mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
use nonzero threshold in DerivBalancer
This commit is contained in:
parent
425e274c82
commit
2fa9c636a4
@ -219,7 +219,7 @@ def _exp_scale_swish(x: Tensor, scale: Tensor, speed: float) -> Tensor:
|
||||
x = x * (scale * speed).exp()
|
||||
return x
|
||||
|
||||
class ExpScaleSwishFunction(torch.autograd.Function):
|
||||
class SwishExpScaleFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x: Tensor, scale: Tensor, speed: float) -> Tensor:
|
||||
ctx.save_for_backward(x.detach(), scale.detach())
|
||||
@ -237,16 +237,16 @@ class ExpScaleSwishFunction(torch.autograd.Function):
|
||||
return x.grad, scale.grad, None
|
||||
|
||||
|
||||
class ExpScaleSwish(torch.nn.Module):
|
||||
# combines ExpScale an Swish
|
||||
# caution: need to specify name for speed, e.g. ExpScaleSwish(50, speed=4.0)
|
||||
class SwishExpScale(torch.nn.Module):
|
||||
# combines ExpScale and a Swish (actually the ExpScale is after the Swish).
|
||||
# caution: need to specify name for speed, e.g. SwishExpScale(50, speed=4.0)
|
||||
def __init__(self, *shape, speed: float = 1.0):
|
||||
super(ExpScaleSwish, self).__init__()
|
||||
super(SwishExpScale, self).__init__()
|
||||
self.scale = nn.Parameter(torch.zeros(*shape))
|
||||
self.speed = speed
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return ExpScaleSwishFunction.apply(x, self.scale, self.speed)
|
||||
return SwishExpScaleFunction.apply(x, self.scale, self.speed)
|
||||
# x = (x * torch.sigmoid(x))
|
||||
# x = (x * torch.sigmoid(x))
|
||||
# x = x * (self.scale * self.speed).exp()
|
||||
@ -313,13 +313,15 @@ class ExpScaleRelu(torch.nn.Module):
|
||||
class DerivBalancerFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x: Tensor, channel_dim: int,
|
||||
threshold: 0.05, max_factor: 0.05,
|
||||
epsilon: 1.0e-10) -> Tensor:
|
||||
threshold: float = 0.05,
|
||||
max_factor: float = 0.05,
|
||||
zero: float = 0.02,
|
||||
epsilon: float = 1.0e-10) -> Tensor:
|
||||
if x.requires_grad:
|
||||
if channel_dim < 0:
|
||||
channel_dim += x.ndim
|
||||
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
||||
proportion_positive = torch.mean((x > 0).to(x.dtype), dim=sum_dims, keepdim=True)
|
||||
proportion_positive = torch.mean((x > zero).to(x.dtype), dim=sum_dims, keepdim=True)
|
||||
factor = (threshold - proportion_positive).relu() * (max_factor / threshold)
|
||||
|
||||
ctx.save_for_backward(factor)
|
||||
@ -328,7 +330,7 @@ class DerivBalancerFunction(torch.autograd.Function):
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None, None]:
|
||||
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None, None, None]:
|
||||
factor, = ctx.saved_tensors
|
||||
neg_delta_grad = x_grad.abs() * factor
|
||||
if ctx.epsilon != 0.0:
|
||||
@ -336,7 +338,7 @@ class DerivBalancerFunction(torch.autograd.Function):
|
||||
deriv_is_zero = (sum_abs_grad == 0.0)
|
||||
neg_delta_grad += ctx.epsilon * deriv_is_zero
|
||||
|
||||
return x_grad - neg_delta_grad, None, None, None, None
|
||||
return x_grad - neg_delta_grad, None, None, None, None, None
|
||||
|
||||
|
||||
class BasicNorm(torch.nn.Module):
|
||||
@ -429,20 +431,37 @@ class DerivBalancer(torch.nn.Module):
|
||||
When all grads are zero for a channel, this
|
||||
module sets all the input derivatives for that channel to -epsilon; the
|
||||
idea is to bring completely dead neurons back to life this way.
