From c2f8c6d232018f01a5950dee315eb7af638717ca Mon Sep 17 00:00:00 2001 From: marcoyang Date: Thu, 28 Mar 2024 12:33:23 +0800 Subject: [PATCH 01/13] add files --- egs/librispeech/ASR/whisper/asr_datamodule.py | 1 + .../ASR/whisper/label_smoothing.py | 1 + egs/librispeech/ASR/whisper/optim.py | 1 + egs/librispeech/ASR/whisper/train.py | 927 ++++++++++++++++++ 4 files changed, 930 insertions(+) create mode 120000 egs/librispeech/ASR/whisper/asr_datamodule.py create mode 120000 egs/librispeech/ASR/whisper/label_smoothing.py create mode 120000 egs/librispeech/ASR/whisper/optim.py create mode 100755 egs/librispeech/ASR/whisper/train.py diff --git a/egs/librispeech/ASR/whisper/asr_datamodule.py b/egs/librispeech/ASR/whisper/asr_datamodule.py new file mode 120000 index 000000000..fa1b8cca3 --- /dev/null +++ b/egs/librispeech/ASR/whisper/asr_datamodule.py @@ -0,0 +1 @@ +../tdnn_lstm_ctc/asr_datamodule.py \ No newline at end of file diff --git a/egs/librispeech/ASR/whisper/label_smoothing.py b/egs/librispeech/ASR/whisper/label_smoothing.py new file mode 120000 index 000000000..08734abd7 --- /dev/null +++ b/egs/librispeech/ASR/whisper/label_smoothing.py @@ -0,0 +1 @@ +../conformer_ctc/label_smoothing.py \ No newline at end of file diff --git a/egs/librispeech/ASR/whisper/optim.py b/egs/librispeech/ASR/whisper/optim.py new file mode 120000 index 000000000..207eecfcd --- /dev/null +++ b/egs/librispeech/ASR/whisper/optim.py @@ -0,0 +1 @@ +../zipformer/optim.py \ No newline at end of file diff --git a/egs/librispeech/ASR/whisper/train.py b/egs/librispeech/ASR/whisper/train.py new file mode 100755 index 000000000..6ccb8d363 --- /dev/null +++ b/egs/librispeech/ASR/whisper/train.py @@ -0,0 +1,927 @@ +#!/usr/bin/env python3 +# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang) +# 2024 Yuekai Zhang +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: + +#fine-tuning with deepspeed zero stage 1 +torchrun --nproc_per_node 8 ./whisper/train.py \ + --max-duration 200 \ + --exp-dir whisper/exp_large_v2 \ + --model-name large-v2 \ + --manifest-dir data/fbank_whisper \ + --deepspeed \ + --deepspeed_config ./whisper/ds_config_zero1.json + +# fine-tuning with ddp +torchrun --nproc_per_node 8 ./whisper/train.py \ + --max-duration 200 \ + --exp-dir whisper/exp_medium \ + --manifest-dir data/fbank_whisper \ + --base-lr 1e-5 \ + --model-name medium +""" + + +import argparse +import copy +import logging +import random +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple, Union + +import deepspeed +import k2 +import optim +import torch +import torch.multiprocessing as mp +import torch.nn as nn +import whisper +from asr_datamodule import AishellAsrDataModule +from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict +from label_smoothing import LabelSmoothingLoss +from lhotse import CutSet, load_manifest +from lhotse.cut import Cut +from lhotse.dataset.sampling.base import CutSampler +from lhotse.utils import fix_random_seed +from optim import Eden, ScaledAdam +from torch import Tensor +from torch.cuda.amp import GradScaler +from torch.nn.functional import pad as pad_tensor +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.utils.tensorboard import SummaryWriter +from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward + +from icefall import diagnostics +from icefall.checkpoint import load_checkpoint, remove_checkpoints +from icefall.checkpoint import save_checkpoint as save_checkpoint_impl +from icefall.checkpoint import update_averaged_model +from icefall.dist import cleanup_dist, get_rank, get_world_size, setup_dist +from icefall.env import get_env_info +from icefall.hooks import register_inf_check_hooks +from icefall.utils import ( + AttributeDict, + MetricsTracker, + filter_uneven_sized_batch, + setup_logger, + str2bool, +) + +LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] + + +def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: + if isinstance(model, DDP): + # get underlying nn.Module + model = model.module + for module in model.modules(): + if hasattr(module, "batch_count"): + module.batch_count = batch_count + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--tensorboard", + type=str2bool, + default=True, + help="Should various information be logged in tensorboard.", + ) + + parser.add_argument( + "--num-epochs", + type=int, + default=10, + help="Number of epochs to train.", + ) + + parser.add_argument( + "--start-epoch", + type=int, + default=1, + help="""Resume training from this epoch. It should be positive. + If larger than 1, it will load checkpoint from + exp-dir/epoch-{start_epoch-1}.pt + """, + ) + + parser.add_argument( + "--start-batch", + type=int, + default=0, + help="""If positive, --start-epoch is ignored and + it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt + """, + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="whisper/exp", + help="""The experiment dir. + It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--model-name", + type=str, + default="large-v2", + choices=["large-v2", "large-v3", "medium", "small", "tiny"], + help="""The model name to use. + """, + ) + + parser.add_argument( + "--base-lr", type=float, default=1e-5, help="The base learning rate." + ) + + parser.add_argument( + "--lr-batches", + type=float, + default=5000, + help="""Number of steps that affects how rapidly the learning rate + decreases. We suggest not to change this.""", + ) + + parser.add_argument( + "--lr-epochs", + type=float, + default=6, + help="""Number of epochs that affects how rapidly the learning rate decreases. + """, + ) + + parser.add_argument( + "--seed", + type=int, + default=42, + help="The seed for random generators intended for reproducibility", + ) + + parser.add_argument( + "--print-diagnostics", + type=str2bool, + default=False, + help="Accumulate stats on activations, print them and exit.", + ) + + parser.add_argument( + "--inf-check", + type=str2bool, + default=False, + help="Add hooks to check for infinite module outputs and gradients.", + ) + + parser.add_argument( + "--keep-last-k", + type=int, + default=30, + help="""Only keep this number of checkpoints on disk. + For instance, if it is 3, there are only 3 checkpoints + in the exp-dir with filenames `checkpoint-xxx.pt`. + It does not affect checkpoints with name `epoch-xxx.pt`. + """, + ) + + parser.add_argument( + "--average-period", + type=int, + default=200, + help="""Update the averaged model, namely `model_avg`, after processing + this number of batches. `model_avg` is a separate version of model, + in which each floating-point parameter is the average of all the + parameters from the start of training. Each time we take the average, + we do: `model_avg = model * (average_period / batch_idx_train) + + model_avg * ((batch_idx_train - average_period) / batch_idx_train)`. + """, + ) + + parser.add_argument( + "--use-fp16", + type=str2bool, + default=True, + help="Whether to use half precision training.", + ) + + parser = deepspeed.add_config_arguments(parser) + + return parser + + +def get_params() -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + are saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - frame_shift_ms: The frame shift in milliseconds. + - allowed_excess_duration_ratio: The allowed excess duration ratio. + - best_train_loss: The best training loss so far. + - best_valid_loss: The best validation loss so far. + - best_train_epoch: The epoch where the best training loss is achieved. + - best_valid_epoch: The epoch where the best validation loss is achieved. + - batch_idx_train: The batch index of the current batch. + - log_interval: Log training stats every `log_interval` batches. + - reset_interval: Reset the stats every `reset_interval` batches. + - valid_interval: Run validation every `valid_interval` batches. + - env_info: The environment information. + """ + params = AttributeDict( + { + "frame_shift_ms": 10.0, + "subsampling_factor": 2, + "allowed_excess_duration_ratio": 0.1, + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 50, + "reset_interval": 200, + "valid_interval": 5000, + "env_info": get_env_info(), + } + ) + + return params + + +def load_checkpoint_if_available( + params: AttributeDict, + model: nn.Module, + model_avg: nn.Module = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, +) -> Optional[Dict[str, Any]]: + """Load checkpoint from file. + + If params.start_batch is positive, it will load the checkpoint from + `params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if + params.start_epoch is larger than 1, it will load the checkpoint from + `params.start_epoch - 1`. + + Apart from loading state dict for `model` and `optimizer` it also updates + `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, + and `best_valid_loss` in `params`. + + Args: + params: + The return value of :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer that we are using. + scheduler: + The scheduler that we are using. + Returns: + Return a dict containing previously saved training info. + """ + if params.start_batch > 0: + filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt" + elif params.start_epoch > 1: + filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt" + else: + return None + + assert filename.is_file(), f"{filename} does not exist!" + + saved_params = load_checkpoint( + filename, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + ) + + keys = [ + "best_train_epoch", + "best_valid_epoch", + "batch_idx_train", + "best_train_loss", + "best_valid_loss", + ] + for k in keys: + params[k] = saved_params[k] + + if params.start_batch > 0: + if "cur_epoch" in saved_params: + params["start_epoch"] = saved_params["cur_epoch"] + + return saved_params + + +def save_checkpoint( + params: AttributeDict, + model: Union[nn.Module, DDP], + model_avg: Optional[nn.Module] = None, + optimizer: Optional[torch.optim.Optimizer] = None, + scheduler: Optional[LRSchedulerType] = None, + sampler: Optional[CutSampler] = None, + scaler: Optional[GradScaler] = None, + rank: int = 0, +) -> None: + """Save model, optimizer, scheduler and training stats to file. + + Args: + params: + It is returned by :func:`get_params`. + model: + The training model. + model_avg: + The stored model averaged from the start of training. + optimizer: + The optimizer used in the training. + sampler: + The sampler for the training dataset. + scaler: + The scaler used for mix precision training. + """ + if rank != 0: + return + filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt" + save_checkpoint_impl( + filename=filename, + model=model, + model_avg=model_avg, + params=params, + optimizer=optimizer, + scheduler=scheduler, + sampler=sampler, + scaler=scaler, + rank=rank, + ) + + if params.best_train_epoch == params.cur_epoch: + best_train_filename = params.exp_dir / "best-train-loss.pt" + copyfile(src=filename, dst=best_train_filename) + + if params.best_valid_epoch == params.cur_epoch: + best_valid_filename = params.exp_dir / "best-valid-loss.pt" + copyfile(src=filename, dst=best_valid_filename) + + +def compute_loss( + params: AttributeDict, + tokenizer: whisper.tokenizer.Tokenizer, + model: Union[nn.Module, DDP], + batch: dict, + is_training: bool, +) -> Tuple[Tensor, MetricsTracker]: + """ + Compute the loss for the given batch. + Args: + params: + It is returned by :func:`get_params`. + tokenizer: + The tokenizer used to encode the text. + model: + The model for training. + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + is_training: + Whether it is training. + Returns: + Return a tuple of two elements. The first element is the loss tensor. + """ + # For the uneven-sized batch, the total duration after padding would possibly + # cause OOM. Hence, for each batch, which is sorted descendingly by length, + # we simply drop the last few shortest samples, so that the retained total frames + # (after padding) would not exceed `allowed_max_frames`: + # `allowed_max_frames = int(max_frames * (1.0 + allowed_excess_duration_ratio))`, + # where `max_frames = max_duration * 1000 // frame_shift_ms`. + # We set allowed_excess_duration_ratio=0.1. + if isinstance(model, DDP): + # get underlying nn.Module + model = model.module + + def _batch_tensors(tensors: List[Tensor], pad_value: Any) -> Tensor: + padding_size = max(tensor.shape[0] for tensor in tensors) + dims = len(tensors[0].shape) + padded_tensors = [] + for tensor in tensors: + padding = [0] * 2 * dims + padding[-1] = padding_size - tensor.shape[0] + padded_tensors.append(pad_tensor(tensor, padding, "constant", pad_value)) + return torch.stack([tensor for tensor in padded_tensors], dim=0) + + max_frames = params.max_duration * 1000 // params.frame_shift_ms + allowed_max_frames = int(max_frames * (1.0 + params.allowed_excess_duration_ratio)) + batch = filter_uneven_sized_batch(batch, allowed_max_frames) + + device = model.device if isinstance(model, DDP) else next(model.parameters()).device + feature = batch["inputs"] + + assert feature.ndim == 3 + feature = feature.to(device) + feature = feature.transpose(1, 2) # (N, C, T) + + supervisions = batch["supervisions"] + feature_lens = supervisions["num_frames"].to(device) + + batch_idx_train = params.batch_idx_train + + texts = batch["supervisions"]["text"] + # remove spaces in texts + texts = [text.replace(" ", "") for text in texts] + + text_tokens_list = [ + list(tokenizer.sot_sequence_including_notimestamps) + + tokenizer.encode(text) + + [tokenizer.eot] + for text in texts + ] + # convert it to torch tensor + text_tokens_list = [ + torch.LongTensor(text_tokens) for text_tokens in text_tokens_list + ] + + # 50256 is the index of for all whisper models + prev_outputs_tokens = _batch_tensors( + [tokens[:-1] for tokens in text_tokens_list], pad_value=50256 + ) + target_tokens = _batch_tensors( + [tokens[1:] for tokens in text_tokens_list], pad_value=50256 + ) + target_lengths = torch.LongTensor( + [tokens.shape[0] - 1 for tokens in text_tokens_list] + ) + + decoder_criterion = LabelSmoothingLoss( + ignore_index=50256, label_smoothing=0.1, reduction="sum" + ) + + # ignore the first 3 tokens, which are always <|lang_id|>, <|transcibe|>, <|notimestampes|> + ignore_prefix_size = 3 + with torch.set_grad_enabled(is_training): + encoder_out = model.encoder(feature) + text_logits = model.decoder(prev_outputs_tokens.to(device), encoder_out) + text_logits = text_logits[:, ignore_prefix_size:, :] + target_tokens = target_tokens[:, ignore_prefix_size:] + loss = decoder_criterion(text_logits, target_tokens.to(device)) + + assert loss.requires_grad == is_training + + info = MetricsTracker() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + info["frames"] = (feature_lens // params.subsampling_factor).sum().item() + + # Note: We use reduction=sum while computing the loss. + info["loss"] = loss.detach().cpu().item() + + return loss, info + + +def compute_validation_loss( + params: AttributeDict, + tokenizer: whisper.tokenizer.Tokenizer, + model: Union[nn.Module, DDP], + valid_dl: torch.utils.data.DataLoader, + world_size: int = 1, +) -> MetricsTracker: + """Run the validation process.""" + model.eval() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(valid_dl): + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + tokenizer=tokenizer, + model=model, + batch=batch, + is_training=False, + ) + assert loss.requires_grad is False + tot_loss = tot_loss + loss_info + + if world_size > 1: + tot_loss.reduce(loss.device) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + if loss_value < params.best_valid_loss: + params.best_valid_epoch = params.cur_epoch + params.best_valid_loss = loss_value + + return tot_loss + + +def train_one_epoch( + params: AttributeDict, + tokenizer: whisper.tokenizer.Tokenizer, + model: Union[nn.Module, DDP], + optimizer: torch.optim.Optimizer, + scheduler: LRSchedulerType, + train_dl: torch.utils.data.DataLoader, + valid_dl: torch.utils.data.DataLoader, + scaler: GradScaler, + model_avg: Optional[nn.Module] = None, + tb_writer: Optional[SummaryWriter] = None, + world_size: int = 1, + rank: int = 0, +) -> None: + """Train the model for one epoch. + + The training loss from the mean of all frames is saved in + `params.train_loss`. It runs the validation process every + `params.valid_interval` batches. + + Args: + params: + It is returned by :func:`get_params`. + model: + The model for training. + optimizer: + The optimizer we are using. + scheduler: + The learning rate scheduler, we call step() every step. + train_dl: + Dataloader for the training dataset. + valid_dl: + Dataloader for the validation dataset. + scaler: + The scaler used for mix precision training. + model_avg: + The stored model averaged from the start of training. + tb_writer: + Writer to write log messages to tensorboard. + world_size: + Number of nodes in DDP training. If it is 1, DDP is disabled. + rank: + The rank of the node in DDP training. If no DDP is used, it should + be set to 0. + """ + model.train() + + tot_loss = MetricsTracker() + + for batch_idx, batch in enumerate(train_dl): + params.batch_idx_train += 1 + batch_size = len(batch["supervisions"]["text"]) + if batch_idx % params.valid_interval == 0 and not params.print_diagnostics: + logging.info("Computing validation loss") + valid_info = compute_validation_loss( + params=params, + tokenizer=tokenizer, + model=model, + valid_dl=valid_dl, + world_size=world_size, + ) + model.train() + logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}") + logging.info( + f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB" + ) + if tb_writer is not None: + valid_info.write_summary( + tb_writer, "train/valid_", params.batch_idx_train + ) + + try: + with torch.cuda.amp.autocast(enabled=params.use_fp16): + loss, loss_info = compute_loss( + params=params, + tokenizer=tokenizer, + model=model, + batch=batch, + is_training=True, + ) + # summary stats + tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info + + # NOTE: We use reduction==sum and loss is computed over utterances + # in the batch and there is no normalization to it so far. + if params.deepspeed: + # deepspeed's backward() is different from torch's backward() + # in that it does not accept a loss tensor as input. + # It computes the loss internally. + model.backward(loss) + model.step() + else: + scaler.scale(loss).backward() + set_batch_count(model, params.batch_idx_train) + scheduler.step_batch(params.batch_idx_train) + + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + except: # noqa + display_and_save_batch(batch, params=params) + raise + + if params.print_diagnostics and batch_idx == 5: + return + + if ( + rank == 0 + and params.batch_idx_train > 0 + and params.batch_idx_train % params.average_period == 0 + and not params.deepspeed + ): + update_averaged_model( + params=params, + model_cur=model, + model_avg=model_avg, + ) + + if batch_idx % 100 == 0 and params.use_fp16 and not params.deepspeed: + # If the grad scale was less than 1, try increasing it. The _growth_interval + # of the grad scaler is configurable, but we can't configure it to have different + # behavior depending on the current grad scale. + cur_grad_scale = scaler._scale.item() + if cur_grad_scale < 1.0 or (cur_grad_scale < 8.0 and batch_idx % 400 == 0): + scaler.update(cur_grad_scale * 2.0) + if cur_grad_scale < 0.01: + logging.warning(f"Grad scale is small: {cur_grad_scale}") + if cur_grad_scale < 1.0e-05: + raise RuntimeError( + f"grad_scale is too small, exiting: {cur_grad_scale}" + ) + if batch_idx % params.log_interval == 0: + try: + cur_lr = scheduler.get_last_lr()[0] + except: # noqa + cur_lr = 0.0 + cur_grad_scale = ( + scaler._scale.item() + if (params.use_fp16 and not params.deepspeed) + else 1.0 + ) + + logging.info( + f"Epoch {params.cur_epoch}, " + f"batch {batch_idx}, loss[{loss_info}], " + f"tot_loss[{tot_loss}], batch size: {batch_size}, " + f"lr: {cur_lr:.2e}, " + + ( + f"grad_scale: {scaler._scale.item()}" + if (params.use_fp16 and not params.deepspeed) + else "" + ) + ) + + if tb_writer is not None: + tb_writer.add_scalar( + "train/learning_rate", cur_lr, params.batch_idx_train + ) + + loss_info.write_summary( + tb_writer, "train/current_", params.batch_idx_train + ) + tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train) + if params.use_fp16: + tb_writer.add_scalar( + "train/grad_scale", + cur_grad_scale, + params.batch_idx_train, + ) + + loss_value = tot_loss["loss"] / tot_loss["frames"] + params.train_loss = loss_value + if params.train_loss < params.best_train_loss: + params.best_train_epoch = params.cur_epoch + params.best_train_loss = params.train_loss + + +def run(rank, world_size, args): + """ + Args: + rank: + It is a value between 0 and `world_size-1`, which is + passed automatically by `mp.spawn()` in :func:`main`. + The node with rank 0 is responsible for saving checkpoint. + world_size: + Number of GPUs for DDP training. + args: + The return value of get_parser().parse_args() + """ + params = get_params() + params.update(vars(args)) + + fix_random_seed(params.seed) + + setup_logger(f"{params.exp_dir}/log/log-train") + logging.info(params) + + logging.info("About to create model") + + replace_whisper_encoder_forward() + model = whisper.load_model(params.model_name, "cpu") + del model.alignment_heads + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + tokenizer = whisper.tokenizer.get_tokenizer( + model.is_multilingual, + num_languages=model.num_languages, + language="zh", + task="transcribe", + ) + + model_avg: Optional[nn.Module] = None + if rank == 0: + # model_avg is only used with rank 0 + model_avg = copy.deepcopy(model).to(torch.float64) + + assert params.start_epoch > 0, params.start_epoch + checkpoints = load_checkpoint_if_available( + params=params, model=model, model_avg=model_avg + ) + + if torch.cuda.is_available(): + device = torch.device("cuda", rank) + else: + device = torch.device("cpu") + logging.info(f"Device: {device}") + model.to(device) + + optimizer = torch.optim.AdamW(model.parameters(), lr=params.base_lr) + scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) + + if checkpoints and "optimizer" in checkpoints: + logging.info("Loading optimizer state dict") + optimizer.load_state_dict(checkpoints["optimizer"]) + + if ( + checkpoints + and "scheduler" in checkpoints + and checkpoints["scheduler"] is not None + ): + logging.info("Loading scheduler state dict") + scheduler.load_state_dict(checkpoints["scheduler"]) + + if world_size > 1: + if params.deepspeed: + logging.info("Using DeepSpeed") + model, optimizer, _, scheduler = deepspeed.initialize( + args=params, model=model, model_parameters=model.parameters() + ) + else: + logging.info("Using DDP") + setup_dist(use_ddp_launch=True) + model = DDP(model, device_ids=[rank], find_unused_parameters=True) + + if params.print_diagnostics: + opts = diagnostics.TensorDiagnosticOptions( + 512 + ) # allow 4 megabytes per sub-module + diagnostic = diagnostics.attach_diagnostics(model, opts) + + if params.inf_check: + register_inf_check_hooks(model) + + aishell = AishellAsrDataModule(args) + + if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: + # We only load the sampler's state dict when it loads a checkpoint + # saved in the middle of an epoch + sampler_state_dict = checkpoints["sampler"] + else: + sampler_state_dict = None + + train_dl = aishell.train_dataloaders(aishell.train_cuts()) + valid_dl = aishell.valid_dataloaders(aishell.valid_cuts()) + + scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0) + if checkpoints and "grad_scaler" in checkpoints: + logging.info("Loading grad scaler state dict") + scaler.load_state_dict(checkpoints["grad_scaler"]) + + if args.tensorboard and rank == 0: + tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard") + else: + tb_writer = None + + logging.info(f"start training from epoch {params.start_epoch}") + for epoch in range(params.start_epoch, params.num_epochs + 1): + if not params.deepspeed: + scheduler.step_epoch(epoch - 1) + fix_random_seed(params.seed + epoch - 1) + train_dl.sampler.set_epoch(epoch - 1) + + if tb_writer is not None: + tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train) + + params.cur_epoch = epoch + + train_one_epoch( + params=params, + tokenizer=tokenizer, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + train_dl=train_dl, + valid_dl=valid_dl, + scaler=scaler, + tb_writer=tb_writer, + world_size=world_size, + rank=rank, + ) + + if params.print_diagnostics: + diagnostic.print_diagnostics() + break + + if params.deepspeed: + model.save_checkpoint( + save_dir=params.exp_dir, + tag=f"epoch-{params.cur_epoch}", + client_state={}, + ) + if rank == 0: + convert_zero_checkpoint_to_fp32_state_dict( + params.exp_dir, + f"{params.exp_dir}/epoch-{params.cur_epoch}.pt", + tag=f"epoch-{params.cur_epoch}", + ) + else: + save_checkpoint( + params=params, + model=model, + model_avg=model_avg, + optimizer=optimizer, + scheduler=scheduler, + sampler=train_dl.sampler, + scaler=scaler, + rank=rank, + ) + + logging.info("Done!") + + if world_size > 1 and not params.deepspeed: + torch.distributed.barrier() + cleanup_dist() + + +def display_and_save_batch( + batch: dict, + params: AttributeDict, +) -> None: + """Display the batch statistics and save the batch into disk. + + Args: + batch: + A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()` + for the content in it. + params: + Parameters for training. See :func:`get_params`. + """ + from lhotse.utils import uuid4 + + filename = f"{params.exp_dir}/batch-{uuid4()}.pt" + logging.info(f"Saving batch to {filename}") + torch.save(batch, filename) + + supervisions = batch["supervisions"] + features = batch["inputs"] + + logging.info(f"features shape: {features.shape}") + + +def main(): + parser = get_parser() + AishellAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + world_size = get_world_size() + rank = get_rank() + + torch.set_num_threads(1) + torch.set_num_interop_threads(1) + run(rank=rank, world_size=world_size, args=args) + + +if __name__ == "__main__": + main() From 1cf78fd6755726668888031007f0270a1fb2c260 Mon Sep 17 00:00:00 2001 From: marcoyang Date: Thu, 28 Mar 2024 12:37:44 +0800 Subject: [PATCH 02/13] fbank for whisper --- .../ASR/local/compute_fbank_librispeech.py | 47 +++++++++++++++++-- egs/librispeech/ASR/prepare.sh | 20 ++++++++ 2 files changed, 62 insertions(+), 5 deletions(-) diff --git a/egs/librispeech/ASR/local/compute_fbank_librispeech.py b/egs/librispeech/ASR/local/compute_fbank_librispeech.py index 25d6050bb..5b703d9ca 100755 --- a/egs/librispeech/ASR/local/compute_fbank_librispeech.py +++ b/egs/librispeech/ASR/local/compute_fbank_librispeech.py @@ -32,7 +32,14 @@ from typing import Optional import sentencepiece as spm import torch from filter_cuts import filter_cuts -from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter +from lhotse import ( + CutSet, + Fbank, + FbankConfig, + LilcomChunkyWriter, + WhisperFbank, + WhisperFbankConfig, +) from lhotse.recipes.utils import read_manifests_if_cached from icefall.utils import get_executor, str2bool @@ -61,6 +68,13 @@ def get_args(): help="""Dataset parts to compute fbank. If None, we will use all""", ) + parser.add_argument( + "--output-dir", + type=str, + default="data/fbank", + help="Where to store the train/dev/test manifests and fbank features", + ) + parser.add_argument( "--perturb-speed", type=str2bool, @@ -68,18 +82,33 @@ def get_args(): help="""Perturb speed with factor 0.9 and 1.1 on train subset.""", ) + parser.add_argument( + "--whisper-fbank", + type=str2bool, + default=False, + help="If use Whisper configuration for fbank computation", + ) + + parser.add_argument( + "--num-mel-bins", + type=int, + default=80, + ) + return parser.parse_args() def compute_fbank_librispeech( bpe_model: Optional[str] = None, dataset: Optional[str] = None, + output_dir: Optional[str] = None, perturb_speed: Optional[bool] = True, + whisper_fbank: Optional[bool] = False, + num_mel_bins: Optional[int] = 80, ): src_dir = Path("data/manifests") - output_dir = Path("data/fbank") + output_dir = Path(output_dir) num_jobs = min(15, os.cpu_count()) - num_mel_bins = 80 if bpe_model: logging.info(f"Loading {bpe_model}") @@ -116,7 +145,12 @@ def compute_fbank_librispeech( dataset_parts, ) - extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) + if whisper_fbank: + extractor = WhisperFbank( + WhisperFbankConfig(num_filters=num_mel_bins, device="cuda") + ) + else: + extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) with get_executor() as ex: # Initialize the executor only once. for partition, m in manifests.items(): @@ -134,7 +168,7 @@ def compute_fbank_librispeech( if bpe_model: cut_set = filter_cuts(cut_set, sp) if perturb_speed: - logging.info(f"Doing speed perturb") + logging.info("Doing speed perturb") cut_set = ( cut_set + cut_set.perturb_speed(0.9) @@ -160,5 +194,8 @@ if __name__ == "__main__": compute_fbank_librispeech( bpe_model=args.bpe_model, dataset=args.dataset, + output_dir=args.output_dir, perturb_speed=args.perturb_speed, + whisper_fbank=args.whisper_fbank, + num_mel_bins=args.num_mel_bins, ) diff --git a/egs/librispeech/ASR/prepare.sh b/egs/librispeech/ASR/prepare.sh index 40dc3260d..9f9048a6d 100755 --- a/egs/librispeech/ASR/prepare.sh +++ b/egs/librispeech/ASR/prepare.sh @@ -243,3 +243,23 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then $lang_dir/L_disambig.fst fi fi + + +if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then + log "Stage 7: Prepare whisper fbank feature" + perturb_speed=1 + whisper_mel_bins=80 + output_dir=data/fbank_whisper_${whisper_mel_bins}D + if [ ! -f $output_dir/.librispeech.whisper.done ]; then + mkdir -p $output_dir + ./local/compute_fbank_librispeech.py \ + --num-mel-bins ${whisper_mel_bins} \ + --whisper-fbank true \ + --output-dir $output_dir + ./local/compute_fbank_musan.py \ + --num-mel-bins ${whisper_mel_bins} \ + --whisper-fbank true \ + --output-dir $output_dir + touch $output_dir/.librispeech.whisper.done + fi +fi From 76e0d59267b45d8c48d0729d0dbc067b6853c8fe Mon Sep 17 00:00:00 2001 From: marcoyang Date: Thu, 28 Mar 2024 15:23:19 +0800 Subject: [PATCH 03/13] support decoding --- egs/librispeech/ASR/whisper/decode.py | 513 ++++++++++++++++++ .../whisper_encoder_forward_monkey_patch.py | 1 + 2 files changed, 514 insertions(+) create mode 100755 egs/librispeech/ASR/whisper/decode.py create mode 120000 egs/librispeech/ASR/whisper/whisper_encoder_forward_monkey_patch.py diff --git a/egs/librispeech/ASR/whisper/decode.py b/egs/librispeech/ASR/whisper/decode.py new file mode 100755 index 000000000..24f61f17f --- /dev/null +++ b/egs/librispeech/ASR/whisper/decode.py @@ -0,0 +1,513 @@ +#!/usr/bin/env python3 +# Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, +# Fangjun Kuang, +# Wei Kang) +# 2024 Yuekai Zhang +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Usage: +# Command for decoding using fine-tuned models: +git lfs install +git clone https://huggingface.co/yuekai/icefall_asr_aishell_whisper +ln -s icefall_asr_aishell_whisper/exp_large_v2/epoch-10-avg6.pt whisper/exp_large_v2/epoch-999.pt + +python3 ./whisper/decode.py \ + --exp-dir whisper/exp_large_v2 \ + --model-name large-v2 \ + --epoch 999 --avg 1 \ + --manifest-dir data/fbank_whisper \ + --beam-size 10 --max-duration 50 + +# Command for decoding using pretrained models (before fine-tuning): + +python3 ./whisper/decode.py \ + --exp-dir whisper/exp_large_v2 \ + --model-name large-v2 \ + --epoch -1 --avg 1 \ + --manifest-dir data/fbank_whisper \ + --remove-whisper-encoder-input-length-restriction False \ + --beam-size 10 --max-duration 50 + +""" + +import argparse +import logging +import re +from collections import defaultdict +from pathlib import Path +from typing import Dict, List, Optional, Tuple + +import k2 +import torch +import torch.nn as nn +import whisper +from asr_datamodule import LibriSpeechAsrDataModule +from tn.chinese.normalizer import Normalizer +from whisper.normalizers import BasicTextNormalizer +from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward +from zhconv import convert + +from icefall.checkpoint import average_checkpoints_with_averaged_model, load_checkpoint +from icefall.env import get_env_info +from icefall.utils import ( + AttributeDict, + setup_logger, + store_transcripts, + str2bool, + write_error_stats, +) + + +def average_checkpoints( + filenames: List[Path], device: torch.device = torch.device("cpu") +) -> dict: + """Average a list of checkpoints. + The function is mainly used for deepspeed converted checkpoint averaging, which only include model state_dict. + + Args: + filenames: + Filenames of the checkpoints to be averaged. We assume all + checkpoints are saved by :func:`save_checkpoint`. + device: + Move checkpoints to this device before averaging. + Returns: + Return a dict (i.e., state_dict) which is the average of all + model state dicts contained in the checkpoints. + """ + n = len(filenames) + + if "model" in torch.load(filenames[0], map_location=device): + avg = torch.load(filenames[0], map_location=device)["model"] + else: + avg = torch.load(filenames[0], map_location=device) + + # Identify shared parameters. Two parameters are said to be shared + # if they have the same data_ptr + uniqued: Dict[int, str] = dict() + + for k, v in avg.items(): + v_data_ptr = v.data_ptr() + if v_data_ptr in uniqued: + continue + uniqued[v_data_ptr] = k + + uniqued_names = list(uniqued.values()) + + for i in range(1, n): + if "model" in torch.load(filenames[i], map_location=device): + state_dict = torch.load(filenames[i], map_location=device)["model"] + else: + state_dict = torch.load(filenames[i], map_location=device) + for k in uniqued_names: + avg[k] += state_dict[k] + + for k in uniqued_names: + if avg[k].is_floating_point(): + avg[k] /= n + else: + avg[k] //= n + + return avg + + +def remove_punctuation(text: str or List[str]): + """Modified from https://github.com/yeyupiaoling/Whisper-Finetune/blob/master/utils/data_utils.py + + Args: + text: It can be a string or a list of strings. + Returns: + Return a string or a list of strings without any punctuation. + """ + punctuation = "!,.;:?、!,。;:?