||
unique_word_seq = k2.ragged.remove_axis(unique_word_seq, 0)
|
unique_word_seq = unique_word_seq.remove_axis(0)
|
||||||
|
|
||||||
# word_fsa is an FsaVec with axes [path][state][arc]
|
# word_fsa is an FsaVec with axes [path][state][arc]
|
||||||
word_fsa = k2.linear_fsa(unique_word_seq)
|
word_fsa = k2.linear_fsa(unique_word_seq)
|
||||||
@ -277,35 +273,35 @@ def nbest_decoding(
|
|||||||
use_double_scores=use_double_scores, log_semiring=False
|
use_double_scores=use_double_scores, log_semiring=False
|
||||||
)
|
)
|
||||||
|
|
||||||
# RaggedFloat currently supports float32 only.
|
ragged_tot_scores = k2.RaggedTensor(seq_to_path_shape, tot_scores)
|
||||||
# If Ragged<double> is wrapped, we can use k2.RaggedDouble here
|
|
||||||
ragged_tot_scores = k2.RaggedFloat(
|
|
||||||
seq_to_path_shape, tot_scores.to(torch.float32)
|
|
||||||
)
|
|
||||||
|
|
||||||
argmax_indexes = k2.ragged.argmax_per_sublist(ragged_tot_scores)
|
argmax_indexes = ragged_tot_scores.argmax()
|
||||||
|
|
||||||
# Since we invoked `k2.ragged.unique_sequences`, which reorders
|
# Since we invoked `k2.ragged.unique_sequences`, which reorders
|
||||||
# the index from `path`, we use `new2old` here to convert argmax_indexes
|
# the index from `path`, we use `new2old` here to convert argmax_indexes
|
||||||
# to the indexes into `path`.
|
# to the indexes into `path`.
|
||||||
#
|
#
|
||||||
# Use k2.index here since argmax_indexes' dtype is torch.int32
|
# Use k2.index here since argmax_indexes' dtype is torch.int32
|
||||||
best_path_indexes = k2.index(new2old, argmax_indexes)
|
best_path_indexes = k2.index_select(new2old, argmax_indexes)
|
||||||
|
|
||||||
path_2axes = k2.ragged.remove_axis(path, 0)
|
path_2axes = path.remove_axis(0)
|
||||||
|
|
||||||
# best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
|
# best_path is a k2.RaggedTensor with 2 axes [path][arc_pos]
|
||||||
best_path = k2.index(path_2axes, best_path_indexes)
|
best_path, _ = path_2axes.index(
|
||||||
|
indexes=best_path_indexes, axis=0, need_value_indexes=False
|
||||||
|
)
|
||||||
|
|
||||||
# labels is a k2.RaggedInt with 2 axes [path][token_id]
|
# labels is a k2.RaggedTensor with 2 axes [path][token_id]
|
||||||
# Note that it contains -1s.
|
# Note that it contains -1s.
|
||||||
labels = k2.index(lattice.labels.contiguous(), best_path)
|
labels = k2.ragged.index(lattice.labels.contiguous(), best_path)
|
||||||
|
|
||||||
labels = k2.ragged.remove_values_eq(labels, -1)
|
labels = labels.remove_values_eq(-1)
|
||||||
|
|
||||||
# lattice.aux_labels is a k2.RaggedInt tensor with 2 axes, so
|
# lattice.aux_labels is a k2.RaggedTensor with 2 axes, so
|
||||||
# aux_labels is also a k2.RaggedInt with 2 axes
|
# aux_labels is also a k2.RaggedTensor with 2 axes
|
||||||
aux_labels = k2.index(lattice.aux_labels, best_path.values())
|
aux_labels, _ = lattice.aux_labels.index(
|
||||||
|
indexes=best_path.data, axis=0, need_value_indexes=False
|
||||||
|
)
|
||||||
|
|
||||||
best_path_fsa = k2.linear_fsa(labels)
|
best_path_fsa = k2.linear_fsa(labels)
|
||||||
best_path_fsa.aux_labels = aux_labels
|
best_path_fsa.aux_labels = aux_labels
|
||||||
@ -428,33 +424,36 @@ def rescore_with_n_best_list(
|
|||||||
scale=scale,
|
scale=scale,
|
||||||
)
|
)
|
||||||
|
|
||||||
# word_seq is a k2.RaggedInt sharing the same shape as `path`
|
# word_seq is a k2.RaggedTensor sharing the same shape as `path`
|
||||||
# but it contains word IDs. Note that it also contains 0s and -1s.
|
# but it contains word IDs. Note that it also contains 0s and -1s.
|
||||||
# The last entry in each sublist is -1.
|
# The last entry in each sublist is -1.
|
||||||
word_seq = k2.index(lattice.aux_labels, path)
|
if isinstance(lattice.aux_labels, torch.Tensor):
|
||||||
|
word_seq = k2.ragged.index(lattice.aux_labels, path)
|
||||||
|
else:
|
||||||
|
word_seq = lattice.aux_labels.index(path, remove_axis=True)
|
||||||
|
|
||||||
# Remove epsilons and -1 from word_seq
|
# Remove epsilons and -1 from word_seq
|
||||||
word_seq = k2.ragged.remove_values_leq(word_seq, 0)
|
word_seq = word_seq.remove_values_leq(0)
|
||||||
|
|
||||||
# Remove paths that has identical word sequences.
|
# Remove paths that has identical word sequences.
|
||||||
#
|
#
|
||||||
# unique_word_seq is still a k2.RaggedInt with 3 axes [seq][path][word]
|
# unique_word_seq is still a k2.RaggedTensor with 3 axes [seq][path][word]
|
||||||
# except that there are no repeated paths with the same word_seq
|
# except that there are no repeated paths with the same word_seq
|
||||||
# within a sequence.
|
# within a sequence.
|
||||||
#
|
#
|
||||||
# num_repeats is also a k2.RaggedInt with 2 axes containing the
|
# num_repeats is also a k2.RaggedTensor with 2 axes containing the
|
||||||
# multiplicities of each path.
|
# multiplicities of each path.
|
||||||
# num_repeats.num_elements() == unique_word_seqs.tot_size(1)
|
# num_repeats.numel() == unique_word_seqs.tot_size(1)
|
||||||
#
|
#
|
||||||
# Since k2.ragged.unique_sequences will reorder paths within a seq,
|
# Since k2.ragged.unique_sequences will reorder paths within a seq,
|
||||||
# `new2old` is a 1-D torch.Tensor mapping from the output path index
|
# `new2old` is a 1-D torch.Tensor mapping from the output path index
|
||||||
# to the input path index.
|
# to the input path index.
|
||||||
# new2old.numel() == unique_word_seqs.tot_size(1)
|
# new2old.numel() == unique_word_seqs.tot_size(1)
|
||||||
unique_word_seq, num_repeats, new2old = k2.ragged.unique_sequences(
|
unique_word_seq, num_repeats, new2old = word_seq.unique(
|
||||||
word_seq, need_num_repeats=True, need_new2old_indexes=True
|
need_num_repeats=True, need_new2old_indexes=True
|
||||||
)
|
)
|
||||||
|
|
||||||
seq_to_path_shape = k2.ragged.get_layer(unique_word_seq.shape(), 0)
|
seq_to_path_shape = unique_word_seq.shape.get_layer(0)
|
||||||
|
|
||||||
# path_to_seq_map is a 1-D torch.Tensor.
|
# path_to_seq_map is a 1-D torch.Tensor.
|
||||||
# path_to_seq_map[i] is the seq to which the i-th path
|
# path_to_seq_map[i] is the seq to which the i-th path
|
||||||
@ -463,7 +462,7 @@ def rescore_with_n_best_list(
|
|||||||
|
|
||||||
# Remove the seq axis.
|
# Remove the seq axis.
|
||||||
# Now unique_word_seq has only two axes [path][word]
|
# Now unique_word_seq has only two axes [path][word]
|
||||||
unique_word_seq = k2.ragged.remove_axis(unique_word_seq, 0)
|
unique_word_seq = unique_word_seq.remove_axis(0)
|
||||||
|
|
||||||
# word_fsa is an FsaVec with axes [path][state][arc]
|
# word_fsa is an FsaVec with axes [path][state][arc]
|
||||||
word_fsa = k2.linear_fsa(unique_word_seq)
|
word_fsa = k2.linear_fsa(unique_word_seq)
|
||||||
@ -487,39 +486,42 @@ def rescore_with_n_best_list(
|
|||||||
use_double_scores=True, log_semiring=False
|
use_double_scores=True, log_semiring=False
|
||||||
)
|
)
|
||||||
|
|
||||||
path_2axes = k2.ragged.remove_axis(path, 0)
|
path_2axes = path.remove_axis(0)
|
||||||
|
|
||||||
ans = dict()
|
ans = dict()
|
||||||
for lm_scale in lm_scale_list:
|
for lm_scale in lm_scale_list:
|
||||||
tot_scores = am_scores / lm_scale + lm_scores
|
tot_scores = am_scores / lm_scale + lm_scores
|
||||||
|
|
||||||
# Remember that we used `k2.ragged.unique_sequences` to remove repeated
|
# Remember that we used `k2.RaggedTensor.unique` to remove repeated
|
||||||
# paths to avoid redundant computation in `k2.intersect_device`.
|
# paths to avoid redundant computation in `k2.intersect_device`.
|
||||||
# Now we use `num_repeats` to correct the scores for each path.
|
# Now we use `num_repeats` to correct the scores for each path.
|
||||||
#
|
#
|
||||||
# NOTE(fangjun): It is commented out as it leads to a worse WER
|
# NOTE(fangjun): It is commented out as it leads to a worse WER
|
||||||
# tot_scores = tot_scores * num_repeats.values()
|
# tot_scores = tot_scores * num_repeats.values()
|
||||||
|
|
||||||
ragged_tot_scores = k2.RaggedFloat(
|
ragged_tot_scores = k2.RaggedTensor(seq_to_path_shape, tot_scores)
|
||||||
seq_to_path_shape, tot_scores.to(torch.float32)
|
argmax_indexes = ragged_tot_scores.argmax()
|
||||||
)
|
|
||||||
argmax_indexes = k2.ragged.argmax_per_sublist(ragged_tot_scores)
|
|
||||||
|
|
||||||
# Use k2.index here since argmax_indexes' dtype is torch.int32
|
# Use k2.index here since argmax_indexes' dtype is torch.int32
|
||||||
best_path_indexes = k2.index(new2old, argmax_indexes)
|
best_path_indexes = k2.index_select(new2old, argmax_indexes)
|
||||||
|
|
||||||
# best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
|
# best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
|
||||||
best_path = k2.index(path_2axes, best_path_indexes)
|
best_path, _ = path_2axes.index(
|
||||||
|
indexes=best_path_indexes, axis=0, need_value_indexes=False
|
||||||
|
)
|
||||||
|
|
||||||
# labels is a k2.RaggedInt with 2 axes [path][phone_id]
|
# labels is a k2.RaggedTensor with 2 axes [path][phone_id]
|
||||||
# Note that it contains -1s.
|
# Note that it contains -1s.
|
||||||
labels = k2.index(lattice.labels.contiguous(), best_path)
|
labels = k2.ragged.index(lattice.labels.contiguous(), best_path)
|
||||||
|
|
||||||
labels = k2.ragged.remove_values_eq(labels, -1)
|
labels = labels.remove_values_eq(-1)
|
||||||
|
|
||||||
# lattice.aux_labels is a k2.RaggedInt tensor with 2 axes, so
|
# lattice.aux_labels is a k2.RaggedTensor tensor with 2 axes, so
|
||||||
# aux_labels is also a k2.RaggedInt with 2 axes
|
# aux_labels is also a k2.RaggedTensor with 2 axes
|
||||||
aux_labels = k2.index(lattice.aux_labels, best_path.values())
|
|
||||||
|
aux_labels, _ = lattice.aux_labels.index(
|
||||||
|
indexes=best_path.data, axis=0, need_value_indexes=False
|
||||||
|
)
|
||||||
|
|
||||||
best_path_fsa = k2.linear_fsa(labels)
|
best_path_fsa = k2.linear_fsa(labels)
|
||||||
best_path_fsa.aux_labels = aux_labels
|
best_path_fsa.aux_labels = aux_labels
|
||||||
@ -623,7 +625,7 @@ def nbest_oracle(
|
|||||||
lattice: k2.Fsa,
|
lattice: k2.Fsa,
|
||||||
num_paths: int,
|
num_paths: int,
|
||||||
ref_texts: List[str],
|
ref_texts: List[str],
|
||||||
lexicon: Lexicon,
|
word_table: k2.SymbolTable,
|
||||||
scale: float = 1.0,
|
scale: float = 1.0,
|
||||||
) -> Dict[str, List[List[int]]]:
|
) -> Dict[str, List[List[int]]]:
|
||||||
"""Select the best hypothesis given a lattice and a reference transcript.
