Do some changes for modified attention.

This commit is contained in:
Mingshuang Luo 2022-01-10 14:36:24 +08:00
parent 9142bbb17d
commit 309461c185

View File

@ -181,6 +181,7 @@ class ConformerEncoderLayer(nn.Module):
# define layernorm for conv1d_abs
self.norm_conv_abs = nn.LayerNorm(d_model)
self.layernorm = nn.LayerNorm(d_model)
self.ff_scale = 0.5
@ -193,14 +194,17 @@ class ConformerEncoderLayer(nn.Module):
self.normalize_before = normalize_before
self.in_channel = 1024
self.out_channel = 64
self.kernel_size = 21
self.padding = 10
self.linear1 = nn.Linear(512, self.in_channel)
self.conv1d_abs = Conv1dAbs(self.in_channel, self.out_channel, kernel_size=self.kernel_size, padding=self.padding)
self.activation = nn.ReLU()
self.linear2 = nn.Linear(self.out_channel, 512)
self.padding = int((self.kernel_size - 1) / 2)
self.conv1d_channels = 768
self.linear1 = nn.Linear(512, self.conv1d_channels)
self.conv1d_abs = Conv1dAbs(
self.conv1d_channels,
self.conv1d_channels,
kernel_size=self.kernel_size,
padding=self.padding,
)
self.linear2 = nn.Linear(self.conv1d_channels, 512)
def forward(
self,
@ -236,17 +240,33 @@ class ConformerEncoderLayer(nn.Module):
if not self.normalize_before:
src = self.norm_ff_macaron(src)
# modified-attention module
inf = torch.tensor(float("inf"), device=src.device)
def check_inf(x):
if x.max() == inf:
print("Error: inf found: ", x)
assert 0
# modified-attention module
residual = src
if self.normalize_before:
src = self.norm_conv_abs(src)
src = self.linear1(src)
src = torch.exp(src.clamp(max=75))
src = self.linear1(src * 0.25)
src = torch.exp(src.clamp(min=-75, max=75))
check_inf(src)
src = src.permute(1, 2, 0)
src = self.conv1d_abs(src) / self.kernel_size
src = self.activation(src).permute(2, 0, 1)
src = torch.log(src)
check_inf(src)
src = src.permute(2, 0, 1)
src = torch.log(src.clamp(min=1e-20))
check_inf(src)
src = self.linear2(src)
src = self.layernorm(src)
# multipy the output by 0.5 later.
# do a comparison.
src = residual + self.dropout(src)
if not self.normalize_before:
src = self.norm_conv_abs(src)
@ -387,8 +407,8 @@ class RelPositionalEncoding(torch.nn.Module):
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
# Reserve the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
# negative indices. This is used to support the shifting trick as in "T
# ransformer-XL:Attentive Language Models Beyond a Fixed-Length Context"
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
pe_negative = pe_negative[1:].unsqueeze(0)
pe = torch.cat([pe_positive, pe_negative], dim=1)