《》" + if isinstance(text, str): + text = re.sub(r"[{}]+".format(punctuation), "", text).strip() + return text + elif isinstance(text, list): + result_text = [] + for t in text: + t = re.sub(r"[{}]+".format(punctuation), "", t).strip() + result_text.append(t) + return result_text + else: + raise Exception(f"Not support type {type(text)}") + + +def to_simple(text: str or List[str]): + """Convert traditional Chinese to simplified Chinese. + Args: + text: It can be a string or a list of strings. + Returns: + Return a string or a list of strings converted to simplified Chinese. + """ + if isinstance(text, str): + text = convert(text, "zh-cn") + return text + elif isinstance(text, list): + result_text = [] + for t in text: + t = convert(t, "zh-cn") + result_text.append(t) + return result_text + else: + raise Exception(f"Not support type{type(text)}") + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=-1, + help="It specifies the checkpoint to use for decoding." + "Note: Epoch counts from 0.", + ) + parser.add_argument( + "--avg", + type=int, + default=1, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch'. ", + ) + + parser.add_argument( + "--method", + type=str, + default="beam-search", + help="""Decoding method. + Supported values are: + - beam-search + """, + ) + + parser.add_argument( + "--beam-size", + type=int, + default=1, + help="beam size for beam search decoding", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="whisper/exp", + help="The experiment dir", + ) + + parser.add_argument( + "--model-name", + type=str, + default="large-v2", + choices=["large-v2", "large-v3", "medium", "medium.en", "small", "small.en", "tiny", "tiny.en"], + help="""The model name to use. + """, + ) + + parser.add_argument( + "--remove-whisper-encoder-input-length-restriction", + type=str2bool, + default=True, + help="replace whisper encoder forward method to remove input length restriction", + ) + + return parser + + +def get_params() -> AttributeDict: + params = AttributeDict( + { + "env_info": get_env_info(), + } + ) + return params + + +def decode_one_batch( + params: AttributeDict, + model: nn.Module, + batch: dict, +) -> Dict[str, List[List[int]]]: + """Decode one batch and return the result in a dict. The dict has the + following format: + + - key: "beam-search" + - value: A list of lists. Each sublist is a list of token IDs. + Args: + params: + It is returned by :func:`get_params`. + model: + The neural model. + batch: + It is returned by :meth:`torch.utils.data.DataLoader.__iter__`. + Returns: + Return a dict, whose key may be "beam-search". + """ + dtype = torch.float16 + device = torch.device("cuda") + + feature = batch["inputs"] + assert feature.ndim == 3 + feature = feature.to(device, dtype=dtype).transpose(1, 2) + if not params.remove_whisper_encoder_input_length_restriction: + T = 3000 + if feature.shape[2] < T: + feature = torch.cat( + [ + feature, + torch.zeros( + feature.shape[0], feature.shape[1], T - feature.shape[2] + ).to(device, dtype=dtype), + ], + 2, + ) + + supervisions = batch["supervisions"] + feature_len = supervisions["num_frames"] + feature_len = feature_len.to(device, dtype=dtype) + results = model.decode(feature, params.decoding_options) + hyps = [result.text.upper() for result in results] + + hyps = remove_punctuation(hyps) + hyps = [params.normalizer.normalize(hyp) for hyp in hyps] + hyps = [hyp.split() for hyp in hyps] + + return {"beam-search": hyps} + + +def decode_dataset( + dl: torch.utils.data.DataLoader, + params: AttributeDict, + model: nn.Module, +) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: + """Decode dataset. + + Args: + dl: + The dataloader. + params: + It is returned by :func:`get_params`. + model: + The neural model. + Returns: + Return a dict, whose key may be "beam-search". + """ + results = [] + + num_cuts = 0 + + try: + num_batches = len(dl) + except TypeError: + num_batches = "?" + + results = defaultdict(list) + for batch_idx, batch in enumerate(dl): + texts = batch["supervisions"]["text"] + cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] + + hyps_dict = decode_one_batch( + params=params, + model=model, + batch=batch, + ) + + for name, hyps in hyps_dict.items(): + this_batch = [] + assert len(hyps) == len(texts) + for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): + ref_words = ref_text.split() + this_batch.append((cut_id, ref_words, hyp_words)) + + results[name].extend(this_batch) + + num_cuts += len(batch["supervisions"]["text"]) + + if batch_idx % 100 == 0: + batch_str = f"{batch_idx}/{num_batches}" + + logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") + return results + + +def save_results( + params: AttributeDict, + test_set_name: str, + results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], +): + + enable_log = True + test_set_wers = dict() + for key, results in results_dict.items(): + recog_path = ( + params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" + ) + results = sorted(results) + store_transcripts(filename=recog_path, texts=results, char_level=True) + if enable_log: + logging.info(f"The transcripts are stored in {recog_path}") + + # The following prints out WERs, per-word error statistics and aligned + # ref/hyp pairs. + errs_filename = ( + params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" + ) + # we compute CER for aishell dataset. + results_char = [] + for res in results: + results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) + with open(errs_filename, "w") as f: + wer = write_error_stats( + f, + f"{test_set_name}-{key}", + results_char, + enable_log=enable_log, + compute_CER=True, + ) + test_set_wers[key] = wer + + if enable_log: + logging.info("Wrote detailed error stats to {}".format(errs_filename)) + + test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) + errs_info = params.res_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt" + with open(errs_info, "w") as f: + print("settings\tCER", file=f) + for key, val in test_set_wers: + print("{}\t{}".format(key, val), file=f) + + s = "\nFor {}, CER of different settings are:\n".format(test_set_name) + note = "\tbest for {}".format(test_set_name) + for key, val in test_set_wers: + s += "{}\t{}{}\n".format(key, val, note) + note = "" + logging.info(s) + + +@torch.no_grad() +def main(): + parser = get_parser() + LibriSpeechAsrDataModule.add_arguments(parser) + args = parser.parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + params.res_dir = params.exp_dir / params.method + params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + setup_logger( + f"{params.res_dir}/log-{params.method}-beam{params.beam_size}/log-decode-{params.suffix}" + ) + + options = whisper.DecodingOptions( + task="transcribe", + language="en", + # without_timestamps=True, + # beam_size=params.beam_size, + ) + params.decoding_options = options + params.cleaner = BasicTextNormalizer() + params.normalizer = Normalizer() + + logging.info("Decoding started") + logging.info(params) + + device = torch.device("cpu") + if torch.cuda.is_available(): + device = torch.device("cuda") + + logging.info(f"device: {device}") + + if params.remove_whisper_encoder_input_length_restriction: + replace_whisper_encoder_forward() + model = whisper.load_model(params.model_name, "cpu") + if params.epoch > 0: + if params.avg > 1: + start = params.epoch - params.avg + assert start >= 1, start + checkpoint = torch.load( + f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu" + ) + if "model" not in checkpoint: + # deepspeed converted checkpoint only contains model state_dict + filenames = [ + f"{params.exp_dir}/epoch-{epoch}.pt" + for epoch in range(start, params.epoch + 1) + ] + model.load_state_dict(average_checkpoints(filenames)) + else: + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.to(device) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + # save checkpoints + filename = f"{params.exp_dir}/epoch-{params.epoch}-avg-{params.avg}.pt" + torch.save(model.state_dict(), filename) + else: + checkpoint = torch.load( + f"{params.exp_dir}/epoch-{params.epoch}.pt", map_location="cpu" + ) + if "model" not in checkpoint: + model.load_state_dict(checkpoint, strict=True) + else: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + model.to(device) + model.eval() + num_param = sum([p.numel() for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}") + + # we need cut ids to display recognition results. + args.return_cuts = True + librispeech = LibriSpeechAsrDataModule(args) + + test_clean_cuts = librispeech.test_clean_cuts().subset(first=200) + test_other_cuts = librispeech.test_other_cuts().subset(first=200) + + test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) + test_other_dl = librispeech.test_dataloaders(test_other_cuts) + + test_sets = ["test-clean", "test-other"] + test_dls = [test_clean_dl, test_other_dl] + + for test_set, test_dl in zip(test_sets, test_dls): + results_dict = decode_dataset( + dl=test_dl, + params=params, + model=model, + ) + + save_results(params=params, test_set_name=test_set, results_dict=results_dict) + + logging.info("Done!") + + +torch.set_num_threads(1) +torch.set_num_interop_threads(1) + +if __name__ == "__main__": + main() diff --git a/egs/librispeech/ASR/whisper/whisper_encoder_forward_monkey_patch.py b/egs/librispeech/ASR/whisper/whisper_encoder_forward_monkey_patch.py new file mode 120000 index 000000000..2a7808921 --- /dev/null +++ b/egs/librispeech/ASR/whisper/whisper_encoder_forward_monkey_patch.py @@ -0,0 +1 @@ +../../../aishell/ASR/whisper/whisper_encoder_forward_monkey_patch.py \ No newline at end of file From eb685364df8395e7ffbdae44941cea21bc86573c Mon Sep 17 00:00:00 2001 From: marcoyang Date: Thu, 28 Mar 2024 15:56:04 +0800 Subject: [PATCH 04/13] generate train-all-shuf for whisper fbank --- egs/librispeech/ASR/prepare.sh | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/egs/librispeech/ASR/prepare.sh b/egs/librispeech/ASR/prepare.sh index 9f9048a6d..81fe43d84 100755 --- a/egs/librispeech/ASR/prepare.sh +++ b/egs/librispeech/ASR/prepare.sh @@ -249,7 +249,7 @@ if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare whisper fbank feature" perturb_speed=1 whisper_mel_bins=80 - output_dir=data/fbank_whisper_${whisper_mel_bins}D + output_dir=data/fbank_whisper_${whisper_mel_bins}D_hdf5 if [ ! -f $output_dir/.librispeech.whisper.done ]; then mkdir -p $output_dir ./local/compute_fbank_librispeech.py \ @@ -262,4 +262,10 @@ if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then --output-dir $output_dir touch $output_dir/.librispeech.whisper.done fi + if [ ! -f ${output_dir}/librispeech_cuts_train-all-shuf.jsonl.gz ]; then + cat <(gunzip -c ${output_dir}/librispeech_cuts_train-clean-100.jsonl.gz) \ + <(gunzip -c ${output_dir}/librispeech_cuts_train-clean-360.jsonl.gz) \ + <(gunzip -c ${output_dir}/librispeech_cuts_train-other-500.jsonl.gz) | \ + shuf | gzip -c > ${output_dir}/librispeech_cuts_train-all-shuf.jsonl.gz + fi fi From 711859c21fda7d0bd66e5e7706b92a064f911d67 Mon Sep 17 00:00:00 2001 From: marcoyang Date: Thu, 28 Mar 2024 16:14:44 +0800 Subject: [PATCH 05/13] fix typo --- egs/librispeech/ASR/zipformer/decode.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/egs/librispeech/ASR/zipformer/decode.py b/egs/librispeech/ASR/zipformer/decode.py index 339e253e6..5f18de9e8 100755 --- a/egs/librispeech/ASR/zipformer/decode.py +++ b/egs/librispeech/ASR/zipformer/decode.py @@ -1023,9 +1023,9 @@ def main(): test_other_dl = librispeech.test_dataloaders(test_other_cuts) test_sets = ["test-clean", "test-other"] - test_dl = [test_clean_dl, test_other_dl] + test_dls = [test_clean_dl, test_other_dl] - for test_set, test_dl in zip(test_sets, test_dl): + for test_set, test_dl in zip(test_sets, test_dls): results_dict = decode_dataset( dl=test_dl, params=params, From ebc0f3b052982355087ca71255c417bf64b36c88 Mon Sep 17 00:00:00 2001 From: marcoyang Date: Thu, 28 Mar 2024 16:16:18 +0800 Subject: [PATCH 06/13] update train.py --- egs/librispeech/ASR/whisper/train.py | 43 +++++++++++++++++++++------- 1 file changed, 32 insertions(+), 11 deletions(-) diff --git a/egs/librispeech/ASR/whisper/train.py b/egs/librispeech/ASR/whisper/train.py index 6ccb8d363..bd6b27d99 100755 --- a/egs/librispeech/ASR/whisper/train.py +++ b/egs/librispeech/ASR/whisper/train.py @@ -23,7 +23,8 @@ torchrun --nproc_per_node 8 ./whisper/train.py \ --max-duration 200 \ --exp-dir whisper/exp_large_v2 \ --model-name large-v2 \ - --manifest-dir data/fbank_whisper \ + --full-libri True \ + --manifest-dir data/fbank_whisper_80D \ --deepspeed \ --deepspeed_config ./whisper/ds_config_zero1.json @@ -31,7 +32,8 @@ torchrun --nproc_per_node 8 ./whisper/train.py \ torchrun --nproc_per_node 8 ./whisper/train.py \ --max-duration 200 \ --exp-dir whisper/exp_medium \ - --manifest-dir data/fbank_whisper \ + --full-libri True \ + --manifest-dir data/fbank_whisper_80D \ --base-lr 1e-5 \ --model-name medium """ @@ -53,7 +55,7 @@ import torch import torch.multiprocessing as mp import torch.nn as nn import whisper -from asr_datamodule import AishellAsrDataModule +from asr_datamodule import LibriSpeechAsrDataModule from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict from label_smoothing import LabelSmoothingLoss from lhotse import CutSet, load_manifest @@ -147,7 +149,7 @@ def get_parser(): "--model-name", type=str, default="large-v2", - choices=["large-v2", "large-v3", "medium", "small", "tiny"], + choices=["large-v2", "large-v3", "medium", "medium.en", "small", "small.en", "tiny", "tiny.en"], help="""The model name to use. """, ) @@ -450,8 +452,7 @@ def compute_loss( batch_idx_train = params.batch_idx_train texts = batch["supervisions"]["text"] - # remove spaces in texts - texts = [text.replace(" ", "") for text in texts] + texts = [t[0] + t[1:].lower() for t in texts] text_tokens_list = [ list(tokenizer.sot_sequence_including_notimestamps) @@ -744,7 +745,7 @@ def run(rank, world_size, args): tokenizer = whisper.tokenizer.get_tokenizer( model.is_multilingual, num_languages=model.num_languages, - language="zh", + language="en", task="transcribe", ) @@ -800,7 +801,19 @@ def run(rank, world_size, args): if params.inf_check: register_inf_check_hooks(model) - aishell = AishellAsrDataModule(args) + librispeech = LibriSpeechAsrDataModule(args) + + if params.full_libri: + train_cuts = librispeech.train_all_shuf_cuts() + else: + train_cuts = librispeech.train_clean_100_cuts() + + def remove_short_and_long_utt(c: Cut): + if c.duration < 1.0 or c.duration > 20.0: + return False + return True + + train_cuts = train_cuts.filter(remove_short_and_long_utt) if params.start_batch > 0 and checkpoints and "sampler" in checkpoints: # We only load the sampler's state dict when it loads a checkpoint @@ -809,8 +822,16 @@ def run(rank, world_size, args): else: sampler_state_dict = None - train_dl = aishell.train_dataloaders(aishell.train_cuts()) - valid_dl = aishell.valid_dataloaders(aishell.valid_cuts()) + train_dl = librispeech.train_dataloaders( + train_cuts, sampler_state_dict=sampler_state_dict + ) + + valid_cuts = librispeech.dev_clean_cuts() + valid_cuts += librispeech.dev_other_cuts() + + # do this to prevent Whisper throwing the length mismatch error + valid_cuts = valid_cuts.filter(remove_short_and_long_utt) + valid_dl = librispeech.valid_dataloaders(valid_cuts) scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0) if checkpoints and "grad_scaler" in checkpoints: @@ -911,7 +932,7 @@ def display_and_save_batch( def main(): parser = get_parser() - AishellAsrDataModule.add_arguments(parser) + LibriSpeechAsrDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) From 360f20803731a60e409400784dbf5931af50959e Mon Sep 17 00:00:00 2001 From: marcoyang Date: Thu, 28 Mar 2024 16:17:05 +0800 Subject: [PATCH 07/13] deactivate beam search temporarily for speed --- egs/librispeech/ASR/whisper/decode.py | 34 ++++++++------------------- 1 file changed, 10 insertions(+), 24 deletions(-) diff --git a/egs/librispeech/ASR/whisper/decode.py b/egs/librispeech/ASR/whisper/decode.py index 24f61f17f..83d33418d 100755 --- a/egs/librispeech/ASR/whisper/decode.py +++ b/egs/librispeech/ASR/whisper/decode.py @@ -3,6 +3,7 @@ # Fangjun Kuang, # Wei Kang) # 2024 Yuekai Zhang +# 2024 Xiaomi Corporation Xiaoyu Yang # # See ../../../../LICENSE for clarification regarding multiple authors # @@ -145,26 +146,6 @@ def remove_punctuation(text: str or List[str]): raise Exception(f"Not support type {type(text)}") -def to_simple(text: str or List[str]): - """Convert traditional Chinese to simplified Chinese. - Args: - text: It can be a string or a list of strings. - Returns: - Return a string or a list of strings converted to simplified Chinese. - """ - if isinstance(text, str): - text = convert(text, "zh-cn") - return text - elif isinstance(text, list): - result_text = [] - for t in text: - t = convert(t, "zh-cn") - result_text.append(t) - return result_text - else: - raise Exception(f"Not support type{type(text)}") - - def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter @@ -417,8 +398,8 @@ def main(): options = whisper.DecodingOptions( task="transcribe", language="en", - # without_timestamps=True, - # beam_size=params.beam_size, + without_timestamps=True, + #beam_size=params.beam_size, ) params.decoding_options = options params.cleaner = BasicTextNormalizer() @@ -481,12 +462,17 @@ def main(): num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") + def