|
"""Select the best hypothesis given a lattice and a reference transcript.
|
||||||
@ -644,8 +646,8 @@ def nbest_oracle(
|
|||||||
ref_texts:
|
ref_texts:
|
||||||
A list of reference transcript. Each entry contains space(s)
|
A list of reference transcript. Each entry contains space(s)
|
||||||
separated words
|
separated words
|
||||||
lexicon:
|
word_table:
|
||||||
It is used to convert word IDs to word symbols.
|
It is the word symbol table.
|
||||||
scale:
|
scale:
|
||||||
It's the scale applied to the lattice.scores. A smaller value
|
It's the scale applied to the lattice.scores. A smaller value
|
||||||
yields more unique paths.
|
yields more unique paths.
|
||||||
@ -661,12 +663,16 @@ def nbest_oracle(
|
|||||||
scale=scale,
|
scale=scale,
|
||||||
)
|
)
|
||||||
|
|
||||||
word_seq = k2.index(lattice.aux_labels, path)
|
if isinstance(lattice.aux_labels, torch.Tensor):
|
||||||
word_seq = k2.ragged.remove_values_leq(word_seq, 0)
|
word_seq = k2.ragged.index(lattice.aux_labels, path)
|
||||||
unique_word_seq, _, _ = k2.ragged.unique_sequences(
|
else:
|
||||||
word_seq, need_num_repeats=False, need_new2old_indexes=False
|
word_seq = lattice.aux_labels.index(path, remove_axis=True)
|
||||||
|
|
||||||
|
word_seq = word_seq.remove_values_leq(0)
|
||||||
|
unique_word_seq, _, _ = word_seq.unique(
|
||||||
|
need_num_repeats=False, need_new2old_indexes=False
|
||||||
)
|
)
|
||||||
unique_word_ids = k2.ragged.to_list(unique_word_seq)
|
unique_word_ids = unique_word_seq.tolist()
|
||||||
assert len(unique_word_ids) == len(ref_texts)
|
assert len(unique_word_ids) == len(ref_texts)
|
||||||
# unique_word_ids[i] contains all hypotheses of the i-th utterance
|
# unique_word_ids[i] contains all hypotheses of the i-th utterance
|
||||||
|
|
||||||
@ -680,7 +686,7 @@ def nbest_oracle(
|
|||||||
best_hyp_words = None
|
best_hyp_words = None
|
||||||
min_error = float("inf")
|
min_error = float("inf")
|
||||||
for hyp_words in hyps:
|
for hyp_words in hyps:
|
||||||
hyp_words = [lexicon.word_table[i] for i in hyp_words]
|
hyp_words = [word_table[i] for i in hyp_words]
|
||||||
this_error = kaldialign.edit_distance(ref_words, hyp_words)["total"]
|
this_error = kaldialign.edit_distance(ref_words, hyp_words)["total"]
|
||||||
if this_error < min_error:
|
if this_error < min_error:
|
||||||
min_error = this_error
|
min_error = this_error
|
||||||
@ -745,33 +751,36 @@ def rescore_with_attention_decoder(
|
|||||||
scale=scale,
|
scale=scale,
|
||||||
)
|
)