|
||||
|
||||
Args:
|
||||
channel_dim: the dimension/axi corresponding to the channel, e.g.
|
||||
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
|
||||
threshold: the threshold, per channel, of the proportion of the time
|
||||
that (x > 0), below which we start to modify the derivatives.
|
||||
max_factor: the maximum factor by which we modify the derivatives,
|
||||
e.g. with max_factor=0.02, the the derivatives would be multiplied by
|
||||
values in the range [0.98..1.01].
|
||||
zero: we use this value in the comparison (x > 0), i.e. we actually use
|
||||
(x > zero). The reason for using a threshold slightly greater
|
||||
than zero is that it will tend to prevent situations where the
|
||||
inputs shrink close to zero and the nonlinearity (e.g. swish)
|
||||
behaves like a linear function and we learn nothing.
|
||||
"""
|
||||
def __init__(self, channel_dim: int,
|
||||
threshold: float = 0.05,
|
||||
max_factor: float = 0.05,
|
||||
max_factor: float = 0.02,
|
||||
zero: float = 0.02,
|
||||
epsilon: float = 1.0e-10):
|
||||
super(DerivBalancer, self).__init__()
|
||||
self.channel_dim = channel_dim
|
||||
self.threshold = threshold
|
||||
self.max_factor = max_factor
|
||||
self.zero = zero
|
||||
self.epsilon = epsilon
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return DerivBalancerFunction.apply(x, self.channel_dim, self.threshold,
|
||||
self.max_factor, self.epsilon)
|
||||
self.max_factor, self.zero,
|
||||
self.epsilon)
|
||||
|
||||
|
||||
|
||||
@ -455,7 +474,7 @@ def _test_exp_scale_swish():
|
||||
x1 = torch.randn(50, 60).detach()
|
||||
x2 = x1.detach()
|
||||
|
||||
m1 = ExpScaleSwish(50, 1, speed=4.0)
|
||||
m1 = SwishExpScale(50, 1, speed=4.0)
|
||||
m2 = torch.nn.Sequential(DoubleSwish(), ExpScale(50, 1, speed=4.0))
|
||||
x1.requires_grad = True
|
||||
x2.requires_grad = True
|
||||
|
@ -19,7 +19,7 @@ import copy
|
||||
import math
|
||||
import warnings
|
||||
from typing import Optional, Tuple, Sequence
|
||||
from subsampling import PeLU, ExpScale, ExpScaleSwish, ExpScaleRelu, DerivBalancer, BasicNorm
|
||||
from subsampling import PeLU, ExpScale, SwishExpScale, ExpScaleRelu, DerivBalancer, BasicNorm
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
@ -160,7 +160,7 @@ class ConformerEncoderLayer(nn.Module):
|
||||
nn.Linear(d_model, dim_feedforward),
|
||||
DerivBalancer(channel_dim=-1, threshold=0.05,
|
||||
max_factor=0.025),
|
||||
ExpScaleSwish(dim_feedforward, speed=20.0),
|
||||
SwishExpScale(dim_feedforward, speed=20.0),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_feedforward, d_model),
|
||||
)
|
||||
@ -169,7 +169,7 @@ class ConformerEncoderLayer(nn.Module):
|
||||
nn.Linear(d_model, dim_feedforward),
|
||||
DerivBalancer(channel_dim=-1, threshold=0.05,
|
||||
max_factor=0.025),
|
||||
ExpScaleSwish(dim_feedforward, speed=20.0),
|
||||
SwishExpScale(dim_feedforward, speed=20.0),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(dim_feedforward, d_model),
|
||||
)
|
||||
|
@ -110,7 +110,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="transducer_stateless/specaugmod_baseline_randcombine1_expscale3_brelu2swish2_0.1_bnorm2",
|
||||
default="transducer_stateless/specaugmod_baseline_randcombine1_expscale3_brelu2swish2_0.1_bnorm2z0.02",
|
||||
help="""The experiment dir.
|
||||
It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
|
Loading…
x
Reference in New Issue
Block a user