remove_short_and_long_utt(c): + if c.duration < 1.0 or c.duration > 30.0: + return False + return True + # we need cut ids to display recognition results. args.return_cuts = True librispeech = LibriSpeechAsrDataModule(args) - test_clean_cuts = librispeech.test_clean_cuts().subset(first=200) - test_other_cuts = librispeech.test_other_cuts().subset(first=200) + test_clean_cuts = librispeech.test_clean_cuts().filter(remove_short_and_long_utt) + test_other_cuts = librispeech.test_other_cuts().filter(remove_short_and_long_utt) test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) test_other_dl = librispeech.test_dataloaders(test_other_cuts) From cfbc829df3b817f2baf400d24647eb5c2aa69aec Mon Sep 17 00:00:00 2001 From: marcoyang Date: Thu, 28 Mar 2024 18:16:33 +0800 Subject: [PATCH 08/13] support freezing modules --- egs/librispeech/ASR/whisper/train.py | 33 ++++++++++++++++++---------- 1 file changed, 22 insertions(+), 11 deletions(-) diff --git a/egs/librispeech/ASR/whisper/train.py b/egs/librispeech/ASR/whisper/train.py index bd6b27d99..db6f2e182 100755 --- a/egs/librispeech/ASR/whisper/train.py +++ b/egs/librispeech/ASR/whisper/train.py @@ -88,15 +88,6 @@ from icefall.utils import ( LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler] -def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None: - if isinstance(model, DDP): - # get underlying nn.Module - model = model.module - for module in model.modules(): - if hasattr(module, "batch_count"): - module.batch_count = batch_count - - def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter @@ -226,6 +217,13 @@ def get_parser(): help="Whether to use half precision training.", ) + parser.add_argument( + "--freeze-modules", + type=str, + default=None, + help="Which modules to freeze during finetune" + ) + parser = deepspeed.add_config_arguments(parser) return parser @@ -583,6 +581,9 @@ def train_one_epoch( be set to 0. """ model.train() + for name, module in model.named_modules(): + if name.startswith(params.freeze_modules): + module.eval() tot_loss = MetricsTracker() @@ -630,7 +631,6 @@ def train_one_epoch( model.step() else: scaler.scale(loss).backward() - set_batch_count(model, params.batch_idx_train) scheduler.step_batch(params.batch_idx_train) scaler.step(optimizer) @@ -739,8 +739,19 @@ def run(rank, world_size, args): replace_whisper_encoder_forward() model = whisper.load_model(params.model_name, "cpu") del model.alignment_heads + + if params.freeze_modules is not None: + for name, p in model.named_parameters(): + if name.startswith(params.freeze_modules): + p.requires_grad = False + logging.info(f"Do not update {name}") + for name, module in model.named_modules(): + if name.startswith(params.freeze_modules): + module.eval() + num_param = sum([p.numel() for p in model.parameters()]) - logging.info(f"Number of model parameters: {num_param}") + num_trainable = sum([p.numel() if p.requires_grad else 0 for p in model.parameters()]) + logging.info(f"Number of model parameters: {num_param}. Total trainable parameters: {num_trainable}") tokenizer = whisper.tokenizer.get_tokenizer( model.is_multilingual, From 5d41deca71198ad3a15104bf52bcd3258e130581 Mon Sep 17 00:00:00 2001 From: marcoyang Date: Thu, 28 Mar 2024 18:16:52 +0800 Subject: [PATCH 09/13] update the decoding script --- egs/librispeech/ASR/whisper/decode.py | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/egs/librispeech/ASR/whisper/decode.py b/egs/librispeech/ASR/whisper/decode.py index 83d33418d..c5f8a9406 100755 --- a/egs/librispeech/ASR/whisper/decode.py +++ b/egs/librispeech/ASR/whisper/decode.py @@ -348,17 +348,12 @@ def save_results( errs_filename = ( params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" ) - # we compute CER for aishell dataset. - results_char = [] - for res in results: - results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", - results_char, + results, enable_log=enable_log, - compute_CER=True, ) test_set_wers[key] = wer @@ -366,13 +361,13 @@ def save_results( logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) - errs_info = params.res_dir / f"cer-summary-{test_set_name}-{params.suffix}.txt" + errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt" with open(errs_info, "w") as f: - print("settings\tCER", file=f) + print("settings\tWER", file=f) for key, val in test_set_wers: print("{}\t{}".format(key, val), file=f) - s = "\nFor {}, CER of different settings are:\n".format(test_set_name) + s = "\nFor {}, WER of different settings are:\n".format(test_set_name) note = "\tbest for {}".format(test_set_name) for key, val in test_set_wers: s += "{}\t{}{}\n".format(key, val, note) @@ -391,16 +386,21 @@ def main(): params.update(vars(args)) params.res_dir = params.exp_dir / params.method params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" + if params.method == "beam_search": + params.suffix += f"-beam-search-beam-size-{params.beam_size}" + + params.suffix += f"-whisper-{params.model_name}" setup_logger( - f"{params.res_dir}/log-{params.method}-beam{params.beam_size}/log-decode-{params.suffix}" + f"{params.res_dir}/log-{params.method}/log-decode-{params.suffix}" ) options = whisper.DecodingOptions( task="transcribe", language="en", without_timestamps=True, - #beam_size=params.beam_size, + beam_size=params.beam_size if params.method == "beam_search" else None, ) + params.decoding_options = options params.cleaner = BasicTextNormalizer() params.normalizer = Normalizer() From 55a6857df6c4608c5487a2322fe8ee3c13ec8876 Mon Sep 17 00:00:00 2001 From: marcoyang Date: Fri, 29 Mar 2024 11:02:48 +0800 Subject: [PATCH 10/13] add an option to use hdf5 for whisper fbank extraction --- .../ASR/local/compute_fbank_librispeech.py | 12 +++++++++++- egs/librispeech/ASR/local/compute_fbank_musan.py | 15 +++++++++++++-- 2 files changed, 24 insertions(+), 3 deletions(-) diff --git a/egs/librispeech/ASR/local/compute_fbank_librispeech.py b/egs/librispeech/ASR/local/compute_fbank_librispeech.py index 5b703d9ca..9802008c7 100755 --- a/egs/librispeech/ASR/local/compute_fbank_librispeech.py +++ b/egs/librispeech/ASR/local/compute_fbank_librispeech.py @@ -36,6 +36,7 @@ from lhotse import ( CutSet, Fbank, FbankConfig, + NumpyHdf5Writer, LilcomChunkyWriter, WhisperFbank, WhisperFbankConfig, @@ -95,6 +96,13 @@ def get_args(): default=80, ) + parser.add_argument( + "--use-hdf5", + type=str2bool, + default=False, + help="If use hdf5 to store un-compressed features. Otherwise, use Lilcom" + ) + return parser.parse_args() @@ -105,6 +113,7 @@ def compute_fbank_librispeech( perturb_speed: Optional[bool] = True, whisper_fbank: Optional[bool] = False, num_mel_bins: Optional[int] = 80, + use_hdf5: Optional[bool] = False, ): src_dir = Path("data/manifests") output_dir = Path(output_dir) @@ -180,7 +189,7 @@ def compute_fbank_librispeech( # when an executor is specified, make more partitions num_jobs=num_jobs if ex is None else 80, executor=ex, - storage_type=LilcomChunkyWriter, + storage_type=LilcomChunkyWriter if not use_hdf5 else NumpyHdf5Writer, ) cut_set.to_file(output_dir / cuts_filename) @@ -198,4 +207,5 @@ if __name__ == "__main__": perturb_speed=args.perturb_speed, whisper_fbank=args.whisper_fbank, num_mel_bins=args.num_mel_bins, + use_hdf5=args.use_hdf5, ) diff --git a/egs/librispeech/ASR/local/compute_fbank_musan.py b/egs/librispeech/ASR/local/compute_fbank_musan.py index d7781687f..1a4542dc0 100755 --- a/egs/librispeech/ASR/local/compute_fbank_musan.py +++ b/egs/librispeech/ASR/local/compute_fbank_musan.py @@ -34,6 +34,7 @@ from lhotse import ( FbankConfig, LilcomChunkyWriter, MonoCut, + NumpyHdf5Writer, WhisperFbank, WhisperFbankConfig, combine, @@ -55,7 +56,10 @@ def is_cut_long(c: MonoCut) -> bool: def compute_fbank_musan( - num_mel_bins: int = 80, whisper_fbank: bool = False, output_dir: str = "data/fbank" + num_mel_bins: int = 80, + whisper_fbank: bool = False, + output_dir: str = "data/fbank", + use_hdf5: bool = False, ): src_dir = Path("data/manifests") output_dir = Path(output_dir) @@ -111,7 +115,7 @@ def compute_fbank_musan( storage_path=f"{output_dir}/musan_feats", num_jobs=num_jobs if ex is None else 80, executor=ex, - storage_type=LilcomChunkyWriter, + storage_type=LilcomChunkyWriter if not use_hdf5 else NumpyHdf5Writer, ) ) musan_cuts.to_file(musan_cuts_path) @@ -137,6 +141,12 @@ def get_args(): default="data/fbank", help="Output directory. Default: data/fbank.", ) + parser.add_argument( + "--use-hdf5", + type=str2bool, + default=False, + help="If use hdf5 to store un-compressed features. Otherwise, use Lilcom" + ) return parser.parse_args() @@ -149,4 +159,5 @@ if __name__ == "__main__": num_mel_bins=args.num_mel_bins, whisper_fbank=args.whisper_fbank, output_dir=args.output_dir, + use_hdf5=args.use_hdf5, ) From 4d9f2120b3cda7448bd276f204d4cb11493ee3f4 Mon Sep 17 00:00:00 2001 From: marcoyang Date: Fri, 29 Mar 2024 11:03:37 +0800 Subject: [PATCH 11/13] update comments; generate train-all-shuf after feature extraction --- egs/librispeech/ASR/prepare.sh | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) diff --git a/egs/librispeech/ASR/prepare.sh b/egs/librispeech/ASR/prepare.sh index 81fe43d84..1cf61125a 100755 --- a/egs/librispeech/ASR/prepare.sh +++ b/egs/librispeech/ASR/prepare.sh @@ -244,21 +244,26 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then fi fi - +# NOTE: This stage is optional and should only be done if you want to +# do Whisper related experiments if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare whisper fbank feature" - perturb_speed=1 + perturb_speed=0 whisper_mel_bins=80 - output_dir=data/fbank_whisper_${whisper_mel_bins}D_hdf5 + use_hdf5=False + output_dir=data/fbank_whisper_${whisper_mel_bins}D_test if [ ! -f $output_dir/.librispeech.whisper.done ]; then mkdir -p $output_dir ./local/compute_fbank_librispeech.py \ --num-mel-bins ${whisper_mel_bins} \ + --perturb-speed ${perturb_speed} \ --whisper-fbank true \ + --use-hdf5 ${use_hdf5} \ --output-dir $output_dir ./local/compute_fbank_musan.py \ --num-mel-bins ${whisper_mel_bins} \ --whisper-fbank true \ + --use-hdf5 ${use_hdf5} \ --output-dir $output_dir touch $output_dir/.librispeech.whisper.done fi From f208431f5cdcb52dddf986200e96b4377971c7ea Mon Sep 17 00:00:00 2001 From: marcoyang Date: Fri, 29 Mar 2024 11:03:58 +0800 Subject: [PATCH 12/13] support on-the-fly whisper fbank extraction --- .../ASR/tdnn_lstm_ctc/asr_datamodule.py | 49 +++++++++++++++++-- 1 file changed, 45 insertions(+), 4 deletions(-) diff --git a/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py b/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py index 814390ad6..b83a61ccf 100644 --- a/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py +++ b/egs/librispeech/ASR/tdnn_lstm_ctc/asr_datamodule.py @@ -24,7 +24,15 @@ from pathlib import Path from typing import Any, Dict, Optional import torch -from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy +from lhotse import ( + CutSet, + Fbank, + FbankConfig, + load_manifest, + load_manifest_lazy, + WhisperFbank, + WhisperFbankConfig, +) from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures CutConcatenate, CutMix, @@ -215,6 +223,20 @@ class LibriSpeechAsrDataModule: help="AudioSamples or PrecomputedFeatures", ) + group.add_argument( + "--use-whisper-fbank", + type=str2bool, + default=False, + help="Use whisper fbank feature as input", + ) + + group.add_argument( + "--whisper-fbank-n-mels", + type=int, + default=80, + help="Number of mels for whisper fbank, large-v3 uses 128-mel fbank", + ) + def train_dataloaders( self, cuts_train: CutSet, @@ -297,9 +319,15 @@ class LibriSpeechAsrDataModule: # to be strict (e.g. could be randomized) # transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa # Drop feats to be on the safe side. + if self.args.use_whisper_fbank: + extractor = WhisperFbank( + WhisperFbankConfig(num_filters=self.args.whisper_fbank_n_mels), + ) + else: + extractor = Fbank(FbankConfig(num_mel_bins=80)) train = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), + input_strategy=OnTheFlyFeatures(extractor), input_transforms=input_transforms, return_cuts=self.args.return_cuts, ) @@ -355,9 +383,15 @@ class LibriSpeechAsrDataModule: logging.info("About to create dev dataset") if self.args.on_the_fly_feats: + if self.args.use_whisper_fbank: + extractor = WhisperFbank( + WhisperFbankConfig(num_filters=self.args.whisper_fbank_n_mels), + ) + else: + extractor = Fbank(FbankConfig(num_mel_bins=80)) validate = K2SpeechRecognitionDataset( cut_transforms=transforms, - input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), + input_strategy=OnTheFlyFeatures(extractor), return_cuts=self.args.return_cuts, ) else: @@ -383,8 +417,15 @@ class LibriSpeechAsrDataModule: def test_dataloaders(self, cuts: CutSet) -> DataLoader: logging.debug("About to create test dataset") + if self.args.use_whisper_fbank: + extractor = WhisperFbank( + WhisperFbankConfig(num_filters=self.args.whisper_fbank_n_mels), + ) + else: + extractor = Fbank(FbankConfig(num_mel_bins=80)) + test = K2SpeechRecognitionDataset( - input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))) + input_strategy=OnTheFlyFeatures(extractor) if self.args.on_the_fly_feats else eval(self.args.input_strategy)(), return_cuts=self.args.return_cuts, From 6b2bd0fb5234d57edd949359e1326cbe3fda4973 Mon Sep 17 00:00:00 2001 From: marcoyang Date: Fri, 29 Mar 2024 15:29:50 +0800 Subject: [PATCH 13/13] support fine-tuning mono-lingual whisper model; add ScaledAdam as an option --- egs/librispeech/ASR/whisper/train.py | 48 ++++++++++++++++++++++------ 1 file changed, 38 insertions(+), 10 deletions(-) diff --git a/egs/librispeech/ASR/whisper/train.py b/egs/librispeech/ASR/whisper/train.py index db6f2e182..40fa921a0 100755 --- a/egs/librispeech/ASR/whisper/train.py +++ b/egs/librispeech/ASR/whisper/train.py @@ -80,6 +80,7 @@ from icefall.hooks import register_inf_check_hooks from icefall.utils import ( AttributeDict, MetricsTracker, + get_parameter_groups_with_lrs, filter_uneven_sized_batch, setup_logger, str2bool, @@ -145,6 +146,14 @@ def get_parser(): """, ) + parser.add_argument( + "--optimizer", + type=str, + default="adam", + choices=["scaledadam", "adam"], + help="Which optimizer to use." + ) + parser.add_argument( "--base-lr", type=float, default=1e-5, help="The base learning rate." ) @@ -463,23 +472,33 @@ def compute_loss( torch.LongTensor(text_tokens) for text_tokens in text_tokens_list ] - # 50256 is the index of for all whisper models + if params.is_multilingual: + # 50256 is the index of for multi-lingual whisper models + pad_idx = 50256 + else: + # choose a symbol that is not used in en-whisper model as padding symbol + pad_idx = 50363 + + assert tokenizer.eot != pad_idx, "EOT symbol should be different from pad symbol" + prev_outputs_tokens = _batch_tensors( - [tokens[:-1] for tokens in text_tokens_list], pad_value=50256 + [tokens[:-1] for tokens in text_tokens_list], pad_value=pad_idx ) target_tokens = _batch_tensors( - [tokens[1:] for tokens in text_tokens_list], pad_value=50256 + [tokens[1:] for tokens in text_tokens_list], pad_value=pad_idx ) target_lengths = torch.LongTensor( [tokens.shape[0] - 1 for tokens in text_tokens_list] ) decoder_criterion = LabelSmoothingLoss( - ignore_index=50256, label_smoothing=0.1, reduction="sum" + ignore_index=pad_idx, label_smoothing=0.1, reduction="sum" ) - # ignore the first 3 tokens, which are always <|lang_id|>, <|transcibe|>, <|notimestampes|> - ignore_prefix_size = 3 + # ignore the prefix tokens, which are: + # 1. Multi-lingual model: <|startoftranscript|>, <|lang_id|>, <|transcibe|>, <|notimestampes|> + # 2. Mono-lingual model: <|startoftranscript|>, <|notimestampes|> + ignore_prefix_size = len(tokenizer.sot_sequence_including_notimestamps) - 1 with torch.set_grad_enabled(is_training): encoder_out = model.encoder(feature) text_logits = model.decoder(prev_outputs_tokens.to(device), encoder_out) @@ -581,9 +600,10 @@ def train_one_epoch( be set to 0. """ model.train() - for name, module in model.named_modules(): - if name.startswith(params.freeze_modules): - module.eval() + if params.freeze_modules is not None: + for name, module in model.named_modules(): + if name.startswith(params.freeze_modules): + module.eval() tot_loss = MetricsTracker() @@ -753,6 +773,7 @@ def run(rank, world_size, args): num_trainable = sum([p.numel() if p.requires_grad else 0 for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}. Total trainable parameters: {num_trainable}") + params.is_multilingual = model.is_multilingual tokenizer = whisper.tokenizer.get_tokenizer( model.is_multilingual, num_languages=model.num_languages, @@ -777,7 +798,14 @@ def run(rank, world_size, args): logging.info(f"Device: {device}") model.to(device) - optimizer = torch.optim.AdamW(model.parameters(), lr=params.base_lr) + if params.optimizer == "adam": + optimizer = torch.optim.AdamW(model.parameters(), lr=params.base_lr) + else: + optimizer = ScaledAdam( + get_parameter_groups_with_lrs(model, lr=params.base_lr, include_names=True), + lr=params.base_lr, # should have no effect + clipping_scale=2.0, + ) scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs) if checkpoints and "optimizer" in checkpoints: