This commit is contained in:
pkufool 2023-11-21 18:42:17 +08:00
parent c195a12a36
commit 2f0d3d7ae3
5 changed files with 61 additions and 89 deletions

View File

@ -19,6 +19,7 @@ import argparse
import codecs
import sys
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
@ -52,6 +53,6 @@ def main():
print(remove_punc_to_upper(line))
line = f.readline()
if __name__ == "__main__":
main()

View File

@ -20,11 +20,13 @@ import json
import sys
from pathlib import Path
def simple_cleanup(text: str) -> str:
table = str.maketrans("’‘,。;?!():-《》、“”【】", "'',.;?!(): <>/\"\"[]")
text = text.translate(table)
return text.strip()
# Assign text of the supervisions and remove unnecessary entries.
def main():
assert len(sys.argv) == 3, "Usage: ./local/prepare_manifest.py INPUT OUTPUT_DIR"
@ -33,7 +35,9 @@ def main():
with gzip.open(sys.argv[1], "r") as fin, gzip.open(oname, "w") as fout:
for line in fin:
cut = json.loads(line)
cut["supervisions"][0]["text"] = simple_cleanup(cut["supervisions"][0]["custom"]["texts"][0])
cut["supervisions"][0]["text"] = simple_cleanup(
cut["supervisions"][0]["custom"]["texts"][0]
)
del cut["supervisions"][0]["custom"]
del cut["custom"]
fout.write((json.dumps(cut) + "\n").encode())

View File

@ -44,8 +44,8 @@ def get_args():
parser.add_argument(
"--byte-fallback",
action='store_true',
help="""Whether to enable byte_fallback when training bpe."""
action="store_true",
help="""Whether to enable byte_fallback when training bpe.""",
)
parser.add_argument(
@ -56,15 +56,11 @@ def get_args():
)
parser.add_argument(
"--transcript",
type=str,
help="Training transcript.",
"--transcript", type=str, help="Training transcript.",
)
parser.add_argument(
"--vocab-size",
type=int,
help="Vocabulary size for BPE training",
"--vocab-size", type=int, help="Vocabulary size for BPE training",
)
return parser.parse_args()

