Add beam search.

This commit is contained in:
Fangjun Kuang 2021-12-15 18:50:29 +08:00
parent cbda811a10
commit 3174bebf07
3 changed files with 212 additions and 8 deletions

1
.gitignore vendored
View File

@ -8,3 +8,4 @@ exp*/
download
*.bak
*-bak
*bak.py

View File

@ -14,7 +14,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import torch
from transducer.model import Transducer
@ -50,9 +51,10 @@ def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
current_encoder_out = encoder_out[:, t:t+1, :]
# fmt: on
logits = model.joiner(current_encoder_out, decoder_out)
# logits is (1, 1, 1, vocab_size)
log_prob = logits.log_softmax(dim=-1)
# log_prob is (N, 1, 1)
# log_prob is (1, 1, 1, vocab_size)
# TODO: Use logits.argmax()
y = log_prob.argmax()
if y != blank_id:
@ -64,3 +66,147 @@ def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
t += 1
return hyp
@dataclass
class Hypothesis:
ys: List[int] # the predicated sequences so far
log_prob: float # The log prob of ys
# Optional decoder state. We assume it is LSTM for now,
# so the state is a tuple (h, c)
decoder_state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
def beam_search(
model: Transducer,
encoder_out: torch.Tensor,
beam: int = 5,
) -> List[int]:
"""
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
espnet/nets/beam_search_transducer.py#L247 is used as a reference.
Args:
model:
An instance of `Transducer`.
encoder_out:
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
beam:
Beam size.
Returns:
Return the decoded result.
"""
assert encoder_out.ndim == 3
# support only batch_size == 1 for now
assert encoder_out.size(0) == 1, encoder_out.size(0)
blank_id = model.decoder.blank_id
sos_id = model.decoder.sos_id
device = model.device
sos = torch.tensor([blank_id], device=device).reshape(1, 1)
decoder_out, (h, c) = model.decoder(sos)
T = encoder_out.size(1)
t = 0
B = [Hypothesis(ys=[blank_id], log_prob=0.0, decoder_state=None)]
max_u = 20000 # terminate after this number of steps
u = 0
cache: Dict[
str, Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
] = {}
while t < T and u < max_u:
# fmt: off
current_encoder_out = encoder_out[:, t:t+1, :]
# fmt: on
A = B
B = []
# for hyp in A:
# for h in A:
# if h.ys == hyp.ys[:-1]:
# # update the score of hyp
# decoder_input = torch.tensor(
# [h.ys[-1]], device=device
# ).reshape(1, 1)
# decoder_out, _ = model.decoder(
# decoder_input, h.decoder_state
# )
# logits = model.joiner(current_encoder_out, decoder_out)
# log_prob = logits.log_softmax(dim=-1)
# log_prob = log_prob.squeeze()
# hyp.log_prob += h.log_prob + log_prob[hyp.ys[-1]].item()
while u < max_u:
y_star = max(A, key=lambda hyp: hyp.log_prob)
A.remove(y_star)
# Note: y_star.ys is unhashable, i.e., cannot be used
# as a key into a dict
cached_key = "_".join(map(str, y_star.ys))
if cached_key not in cache:
decoder_input = torch.tensor(
[y_star.ys[-1]], device=device
).reshape(1, 1)
decoder_out, decoder_state = model.decoder(
decoder_input,
y_star.decoder_state,
)
cache[cached_key] = (decoder_out, decoder_state)
else:
decoder_out, decoder_state = cache[cached_key]
logits = model.joiner(current_encoder_out, decoder_out)
log_prob = logits.log_softmax(dim=-1)
# log_prob is (1, 1, 1, vocab_size)
log_prob = log_prob.squeeze()
# Now log_prob is (vocab_size,)
# If we choose blank here, add the new hypothesis to B.
# Otherwise, add the new hypothesis to A
# First, choose blank
skip_log_prob = log_prob[blank_id]
new_y_star_log_prob = y_star.log_prob + skip_log_prob.item()
# ys[:] returns a copy of ys
new_y_star = Hypothesis(
ys=y_star.ys[:],
log_prob=new_y_star_log_prob,
# Caution: Use y_star.decoder_state here
decoder_state=y_star.decoder_state,
)
B.append(new_y_star)
# Second, choose other labels
for i, v in enumerate(log_prob.tolist()):
if i in (blank_id, sos_id):
continue
new_ys = y_star.ys + [i]
new_log_prob = y_star.log_prob + v
new_hyp = Hypothesis(
ys=new_ys,
log_prob=new_log_prob,
decoder_state=decoder_state,
)
A.append(new_hyp)
u += 1
# check whether B contains more than "beam" elements more probable
# than the most probable in A
A_most_probable = max(A, key=lambda hyp: hyp.log_prob)
B = sorted(
[hyp for hyp in B if hyp.log_prob > A_most_probable.log_prob],
key=lambda hyp: hyp.log_prob,
reverse=True,
)
if len(B) >= beam:
B = B[:beam]
break
t += 1
best_hyp = max(B, key=lambda hyp: hyp.log_prob / len(hyp.ys[1:]))
ys = best_hyp.ys[1:] # [1:] to remove the blank
return ys

View File

@ -15,6 +15,25 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) greedy search
./transducer/decode.py \
--epoch 14 \
--avg 7 \
--exp-dir ./transducer/exp \
--max-duration 100 \
--decoding-method greedy_search
(2) beam search
./transducer/decode.py \
--epoch 14 \
--avg 7 \
--exp-dir ./transducer/exp \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 8
"""
import argparse
@ -27,7 +46,7 @@ import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from transducer.beam_search import greedy_search
from transducer.beam_search import beam_search, greedy_search
from transducer.conformer import Conformer
from transducer.decoder import Decoder
from transducer.joiner import Joiner
@ -78,6 +97,23 @@ def get_parser():
help="Path to the BPE model",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
""",
)
parser.add_argument(
"--beam-size",
type=int,
default=5,
help="Used only when --decoding-method is beam_search",
)
return parser
@ -205,11 +241,22 @@ def decode_one_batch(
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
hyp = greedy_search(model=model, encoder_out=encoder_out_i)
if params.decoding_method == "greedy_search":
hyp = greedy_search(model=model, encoder_out=encoder_out_i)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model, encoder_out=encoder_out_i, beam=params.beam_size
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyps.append(sp.decode(hyp).split())
return {"greedy_search": hyps}
# TODO: Implement beam search
if params.decoding_method == "greedy_search":
return {"greedy_search": hyps}
else:
return {f"beam_{params.beam_size}": hyps}
def decode_dataset(
@ -243,6 +290,11 @@ def decode_dataset(
except TypeError:
num_batches = "?"
if params.decoding_method == "greedy_search":
log_interval = 100
else:
log_interval = 2
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
@ -265,7 +317,7 @@ def decode_dataset(
num_cuts += len(texts)
if batch_idx % 100 == 0:
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(
@ -327,8 +379,13 @@ def main():
params = get_params()
params.update(vars(args))
params.res_dir = params.exp_dir / "greedy_search"
assert params.decoding_method in ("greedy_search", "beam_search")
params.res_dir = params.exp_dir / params.decoding_method
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if params.decoding_method == "beam_search":
params.suffix += f"-beam-{params.beam_size}"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")