|
||||||
|
|
||||||
# word_seq is a k2.RaggedInt sharing the same shape as `path`
|
# word_seq is a k2.RaggedTensor sharing the same shape as `path`
|
||||||
# but it contains word IDs. Note that it also contains 0s and -1s.
|
# but it contains word IDs. Note that it also contains 0s and -1s.
|
||||||
# The last entry in each sublist is -1.
|
# The last entry in each sublist is -1.
|
||||||
word_seq = k2.index(lattice.aux_labels, path)
|
if isinstance(lattice.aux_labels, torch.Tensor):
|
||||||
|
word_seq = k2.ragged.index(lattice.aux_labels, path)
|
||||||
|
else:
|
||||||
|
word_seq = lattice.aux_labels.index(path, remove_axis=True)
|
||||||
|
|
||||||
# Remove epsilons and -1 from word_seq
|
# Remove epsilons and -1 from word_seq
|
||||||
word_seq = k2.ragged.remove_values_leq(word_seq, 0)
|
word_seq = word_seq.remove_values_leq(0)
|
||||||
|
|
||||||
# Remove paths that has identical word sequences.
|
# Remove paths that has identical word sequences.
|
||||||
#
|
#
|
||||||
# unique_word_seq is still a k2.RaggedInt with 3 axes [seq][path][word]
|
# unique_word_seq is still a k2.RaggedTensor with 3 axes [seq][path][word]
|
||||||
# except that there are no repeated paths with the same word_seq
|
# except that there are no repeated paths with the same word_seq
|
||||||
# within a sequence.
|
# within a sequence.
|
||||||
#
|
#
|
||||||
# num_repeats is also a k2.RaggedInt with 2 axes containing the
|
# num_repeats is also a k2.RaggedTensor with 2 axes containing the
|
||||||
# multiplicities of each path.
|
# multiplicities of each path.
|
||||||
# num_repeats.num_elements() == unique_word_seqs.tot_size(1)
|
# num_repeats.numel() == unique_word_seqs.tot_size(1)
|
||||||
#
|
#
|
||||||
# Since k2.ragged.unique_sequences will reorder paths within a seq,
|
# Since k2.ragged.unique_sequences will reorder paths within a seq,
|
||||||
# `new2old` is a 1-D torch.Tensor mapping from the output path index
|
# `new2old` is a 1-D torch.Tensor mapping from the output path index
|
||||||
# to the input path index.
|
# to the input path index.
|
||||||
# new2old.numel() == unique_word_seq.tot_size(1)
|
# new2old.numel() == unique_word_seq.tot_size(1)
|
||||||
unique_word_seq, num_repeats, new2old = k2.ragged.unique_sequences(
|
unique_word_seq, num_repeats, new2old = word_seq.unique(
|
||||||
word_seq, need_num_repeats=True, need_new2old_indexes=True
|
need_num_repeats=True, need_new2old_indexes=True
|
||||||
)
|
)
|
||||||
|
|
||||||
seq_to_path_shape = k2.ragged.get_layer(unique_word_seq.shape(), 0)
|
seq_to_path_shape = unique_word_seq.shape.get_layer(0)