View File

@ -215,9 +215,7 @@ class LibriHeavyAsrDataModule:
)
def train_dataloaders(
self,
cuts_train: CutSet,
sampler_state_dict: Optional[Dict[str, Any]] = None,
self, cuts_train: CutSet, sampler_state_dict: Optional[Dict[str, Any]] = None,
) -> DataLoader:
"""
Args:
@ -359,13 +357,10 @@ class LibriHeavyAsrDataModule:
)
else:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
return_cuts=self.args.return_cuts,
cut_transforms=transforms, return_cuts=self.args.return_cuts,
)
valid_sampler = DynamicBucketingSampler(
cuts_valid,
max_duration=self.args.max_duration,
shuffle=False,
cuts_valid, max_duration=self.args.max_duration, shuffle=False,
)
logging.info("About to create dev dataloader")
valid_dl = DataLoader(
@ -387,45 +382,52 @@ class LibriHeavyAsrDataModule:
return_cuts=self.args.return_cuts,
)
sampler = DynamicBucketingSampler(
cuts,
max_duration=self.args.max_duration,
shuffle=False,
cuts, max_duration=self.args.max_duration, shuffle=False,
)
logging.debug("About to create test dataloader")
test_dl = DataLoader(
test,
batch_size=None,
sampler=sampler,
num_workers=self.args.num_workers,
test, batch_size=None, sampler=sampler, num_workers=self.args.num_workers,
)
return test_dl
@lru_cache()
def train_small_cuts(self) -> CutSet:
logging.info("About to get small subset cuts")
return load_manifest_lazy(self.args.manifest_dir / "libriheavy_cuts_small.jsonl.gz")
return load_manifest_lazy(
self.args.manifest_dir / "libriheavy_cuts_small.jsonl.gz"
)
@lru_cache()
def train_medium_cuts(self) -> CutSet:
logging.info("About to get medium subset cuts")
return load_manifest_lazy(self.args.manifest_dir / "libriheavy_cuts_medium.jsonl.gz")
return load_manifest_lazy(
self.args.manifest_dir / "libriheavy_cuts_medium.jsonl.gz"
)
@lru_cache()
def train_large_cuts(self) -> CutSet:
logging.info("About to get large subset cuts")
return load_manifest_lazy(self.args.manifest_dir / "libriheavy_cuts_large.jsonl.gz")
return load_manifest_lazy(
self.args.manifest_dir / "libriheavy_cuts_large.jsonl.gz"
)
@lru_cache()
def dev_cuts(self) -> CutSet:
logging.info("About to get dev cuts")
return load_manifest_lazy(self.args.manifest_dir / "libriheavy_cuts_dev.jsonl.gz")
return load_manifest_lazy(
self.args.manifest_dir / "libriheavy_cuts_dev.jsonl.gz"
)
@lru_cache()
def test_clean_cuts(self) -> CutSet:
logging.info("About to get the test-clean cuts")
return load_manifest_lazy(self.args.manifest_dir / "libriheavy_cuts_test_clean.jsonl.gz")
return load_manifest_lazy(
self.args.manifest_dir / "libriheavy_cuts_test_clean.jsonl.gz"
)
@lru_cache()
def test_other_cuts(self) -> CutSet:
logging.info("About to get the test-other cuts")
return load_manifest_lazy(self.args.manifest_dir / "libriheavy_cuts_test_other.jsonl.gz")
return load_manifest_lazy(
self.args.manifest_dir / "libriheavy_cuts_test_other.jsonl.gz"
)

View File

@ -255,24 +255,17 @@ def add_model_arguments(parser: argparse.ArgumentParser):
)
parser.add_argument(
"--use-ctc",
type=str2bool,
default=False,
help="If True, use CTC head.",
"--use-ctc", type=str2bool, default=False, help="If True, use CTC head.",
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--world-size",
type=int,
default=1,
help="Number of GPUs for DDP training.",
"--world-size", type=int, default=1, help="Number of GPUs for DDP training.",
)
parser.add_argument(
@ -290,10 +283,7 @@ def get_parser():
)
parser.add_argument(
"--num-epochs",
type=int,
default=30,
help="Number of epochs to train.",
"--num-epochs", type=int, default=30, help="Number of epochs to train.",
)
parser.add_argument(
@ -401,10 +391,7 @@ def get_parser():
)
parser.add_argument(
"--ctc-loss-scale",
type=float,
default=0.2,
help="Scale for CTC loss.",
"--ctc-loss-scale", type=float, default=0.2, help="Scale for CTC loss.",
)
parser.add_argument(
@ -615,11 +602,11 @@ def get_joiner_model(params: AttributeDict) -> nn.Module:
def get_model(params: AttributeDict) -> nn.Module:
assert (
params.use_transducer or params.use_ctc
), (f"At least one of them should be True, "
assert params.use_transducer or params.use_ctc, (
f"At least one of them should be True, "
f"but got params.use_transducer={params.use_transducer}, "
f"params.use_ctc={params.use_ctc}")
f"params.use_ctc={params.use_ctc}"
)
encoder_embed = get_encoder_embed(params)
encoder = get_encoder_model(params)
@ -797,12 +784,12 @@ def compute_loss(
batch_idx_train = params.batch_idx_train
warm_step = params.warm_step
texts = batch["supervisions"]["text"]
y = sp.encode(texts, out_type=int)
y = k2.RaggedTensor(y)
with torch.set_grad_enabled(is_training):
simple_loss, pruned_loss, ctc_loss = model(
x=feature,
@ -820,17 +807,16 @@ def compute_loss(
# take down the scale on the simple loss from 1.0 at the start
# to params.simple_loss scale by warm_step.
simple_loss_scale = (
s if batch_idx_train >= warm_step
s
if batch_idx_train >= warm_step
else 1.0 - (batch_idx_train / warm_step) * (1.0 - s)
)
pruned_loss_scale = (
1.0 if batch_idx_train >= warm_step
1.0
if batch_idx_train >= warm_step
else 0.1 + 0.9 * (batch_idx_train / warm_step)
)
loss += (
simple_loss_scale * simple_loss
+ pruned_loss_scale * pruned_loss
)
loss += simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
if params.use_ctc:
loss += params.ctc_loss_scale * ctc_loss
@ -867,11 +853,7 @@ def compute_validation_loss(
for batch_idx, batch in enumerate(valid_dl):
loss, loss_info = compute_loss(
params=params,
model=model,
sp=sp,
batch=batch,
is_training=False,
params=params, model=model, sp=sp, batch=batch, is_training=False,
)
assert loss.requires_grad is False
tot_loss = tot_loss + loss_info
@ -961,11 +943,7 @@ def train_one_epoch(
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
loss, loss_info = compute_loss(
params=params,
model=model,
sp=sp,
batch=batch,
is_training=True,
params=params, model=model, sp=sp, batch=batch, is_training=True,
)
# summary stats
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
@ -975,7 +953,9 @@ def train_one_epoch(
scaler.scale(loss).backward()
scheduler.step_batch(params.batch_idx_train)
# Use the number of hours of speech to adjust the learning rate
scheduler.step_epoch(params.batch_idx_train * params.max_duration * params.world_size / 3600)
scheduler.step_epoch(
params.batch_idx_train * params.max_duration * params.world_size / 3600
)
scaler.step(optimizer)
scaler.update()
@ -994,9 +974,7 @@ def train_one_epoch(
and params.batch_idx_train % params.average_period == 0
):
update_averaged_model(
params=params,
model_cur=model,
model_avg=model_avg,
params=params, model_cur=model, model_avg=model_avg,
)
if (
@ -1016,9 +994,7 @@ def train_one_epoch(
rank=rank,
)
remove_checkpoints(
out_dir=params.exp_dir,
topk=params.keep_last_k,
rank=rank,
out_dir=params.exp_dir, topk=params.keep_last_k, rank=rank,
)
if batch_idx % 100 == 0 and params.use_fp16:
@ -1180,14 +1156,13 @@ def run(rank, world_size, args):
if params.print_diagnostics:
opts = diagnostics.TensorDiagnosticOptions(
2**22
2 ** 22
) # allow 4 megabytes per sub-module
diagnostic = diagnostics.attach_diagnostics(model, opts)
if params.inf_check:
register_inf_check_hooks(model)
def normalize_text(c: Cut):
text = remove_punc_to_upper(c.supervisions[0].text)
c.supervisions[0].text = text
@ -1233,7 +1208,7 @@ def run(rank, world_size, args):
libriheavy = LibriHeavyAsrDataModule(args)
train_cuts = libriheavy.train_small_cuts()
if params.subset == 'M' or params.subset == 'L':
if params.subset == "M" or params.subset == "L":
train_cuts += libriheavy.train_medium_cuts()
if params.subset == "L":
train_cuts += libriheavy.train_large_cuts()
@ -1322,9 +1297,7 @@ def run(rank, world_size, args):
def display_and_save_batch(
batch: dict,
params: AttributeDict,
sp: spm.SentencePieceProcessor,
batch: dict, params: AttributeDict, sp: spm.SentencePieceProcessor,
) -> None:
"""Display the batch statistics and save the batch into disk.
@ -1371,11 +1344,7 @@ def scan_pessimistic_batches_for_oom(
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,
sp=sp,
batch=batch,
is_training=True,
params=params, model=model, sp=sp, batch=batch, is_training=True,
)
loss.backward()
optimizer.zero_grad()