mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-03 14:14:19 +00:00
support half precision training
This commit is contained in:
parent
395a3f952b
commit
2ff81b2838
@ -51,8 +51,8 @@ from lhotse.dataset.sampling.base import CutSampler
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import Transducer
|
||||
from torch import Tensor
|
||||
from torch.cuda.amp import GradScaler
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.nn.utils import clip_grad_norm_
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from transformer import Noam
|
||||
|
||||
@ -221,6 +221,13 @@ def get_parser():
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-fp16",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to use half precision training.",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
@ -411,6 +418,7 @@ def save_checkpoint(
|
||||
model: nn.Module,
|
||||
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||
sampler: Optional[CutSampler] = None,
|
||||
scaler: Optional[GradScaler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save model, optimizer, scheduler and training stats to file.
|
||||
@ -424,6 +432,8 @@ def save_checkpoint(
|
||||
The optimizer used in the training.
|
||||
sampler:
|
||||
The sampler for the training dataset.
|
||||
scaler:
|
||||
The scaler used for mix precision training.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
@ -434,6 +444,7 @@ def save_checkpoint(
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
sampler=sampler,
|
||||
scaler=scaler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
@ -473,6 +484,7 @@ def compute_loss(
|
||||
feature = batch["inputs"]
|
||||
# at entry, feature is (N, T, C)
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
@ -547,6 +559,7 @@ def train_one_epoch(
|
||||
sp: spm.SentencePieceProcessor,
|
||||
train_dl: torch.utils.data.DataLoader,
|
||||
valid_dl: torch.utils.data.DataLoader,
|
||||
scaler: GradScaler,
|
||||
tb_writer: Optional[SummaryWriter] = None,
|
||||
world_size: int = 1,
|
||||
rank: int = 0,
|
||||
@ -568,6 +581,8 @@ def train_one_epoch(
|
||||
Dataloader for the training dataset.
|
||||
valid_dl:
|
||||
Dataloader for the validation dataset.
|
||||
scaler:
|
||||
The scaler used for mix precision training.
|
||||
tb_writer:
|
||||
Writer to write log messages to tensorboard.
|
||||
world_size:
|
||||
@ -610,14 +625,17 @@ def train_one_epoch(
|
||||
and tb_writer is not None
|
||||
and params.batch_idx_train % (params.log_interval * 5) == 0
|
||||
):
|
||||
deltas = optim_step_and_measure_param_change(model, optimizer)
|
||||
deltas = optim_step_and_measure_param_change(
|
||||
model, optimizer, scaler=scaler
|
||||
)
|
||||
tb_writer.add_scalars(
|
||||
"train/relative_param_change_per_minibatch",
|
||||
deltas,
|
||||
global_step=params.batch_idx_train,
|
||||
)
|
||||
else:
|
||||
optimizer.step()
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
|
||||
cur_batch_idx = params.get("cur_batch_idx", 0)
|
||||
|
||||
@ -629,20 +647,23 @@ def train_one_epoch(
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
)
|
||||
with torch.autocast(
|
||||
device_type=model.device.type, enabled=params.use_fp16
|
||||
):
|
||||
loss, loss_info = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
)
|
||||
# summary stats
|
||||
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||
|
||||
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||
# in the batch and there is no normalization to it so far.
|
||||
|
||||
loss.backward()
|
||||
scaler.scale(loss).backward()
|
||||
|
||||
maybe_log_weights("train/param_norms")
|
||||
maybe_log_gradients("train/grad_norms")
|
||||
@ -662,6 +683,7 @@ def train_one_epoch(
|
||||
params=params,
|
||||
optimizer=optimizer,
|
||||
sampler=train_dl.sampler,
|
||||
scaler=scaler,
|
||||
rank=rank,
|
||||
)
|
||||
del params.cur_batch_idx
|
||||
@ -831,6 +853,11 @@ def run(rank, world_size, args):
|
||||
params=params,
|
||||
)
|
||||
|
||||
scaler = GradScaler(enabled=params.use_fp16)
|
||||
if checkpoints and "grad_scaler" in checkpoints:
|
||||
logging.info("Loading grad scaler state dict")
|
||||
scaler.load_state_dict(checkpoints["grad_scaler"])
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs):
|
||||
fix_random_seed(params.seed + epoch)
|
||||
train_dl.sampler.set_epoch(epoch)
|
||||
@ -857,6 +884,7 @@ def run(rank, world_size, args):
|
||||
tb_writer=tb_writer,
|
||||
world_size=world_size,
|
||||
rank=rank,
|
||||
scaler=scaler,
|
||||
)
|
||||
|
||||
save_checkpoint(
|
||||
@ -864,6 +892,7 @@ def run(rank, world_size, args):
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
sampler=train_dl.sampler,
|
||||
scaler=scaler,
|
||||
rank=rank,
|
||||
)
|
||||
|
||||
@ -891,15 +920,17 @@ def scan_pessimistic_batches_for_oom(
|
||||
batch = train_dl.dataset[cuts]
|
||||
try:
|
||||
optimizer.zero_grad()
|
||||
loss, _ = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
)
|
||||
with torch.autocast(
|
||||
device_type=model.device.type, enabled=params.use_fp16
|
||||
):
|
||||
loss, _ = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
batch=batch,
|
||||
is_training=True,
|
||||
)
|
||||
loss.backward()
|
||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||
optimizer.step()
|
||||
except RuntimeError as e:
|
||||
if "CUDA out of memory" in str(e):
|
||||
|
Loading…
x
Reference in New Issue
Block a user