|
||||||
|
|
||||||
# path_to_seq_map is a 1-D torch.Tensor.
|
# path_to_seq_map is a 1-D torch.Tensor.
|
||||||
# path_to_seq_map[i] is the seq to which the i-th path
|
# path_to_seq_map[i] is the seq to which the i-th path
|
||||||
@ -780,7 +789,7 @@ def rescore_with_attention_decoder(
|
|||||||
|
|
||||||
# Remove the seq axis.
|
# Remove the seq axis.
|
||||||
# Now unique_word_seq has only two axes [path][word]
|
# Now unique_word_seq has only two axes [path][word]
|
||||||
unique_word_seq = k2.ragged.remove_axis(unique_word_seq, 0)
|
unique_word_seq = unique_word_seq.remove_axis(0)
|
||||||
|
|
||||||
# word_fsa is an FsaVec with axes [path][state][arc]
|
# word_fsa is an FsaVec with axes [path][state][arc]
|
||||||
word_fsa = k2.linear_fsa(unique_word_seq)
|
word_fsa = k2.linear_fsa(unique_word_seq)
|
||||||
@ -798,20 +807,23 @@ def rescore_with_attention_decoder(
|
|||||||
|
|
||||||
# CAUTION: The "tokens" attribute is set in the file
|
# CAUTION: The "tokens" attribute is set in the file
|
||||||
# local/compile_hlg.py
|
# local/compile_hlg.py
|
||||||
token_seq = k2.index(lattice.tokens, path)
|
if isinstance(lattice.tokens, torch.Tensor):
|
||||||
|
token_seq = k2.ragged.index(lattice.tokens, path)
|
||||||
|
else:
|
||||||
|
token_seq = lattice.tokens.index(path, remove_axis=True)
|
||||||
|
|
||||||
# Remove epsilons and -1 from token_seq
|
# Remove epsilons and -1 from token_seq
|
||||||
token_seq = k2.ragged.remove_values_leq(token_seq, 0)
|
token_seq = token_seq.remove_values_leq(0)
|
||||||
|
|
||||||
# Remove the seq axis.
|
# Remove the seq axis.
|
||||||
token_seq = k2.ragged.remove_axis(token_seq, 0)
|
token_seq = token_seq.remove_axis(0)
|
||||||
|
|
||||||
token_seq, _ = k2.ragged.index(
|
token_seq, _ = token_seq.index(
|
||||||
token_seq, indexes=new2old, axis=0, need_value_indexes=False
|
indexes=new2old, axis=0, need_value_indexes=False
|
||||||
)
|
)
|
||||||
|
|
||||||
# Now word in unique_word_seq has its corresponding token IDs.
|
# Now word in unique_word_seq has its corresponding token IDs.
|
||||||
token_ids = k2.ragged.to_list(token_seq)
|
token_ids = token_seq.tolist()
|
||||||
|
|
||||||
num_word_seqs = new2old.numel()
|
num_word_seqs = new2old.numel()
|
||||||
|
|
||||||
@ -851,7 +863,7 @@ def rescore_with_attention_decoder(
|
|||||||
else:
|
else:
|
||||||
attention_scale_list = [attention_scale]
|
attention_scale_list = [attention_scale]
|
||||||
|
|
||||||
path_2axes = k2.ragged.remove_axis(path, 0)
|
path_2axes = path.remove_axis(0)
|
||||||
|
|
||||||
ans = dict()
|
ans = dict()
|
||||||
for n_scale in ngram_lm_scale_list:
|
for n_scale in ngram_lm_scale_list:
|
||||||
@ -861,23 +873,28 @@ def rescore_with_attention_decoder(
|
|||||||
+ n_scale * ngram_lm_scores
|
+ n_scale * ngram_lm_scores
|
||||||
+ a_scale * attention_scores
|
+ a_scale * attention_scores
|
||||||
)
|
)
|
||||||
ragged_tot_scores = k2.RaggedFloat(seq_to_path_shape, tot_scores)
|
ragged_tot_scores = k2.RaggedTensor(seq_to_path_shape, tot_scores)
|
||||||
argmax_indexes = k2.ragged.argmax_per_sublist(ragged_tot_scores)
|
argmax_indexes = ragged_tot_scores.argmax()
|
||||||
|
|
||||||
best_path_indexes = k2.index(new2old, argmax_indexes)
|
best_path_indexes = k2.index_select(new2old, argmax_indexes)
|
||||||
|
|
||||||
# best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
|
# best_path is a k2.RaggedInt with 2 axes [path][arc_pos]
|
||||||
best_path = k2.index(path_2axes, best_path_indexes)
|
best_path, _ = path_2axes.index(
|
||||||
|
indexes=best_path_indexes, axis=0, need_value_indexes=False
|
||||||
|
)
|
||||||
|
|
||||||
# labels is a k2.RaggedInt with 2 axes [path][token_id]
|
# labels is a k2.RaggedTensor with 2 axes [path][token_id]
|
||||||
# Note that it contains -1s.
|
# Note that it contains -1s.
|
||||||
labels = k2.index(lattice.labels.contiguous(), best_path)
|
labels = k2.ragged.index(lattice.labels.contiguous(), best_path)
|
||||||
|
|
||||||
labels = k2.ragged.remove_values_eq(labels, -1)
|
labels = labels.remove_values_eq(-1)
|
||||||
|
|
||||||
# lattice.aux_labels is a k2.RaggedInt tensor with 2 axes, so
|
if isinstance(lattice.aux_labels, torch.Tensor):
|
||||||
# aux_labels is also a k2.RaggedInt with 2 axes
|
aux_labels = k2.index_select(lattice.aux_labels, best_path.data)
|
||||||
aux_labels = k2.index(lattice.aux_labels, best_path.values())
|
else:
|
||||||
|
aux_labels, _ = lattice.aux_labels.index(
|
||||||
|
indexes=best_path.data, axis=0, need_value_indexes=False
|
||||||
|
)
|
||||||
|
|
||||||
best_path_fsa = k2.linear_fsa(labels)
|
best_path_fsa = k2.linear_fsa(labels)
|
||||||
best_path_fsa.aux_labels = aux_labels
|
best_path_fsa.aux_labels = aux_labels
|
||||||
|
@ -157,7 +157,7 @@ class BpeLexicon(Lexicon):
|
|||||||
lang_dir / "lexicon.txt"
|
lang_dir / "lexicon.txt"
|
||||||
)
|
)
|
||||||
|
|
||||||
def convert_lexicon_to_ragged(self, filename: str) -> k2.RaggedInt:
|
def convert_lexicon_to_ragged(self, filename: str) -> k2.RaggedTensor:
|
||||||
"""Read a BPE lexicon from file and convert it to a
|
"""Read a BPE lexicon from file and convert it to a
|
||||||
k2 ragged tensor.
|
k2 ragged tensor.
|
||||||
|
|
||||||
@ -200,19 +200,18 @@ class BpeLexicon(Lexicon):
|
|||||||
)
|
)
|
||||||
values = torch.tensor(token_ids, dtype=torch.int32)
|
values = torch.tensor(token_ids, dtype=torch.int32)
|
||||||
|
|
||||||
return k2.RaggedInt(shape, values)
|
return k2.RaggedTensor(shape, values)
|
||||||
|
|
||||||
def words_to_piece_ids(self, words: List[str]) -> k2.RaggedInt:
|
def words_to_piece_ids(self, words: List[str]) -> k2.RaggedTensor:
|
||||||
"""Convert a list of words to a ragged tensor contained
|
"""Convert a list of words to a ragged tensor contained
|
||||||
word piece IDs.
|
word piece IDs.
|
||||||
"""
|
"""
|
||||||
word_ids = [self.word_table[w] for w in words]
|
word_ids = [self.word_table[w] for w in words]
|
||||||
word_ids = torch.tensor(word_ids, dtype=torch.int32)
|
word_ids = torch.tensor(word_ids, dtype=torch.int32)
|
||||||
|
|
||||||
ragged, _ = k2.ragged.index(
|
ragged, _ = self.ragged_lexicon.index(
|
||||||
self.ragged_lexicon,
|
|
||||||
indexes=word_ids,
|
indexes=word_ids,
|
||||||
need_value_indexes=False,
|
|
||||||
axis=0,
|
axis=0,
|
||||||
|
need_value_indexes=False,
|
||||||
)
|
)
|
||||||
return ragged
|
return ragged
|
||||||
|
@ -26,7 +26,6 @@ from pathlib import Path
|
|||||||
from typing import Dict, Iterable, List, TextIO, Tuple, Union
|
from typing import Dict, Iterable, List, TextIO, Tuple, Union
|
||||||
|
|
||||||
import k2
|
import k2
|
||||||
import k2.ragged as k2r
|
|
||||||
import kaldialign
|
import kaldialign
|
||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
@ -199,26 +198,25 @@ def get_texts(best_paths: k2.Fsa) -> List[List[int]]:
|
|||||||
Returns a list of lists of int, containing the label sequences we
|
Returns a list of lists of int, containing the label sequences we
|
||||||
decoded.
|
decoded.
|
||||||
"""
|
"""
|
||||||
if isinstance(best_paths.aux_labels, k2.RaggedInt):
|
if isinstance(best_paths.aux_labels, k2.RaggedTensor):
|
||||||
# remove 0's and -1's.
|
# remove 0's and -1's.
|
||||||
aux_labels = k2r.remove_values_leq(best_paths.aux_labels, 0)
|
aux_labels = best_paths.aux_labels.remove_values_leq(0)
|
||||||
aux_shape = k2r.compose_ragged_shapes(
|
# TODO: change arcs.shape() to arcs.shape
|
||||||
best_paths.arcs.shape(), aux_labels.shape()
|
aux_shape = best_paths.arcs.shape().compose(aux_labels.shape)
|
||||||
)
|
|
||||||
|
|
||||||
# remove the states and arcs axes.
|
# remove the states and arcs axes.
|
||||||
aux_shape = k2r.remove_axis(aux_shape, 1)
|
aux_shape = aux_shape.remove_axis(1)
|
||||||
aux_shape = k2r.remove_axis(aux_shape, 1)
|
aux_shape = aux_shape.remove_axis(1)
|
||||||
aux_labels = k2.RaggedInt(aux_shape, aux_labels.values())
|
aux_labels = k2.RaggedTensor(aux_shape, aux_labels.data)
|
||||||
else:
|
else:
|
||||||
# remove axis corresponding to states.
|
# remove axis corresponding to states.
|
||||||
aux_shape = k2r.remove_axis(best_paths.arcs.shape(), 1)
|
aux_shape = best_paths.arcs.shape().remove_axis(1)
|
||||||
aux_labels = k2.RaggedInt(aux_shape, best_paths.aux_labels)
|
aux_labels = k2.RaggedTensor(aux_shape, best_paths.aux_labels)
|
||||||
# remove 0's and -1's.
|
# remove 0's and -1's.
|
||||||
aux_labels = k2r.remove_values_leq(aux_labels, 0)
|
aux_labels = aux_labels.remove_values_leq(0)
|
||||||
|
|
||||||
assert aux_labels.num_axes() == 2
|
assert aux_labels.num_axes == 2
|
||||||
return k2r.to_list(aux_labels)
|
return aux_labels.tolist()
|
||||||
|
|
||||||
|
|
||||||
def store_transcripts(
|
def store_transcripts(
|
||||||
|
@ -16,9 +16,10 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||||
from icefall.lexicon import BpeLexicon
|
from icefall.lexicon import BpeLexicon
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
|
|
||||||
def test():
|
def test():
|
||||||
|
@ -60,7 +60,7 @@ def test_get_texts_ragged():
|
|||||||
4
|
4
|
||||||
"""
|
"""
|
||||||
)
|
)
|
||||||
fsa1.aux_labels = k2.RaggedInt("[ [1 3 0 2] [] [4 0 1] [-1]]")
|
fsa1.aux_labels = k2.RaggedTensor("[ [1 3 0 2] [] [4 0 1] [-1]]")
|
||||||
|
|
||||||
fsa2 = k2.Fsa.from_str(
|
fsa2 = k2.Fsa.from_str(
|
||||||
"""
|
"""
|
||||||
@ -70,7 +70,7 @@ def test_get_texts_ragged():
|
|||||||
3
|
3
|
||||||
"""
|
"""
|
||||||
)
|
)
|
||||||
fsa2.aux_labels = k2.RaggedInt("[[3 0 5 0 8] [0 9 7 0] [-1]]")
|
fsa2.aux_labels = k2.RaggedTensor("[[3 0 5 0 8] [0 9 7 0] [-1]]")
|
||||||
fsas = k2.Fsa.from_fsas([fsa1, fsa2])
|
fsas = k2.Fsa.from_fsas([fsa1, fsa2])
|
||||||
texts = get_texts(fsas)
|
texts = get_texts(fsas)
|
||||||
assert texts == [[1, 3, 2, 4, 1], [3, 5, 8, 9, 7]]
|
assert texts == [[1, 3, 2, 4, 1], [3, 5, 8, 9, 7]]
|
||||||
|